首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
比较分析了2017年南极中山站3种仪器测量地面太阳紫外B(UVB)波段和紫外A(UVA)波段的辐照度。以Brewer光谱仪测值为参考,国产宽波段FSUVB日射表在UVB(波段280~315 nm)的辐照度相对误差为(55±75)%,误差随大气臭氧总量的增加呈上升趋势,但在南极“臭氧洞”期间偏低。Yankee UVB宽波段日射表在UVB(波段280~320 nm)的辐照度相对误差为(-31±22)%;国产宽波段FSUVA日射表在UVA(波段315~400 nm)的辐照度相对误差为(23±5.9)%。太阳天顶角低于80°的晴天以Tropospheric Ultraviolet Visible(TUV)辐射模式计算结果为参考时,FSUVB,Yankee UVB和FSUVA辐照度的平均相对误差分别为(30±37)%,(-22±19)%和(27±6.4)%,而Brewer相对误差未超过3.5%。国产宽波段UV日射表测值偏高,反映出波长较长的杂散光对太阳辐照度测值影响明显。  相似文献   

2.
Abstract

Spectrometers are designed to isolate particular wavebands and suppress light from wavelengths outside the band of interest. However, a small amount of undesired light will always enter the detector, not through the designed optical path, but through random scattering from the instrument optical components, housing, and dust particles. Every spectrophotometer has stray light coming from outside the nominal measurement waveband. For Dobson spectrophotometers and single monochromator Brewer spectrophotometers, which are basic instruments in the World Meteorological Organization (WMO) ozone and ultraviolet (UV) monitoring network, the error introduced by stray light is substantial when the ozone slant path becomes very large because of high solar zenith angles and a thick ozone layer. These are common conditions during Arctic spring. To study the issue, a long ozone slant path Intercomparison/Calibration campaign for Nordic Brewers and Dobsons was held at Sodankylä 8–24 March 2011 and a follow-up campaign to extend calibrations to shorter ozone slant paths took place at Izaña observatory, Tenerife, between 28 October and 18 November 2011. These campaigns were part of the Committee on Earth Observation Satellites (CEOS) Intercalibration of Ground-based Spectrometers and Lidars project funded by the European Space Agency (ESA), intended to permit the homogenization of ozone data from the European ozone ground-truthing network. During the active intercomparison periods, measurements were taken only when good conditions for sun or moon observations existed. Laboratory measurements using calibration lamps and helium-cadmium (HeCd) lasers were an essential part of both campaigns. The campaigns produced a high-quality database of total ozone and UV measurements and an accurate, up-to-date calibration and characterization of participating Brewers and Dobsons against the European standard instruments from the Regional Dobson Calibration Centre-Europe (RDCC-E) and the Regional Brewer Calibration Centre-Europe (RBCC-E). In the present work we focus on single monochromator Brewers and present a physics-based method to compensate for the stray-light effects in ozone retrieval using laboratory characterizations and radiative transfer modelling. The method was tested with independent data from the campaign.  相似文献   

3.
Solar ultraviolet radiation at the surface has been measured at Potsdam on cloudless days by spectrometer OL 752/10. The measurements are compared with broad-band filter measurements and with model calculations using a modified version of Green's model, which is independent of the measurements. Input data to the model such as atmospheric ozone and aerosol optical thicknesses were measured by a Dobson and Brewer spectrophotometer as well as a Linke Feussner pyrheliometer, respectively. Differences between the model and the measurements are discussed in terms of uncertainties in the calibration and errors of instruments as well as uncertainties in the model calculations including the errors of input data. It is demonstrated that different chemically and biologically effective radiances can be determined from only one set of measured spectral irradiance components, i.e. global radiation and diffuse downward and upward directed radiation. Examples of diurnal variations of the photochemical production of ozone and hydroxyl radicals as determined from spectral irradiance measurements and measured concentrations of relevant trace gases are given.It is shown from the measured irradiance that relations between different effects of radiation to the biosphere depend on solar zenith angle, and to a certain extent also on atmospheric ozone. This has to be taken into account when adverse effects of changing UV radiation are evaluated. Radiation Amplification Factors derived from measurements correspond to those determined from model calculations.  相似文献   

4.
Abstract

Passive wind measurements using Doppler shifts from atmospheric emissions were well demonstrated by the Wind Imaging Interferometer (WINDII) and the High Resolution Doppler Imager (HRDI) instruments on the National Aeronautics and Space Administration's (NASA's) Upper Atmosphere Research Satellite, operated from 1991 to 2005. For WINDII these emissions were from visible region upper atmospheric airglow in the altitude range from 80 to 300?km. Application of the same technique in the stratosphere requires using thermal emission from a minor constituent, and an ozone line near 1133?cm?1 (about 8.8?μm) has been identified as a suitable target line. The WINDII method employed a Doppler Michelson Interferometer, in which the wind is measured from phase shifts of a single spectral line. Isolating a single ozone spectral line is a major challenge but using Spatial Heterodyne Spectroscopy (SHS) offers a way to resolve a number of interferogram spectral components (fringes) within a narrow spectral range. The instrument is a Michelson interferometer similar to WINDII but one in which the two mirrors are replaced by diffraction gratings. A developmental instrument capable of measuring the phase shifts from several ozone lines within a spectral range of 4?cm?1 has been designed, built, and operated in the laboratory. Simulated retrievals using the measurement parameters of this instrument demonstrate the capability of wind measurement with an accuracy better than 3?m?s?1 over an altitude range of 24 to 60?km. The retrieval employs four spectral lines for wind and three fringe frequencies for ozone concentration (of about 30 possible), each of which provides an optimal measurement for a particular altitude range. Ozone concentrations are also provided with an accuracy better than 10% from 20 to 50?km. Further detailed tests of this instrument are planned for the future. This work is supported by the Canadian Space Agency.  相似文献   

5.
大气臭氧变化在全球气候和环境中具有重要作用,是当今大气科学领域的重要研究对象之一。对比分析了中国科学院大气物理研究所河北香河大气综合观测试验站2014~2016年Dobson和Brewer两种臭氧总量观测仪器探测结果的一致性,并使用1979~2016年Dobson观测数据分析了香河地区臭氧总量的长期变化趋势。结果表明:进行有效温度修正后,两种臭氧总量仪器观测结果一致性较好,平均偏差仅为-0.14DU(多布森单位),平均绝对偏差为8.00 DU,标准差为36.09 DU,相关系数达0.964。整体来说,两类仪器观测臭氧总量吻合较好。SO2浓度对Dobson仪器数据精度有一定影响,两组仪器数据在SO2浓度为0~0.2DU、0.2~0.4DU和0.4DU大气条件情况下的平均偏差分别为4.8 DU、7.0 DU和8.0 DU,平均偏差随SO2浓度升高而增大。过去38年香河地区的臭氧总量季节差异性强,春、冬两季臭氧总量高,夏、秋两季臭氧总量相对低,季节变化趋势差异明显。从长期变化上看,臭氧总量变化波动有不同的周期,在4个大的时间段变化趋势不同,2000~2010年臭氧层有显著恢复,但最近几年又有变薄的趋势。  相似文献   

6.
Comparisons of total column ozone measurements from Dobson, Brewer and SAOZ instruments are presented for the period 1990 to 1995 at seven stations covering the mid- and the high northern latitudes, as well as the Antarctic region. The main purpose of these comparisons is to assess, by reference to the well established Dobson network, the accuracy of the zenith-sky visible spectroscopy for the measurement of total ozone. The strengths and present limitations of this latter technique are investigated. As a general result, the different instruments are found to agree within a few percent at all stations, the best agreement being obtained at mid-latitudes. On average, for the mid-latitudes, SAOZ O3 measurements are approximately 2% higher than Dobson ones, with a scatter of about 5%. At higher latitudes, both scatter and systematic deviation tend to increase. In all cases, the relative differences between SAOZ and Dobson or Brewer column ozone are characterised by a significant seasonal signal, the amplitude of which increases from about 2.5% at mid-latitude to a maximum of 7.5% at Faraday, Antarctica. Although it introduces a significant contribution to the seasonality at high latitude, the temperature sensitivity of the O3 absorption coefficients of the Dobson and Brewer instruments is shown to be too small to account for the observed SAOZ/Dobson differences. Except for Faraday, these differences can however be largely reduced if SAOZ AMFs are calculated with realistic climatological profiles of ozone, pressure and temperature. Other sources of uncertainties that might affect the comparison are investigated. Evidence is found that the differences in the air masses sampled by the SAOZ and the other instruments contribute significantly to the scatter, and the impact of the tropospheric clouds on SAOZ measurements is displayed.  相似文献   

7.
Because total UV(TUV) in the UV-A region is 100 times higher than in the UV-B region,UV-A is a considerable component when calculating erythemal UV(EUV) and UV-index.The ratio of EUV to TUV in the UV-A value [EUV(A)/TUV(A)]is investigated to convert the EUV(A) from TUV(A) for broadband observation. The representative value of EUV(A)/TUV(A),from the simulation study,is 6.9 × 10-4,changing from 6.1 × 10-4to 7.0 × 10-4as aerosol optical depth,total ozone and solar zenith angle change. By adopting the observational data of EUV(B) and TUV(A) from UV-biometer measurements at Yonsei University [(37.57?N,126.95?E),84 m above sea level],the EUV irradiance increases to 15% of EUV(B) due to the consideration of EUV(A) from the data of TUV(A) observation. Compared to the total EUV observed from the Brewer spectrophotometer at the same site,the EUV(B) from the UV-biometer observes only 95% of total EUV,and its underestimation is caused by neglecting the effect of UV-A. However,the sum of EUV(B) and EUV(A) [EUV(A+B)] from two UV-biometers is 10% larger than the EUV from the Brewer spectrophotometer because of the spectral overlap effect in the range 320–340nm. The correction factor for the overlap effect adjusts 8% of total EUV.  相似文献   

8.
《大气与海洋》2013,51(4):325-338
Abstract

A portable ground‐based instrument has been constructed for the automated measurement of vertical column abundances of a number of gases pertinent to stratospheric ozone chemistry. The instrumentation is described in this paper and results are presented from the first set of field measurements, made during the Middle Atmosphere Nitrogen TRend Assessment (MANTRA) 1998 field campaign at Vanscoy, Saskatchewan, Canada. Zenith‐sky spectra in the near ultraviolet and visible wavelength regions were recorded for a period of seven days, prior to and following the launch of the MANTRA balloon on 24 August 1998. The spectra were then analysed using the differential optical absorption spectroscopy (DOAS) technique in conjunction with a radiative transfer model to determine vertical column amounts of ozone and NO2. Ozone measurements compared favourably with concurrent observations by ozonesondes, a Brewer spectrophotometer, and satellite instruments. Vertical NO2 columns were in broad agreement with those determined by the Global Ozone Monitoring Experiment (GOME) satellite instrument.  相似文献   

9.
Abstract

The influence of variations in atmospheric temperature and ozone profiles on the total ozone column (TOC) derived from a Brewer MKII spectrophotometer operating in Thessaloniki, Greece, is investigated using three different sets of ozone absorption cross-sections. The standard Brewer total ozone retrieval algorithm uses the Bass and Paur (1985) cross-sections without accounting for the temperature dependence of the ozone cross-sections which produces a seasonally dependent bias in the measured TOC. The magnitude of this temperature effect depends on the altitude where the bulk of the ozone absorption occurs. Radiosonde measurements for the period 2000 to 2010 combined with climatological ozone profiles were used to calculate the effective temperature of ozone absorption and investigate its effect on the retrieved ozone column. Three different ozone absorption cross-section spectra convolved with the instrument's slit function were used: those of Bass and Paur (hereafter BP), currently used in the standard Brewer retrieval algorithm; those of Brion, Daumont, and Malicet (Malicet et al., 1985; hereafter BDM); and the recently published set by Serdyuchenko et al. (2013 hereafter S13). The temperature dependence of the differential ozone absorption coefficient ranges between 0.09 and 0.13% per degree Celsius for BP, between ?0.11 and ?0.06% per degree Celsius for BDM, and between 0.018 to 0.022% per degree Celsius for S13, resulting in a seasonal bias in the derived TOC of up to 2%, 1.8%, and 0.4%, respectively. The temperature sensitivity of the differential ozone absorption coefficient for the Brewer spectrophotometer at Thessaloniki for the BP and BDM cross-sections is found to be within the range reported for other Brewer instruments in earlier studies, whereas the seasonal bias in TOC is minimized when using the new S13 cross-sections because of their small temperature dependence.  相似文献   

10.
Abstract

Ground‐based measurements of total ozone were made during the polar night from Arctic stations in the winters of 1987–88 and 1988–89. The measurements were made with automated Brewer ozone spectrophotometers using the moon as a light source. Data were obtained from Alert and Resolute in Canada for both winters and from Heiss Island, USSR, for the second winter. The method of measurement is briefly reviewed and data from the three stations are presented. The ground‐based total ozone measurements are compared with the integrated values derived from ozonesonde profiles.  相似文献   

11.
Abstract

This study analyzes changes in solar ultraviolet (UV) irradiances at 305 and 325?nm at selected sites located at high latitudes of both hemispheres. Site selection was restricted to the availability of the most complete UV spectroradiometric datasets of the past twenty years (1990–2011). The results show that over northern high latitudes, between 55° and 70°N, UV irradiances at 305?nm decreased significantly by 3.9% per decade, whereas UV irradiance at 325?nm remained stable with no significant long-term change. Over southern high latitudes (55°–70°S), UV irradiances did not show any significant long-term changes at either 305 or 325?nm. Changes in solar UV irradiances are discussed in the context of long-term ozone and other atmospheric parameters affecting UV variability at ground level.  相似文献   

12.
Spectroradiometers using photodiode array detectors (PDAs) are increasingly applied for airborne and ground-based atmospheric measurements of spectral actinic flux densities due to their high time resolution (less than one second). However they have limited sensitivity of ultraviolet (UV) radiation for wavelengths less than about 305 nm. This results in uncertainties of ozone photolysis frequencies derived from spectral actinic flux density measurements using PDA spectrometers. To overcome this limitation a parameterization method is introduced which extrapolates the data towards the wavelength range of limited sensitivity of the PDA spectrometers (less than about 305 nm). The parameterization is based on radiative transfer simulations and is valid for measurements in the lower troposphere. The components of the suggested parameterization are the lower threshold wavelength of the PDA spectrometer, the slant ozone column (ratio of the total ozone column and the cosine of the solar zenith angle), and the ambient temperature. Tests of the parameterization with simulated actinic flux density spectra have revealed an uncertainty of the derived ozone photolysis frequency of ±5%. Field comparisons of the parameterization results with independent measurements of the ozone photolysis frequency were within ±10% for solar zenith angles less than 70^∘. Finally the parameterization was applied to airborne measurements to emphasize the advantage of high time resolution of PDA spectrometers to study ozone photolysis frequency fields in inhomogeneous cloud condtitions.  相似文献   

13.
Presented are the results of studies dealing with the analysis of discrepancies in the data on total ozone measurements carried out using different instruments. The results of measurements with ground-based spectral (UV and visible) and filter instruments and spaceborne nadir scanning instruments are used as initial data. As a result of the analysis of relative systematic and random discrepancies, it is concluded that the data of filter instruments are of insufficient accuracy for diagnosing total ozone values. The analysis of linear trends revealed the presence of considerable differences in the data series obtained by spectral instruments. It is concluded that there is every reason to hope for obtaining the most homogeneous measurement data in Russia using the instruments operating in the Chappuis band.  相似文献   

14.
High-quality long-term records of spectral UV irradiance from the Network for the Detection of Atmospheric Composition Change-affiliated Bentham spectroradiometer at the high-mountain site Hoher Sonnblick (47.05° N, 12.95° E, 3,106?m above sea level) from the period 1997?C2011 have been investigated for the existence of trends. Throughout the year, significant upward trends are found at wavelengths of 315?nm and longer. The magnitudes at 315?nm range from +9.3?±?4.5?%/dec at 45° solar zenith angle (SZA) to +14.2?±?3.7?%/dec at SZA 65° for all-sky conditions. The trend estimates at 305?nm are considerably smaller and less significant, yielding between +5.1?±?6.5 and +7.9?±?7.3?%/dec, depending on SZA. Seasonally, the largest trends are found during winter and spring. Total ozone has significantly increased by year-round +1.9?±?1.3?%/dec since 1997 and therefore cannot explain these significant increases. They are rather attributed to decreases in total cloud cover and aerosol optical depth.  相似文献   

15.
本文选取多个臭氧总量观测站点,采用"三重制约法"分别对下列3组仪器观测臭氧总量数据进行统计分析,解算出不同观测资料的误差标准差,进而对比研究各种仪器的精度特征:1)1996~2003年期间地基WOUDC(World Ozone and Ultraviolet Radiation Data Centre)观测网络仪器(包括Brewer、Dobson和Filter臭氧测量仪)与星载TOMS(Total Ozone Mapping Spectrometer)和GOME(The Global Ozone Monitoring Experiment)仪器;2)2004~2013年期间WOUDC与星载OMI(ozone monitoring instrument)和SCIAMACHY(scanning imaging absorption spectrometer for atmospheric chartography)仪器;3)2004~2013年期间地基SAOZ(Système D’Analyse par Observations Zénithales)与星载OMI和SCIAMACHY仪器。结果表明,1996~2003年期间TOMS V8和GOME观测精度相当,分别为7.6±2.8 DU/46(其中,7.6±2.8 DU为所分析站点观测资料的平均精度及其标准差,46为站点数目)和7.6±1.5 DU/46。TOMS V8观测精度优于TOMS V7(8.5±3.0 DU/46),验证了前者对后者有所改进。2004~2013年期间OMI和SCIAMACHY在WOUDC地基站点观测精度接近,分别为6.6±1.4 DU/21和6.0±1.6 DU/21。SAOZ地基仪器精度为8.4±3.6 DU/8。对于3类WOUDC地基仪器,Brewer站点观测资料的平均精度最优(7.9±3.3 DU/12),Dobson次之(8.7±2.3 DU/19),Filter最差(14.7±4.0 DU/15)。相比于卫星,3种地面仪器观测平均精度较差(10.5±4.3 DU/46),这主要是由于Filter精度较差引起。中国境内的瓦里关(Brewer)、香河(Dobson)和昆明(Dobson)3个地基站点仪器观测精度均较优,分别为7.8 DU、6.7 DU和6.6 DU。尽管不同站点之间存在一定差异,但整体来说,地基与卫星仪器在中国境内3个站点观测臭氧总量吻合较好。  相似文献   

16.
Data of stratospheric ozone measurements with the AK-3 lidar over Obninsk in 2012–2015 are compared with Aura/MLS and Aura/OMI satellite data and parallel surface observations of total ozone (TO) with the Brewer spectrophotometer. The maximum difference in mean ozone concentration between the lidar and Aura/MLS data in the altitude range of 13 to 32 km does not exceed 0.2 x 1012 mol./cm3 (or the maximum of 9% at the altitude of 13 km). At the same time, Aura/OMI data have a positive bias of about 20% relative to lidar data in the range of 13 to 20 km that is associated with OMI measurement errors according to literature data. Total ozone values calculated from lidar measurements jointly with the known climatology data are compared with those measured with the Brewer spectrophotometer. It is demonstrated that the correlation between the results of measurements obtained by two methods is close to linear, and the mean relative difference in the overall measurement range does not exceed 5%.  相似文献   

17.
An open-path cavity ring-down spectroscopy (CRDS) instrument for measurement of atmospheric iodine monoxide (IO) radicals has been tested in the laboratory and subsequently deployed in Roscoff on the north-west coast of France as part of the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) project in September 2006. In situ measurements are reported of local IO mixing ratios in the marine boundary layer. To obtain these mixing ratios, accurate absorption cross sections of IO are required at the selected wavelengths used for spectroscopic measurements. Absorption cross sections at the bandheads of the IO A2Π3/2–X2Π3/2 (3,0) and (2,0) vibronic bands were thus verified by a combination of spectral simulation methods, inter-comparison of prior determinations of cross-sections at high and low spectral resolution, and by measurement of rates of loss of IO by its self-reaction. The performance of the open-path CRDS instrument was tested by measuring concentrations of NO2 in ambient air, both within and outside the laboratory, with results that were in excellent agreement with a previously validated continuous wave CRDS apparatus for NO2 detection. During the RHaMBLe campaign, the open-path CRDS instrument was located within a few metres of the shoreline and operated at wavelengths close to 435 nm to detect the absorption of light by trace levels of IO. The IO mixing ratios were obtained on two days, peaked close to low tide, and were approximately 5–10 times higher than values calculated from column densities previously reported by long-path, differential optical absorption spectroscopy (DOAS) in coastal regions. The typical detection limit of the instrument was estimated to be 10 pptv of IO, with some fluctuation around this value depending on the conditions of wind and atmospheric aerosol particles, and the total accumulation time was 30 s for each data point. The observations of relatively high concentration of IO, compared to the values previously reported by DOAS, are consistent with the concurrent observations using a LIF (Laser induced Fluorescence) instrument (Whalley et al. in press). The first such measurements of localized IO by CRDS and LIF should contribute to an improved understanding of the chemistry of halogen compounds and the formation of iodine oxide aerosol particles in the marine boundary layer.  相似文献   

18.
The ultraviolet (UV) spectra on cloudy days were compared to those on cloud free days to determine which part of the UV spectrum has the greatest enhancement due to the cloud compared to both corresponding measured clear sky spectra as well as other enhanced spectra. In this preliminary study, cloud enhanced UV spectra selected for maximum UVA enhancement compared to a clear sky UV spectrum at similar solar zenith angle (SZA) and ozone values, showed that the ratio of the two sets of spectral irradiances was approximately wavelength independent (approximately 1.1) above the cut-off wavelength of approximately 306 nm. Similarly, above 306 nm the average ratio of the spectral irradiances of a maximum UVB enhanced UV spectrum compared to a clear sky spectrum was 1.2 with maximum values generally above this average between 316 and 344 nm and generally below 1.2 above the wavelength of 344 nm. The UVA and UVB enhanced spectra were separated into five SZA ranges and the irradiance at each wavelength averaged for each range and compared to clear sky spectra in each of the ranges. Above approximately 306 nm, the ratios are wavelength independent for all SZA. However, with the exception of the SZA range centred on 20°, there is an increasing dependency with shorter wavelengths below the 306 nm. Also there appears to be two distinct groupings of the average irradiance ratios, corresponding to the SZA range centred on 20°, 37° and 49° (ratio of 1.2) and 32° and 42° (ratio 1.0), the latter cases suggesting that on average there is no enhancement for these SZA, except for wavelengths less than 306 nm.  相似文献   

19.
王志恩  胡欢  陵周军 《气象学报》1996,54(4):437-446
文中提出了一种新的激光雷达测量臭氧的方法:双差分吸收方法。理论分析和数值模拟表明这种方法可以有效减小气溶胶消光和后向散射对臭氧测量的影响,从而使激光雷达在气溶胶影响严重地区测量的臭氧精度比传统差分吸收激光雷达大大提高。利用(289,313;277.1,299.1nm)或(268.4,289;277.1,299.1nm)4波长进行双差分吸收可以用于对流层大气气溶胶含量丰富或分布不均匀地区臭氧的测量。利用(299.1,341.5;308,353nm)4波长进行双差分吸收可以对火山爆发后平流层臭氧进行较精确的测量。  相似文献   

20.
Brewer 分光光度计遥感大气臭氧垂直廓线的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用建立的球面分层大气散射模式,研究了Brewer仪器工作波长进行Umkehr短法反演所包含的信息量,给出Brewer仪器探测大气臭氧垂直廓线的方法。同时,用气溶胶光学厚度计算得到气溶胶订正系数,建立了Umkehr反演的程序,用此程序对TableMountain资料进行气溶胶修正,得到了较好的结果。对北京测站1991年1─3月资料进行由气溶胶造成的臭氧反演廓线的误差计算,结果表明,用常规反演方法得到的各层臭氧含量的误差与平流层气溶胶光学厚度有一近似线性的关系;进行气溶胶修正后,与国外的臭氧反演廓线的误差修正工作 ̄[1]比较,结果较一致。研究提出的气溶胶订正反演方法为更好地对平流层臭氧变化趋势进行研究提供了可能性和可靠的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号