首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
云对中国区域卫星观测臭氧总量精度影响的检验分析   总被引:5,自引:0,他引:5  
郑向东 《大气科学》2008,32(6):1431-1444
根据卫星和地基观测, 比较了我国香河、 昆明、 瓦里关和龙凤山四个站点臭氧总量自1979年以来的变化。卫星与地基观测的臭氧总量长期趋势比较一致, 表明臭氧总量均有下降趋势, 但是卫星与地基各自观测的结果仍存在着显著的差别。为研究卫星与地基臭氧总量的差别, 以地基观测臭氧总量为参考, 检验云对历史TOMS (Total Ozone Mapping Spectrometer) 和GOME (Global Ozone Monitoring Experiment) 臭氧总量精度的影响。结果显示: 云 (云量或云顶高度) 增加了卫星臭氧总量误差, 降低数据精度。随着地面云量的增加, TOMS、 GOME臭氧总量相对误差在上述四个地点呈现明显的上升趋势 (瓦里关最为明显), 但最大变化幅度没有超过2.0%。TOMS臭氧总量相对误差随地面云量变化呈现区域性特点, 香河与龙凤山 (代表着中纬度高臭氧总量区域)、 昆明与瓦里关 (代表中、 低纬度高原低臭氧总量区域) 分别为两个变化特点接近的区域。GOME臭氧总量相对误差与云之间关系的区域特征不明显。利用卫星遥测FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A\|band) 云信息检验GOME卫星臭氧总量精度的表明, 只有当云量大于5成后GOME臭氧总量才显示出相对误差增加的现象, 但无明显趋势; 随着FRESCO云顶高度的增加, GOME臭氧相对误差在香河、 瓦里关均呈现明显的上升趋势并有3%左右幅度的变化。TOMS臭氧总量相对误差随着地面有效反射率的增加而增大, 且误差幅度超过2%; TOMS\|N7臭氧总量比TOMS\|EP约高2.0%~3.0%。分析还表明, 云内和云以下臭氧柱浓度在反演的卫星臭氧总量中的贡献很可能被高估了。  相似文献   

2.
大气臭氧变化在全球气候和环境中具有重要作用,是当今大气科学领域的重要研究对象之一。对比分析了中国科学院大气物理研究所河北香河大气综合观测试验站2014~2016年Dobson和Brewer两种臭氧总量观测仪器探测结果的一致性,并使用1979~2016年Dobson观测数据分析了香河地区臭氧总量的长期变化趋势。结果表明:进行有效温度修正后,两种臭氧总量仪器观测结果一致性较好,平均偏差仅为-0.14DU(多布森单位),平均绝对偏差为8.00 DU,标准差为36.09 DU,相关系数达0.964。整体来说,两类仪器观测臭氧总量吻合较好。SO2浓度对Dobson仪器数据精度有一定影响,两组仪器数据在SO2浓度为0~0.2DU、0.2~0.4DU和0.4DU大气条件情况下的平均偏差分别为4.8 DU、7.0 DU和8.0 DU,平均偏差随SO2浓度升高而增大。过去38年香河地区的臭氧总量季节差异性强,春、冬两季臭氧总量高,夏、秋两季臭氧总量相对低,季节变化趋势差异明显。从长期变化上看,臭氧总量变化波动有不同的周期,在4个大的时间段变化趋势不同,2000~2010年臭氧层有显著恢复,但最近几年又有变薄的趋势。  相似文献   

3.
从2013年开始,作者团队使用自主研发电化学原理臭氧探空仪在华北平原北京地区进行每周一次观测.本研究首次使用2013-2019年期间北京地区臭氧探空数据评估Aqua卫星搭载大气红外探测仪(AIRS)和Aura卫星搭载微波临边探测器(MLS)反演垂直臭氧廓线,并对比臭氧探空,AIRS和Aura卫星搭载臭氧监测仪(OMI)臭氧柱总量结果.尽管臭氧探空与卫星反演垂直臭氧廓线在局部高度处差异较大,但整体来说两者较为接近(相对偏差大多<10%).臭氧探空,AIRS和OMI三种仪器测量臭氧柱总量的年变化特征较为一致,其年均臭氧柱总量分别为351.8±18.4 DU,348.8±19.5 DU和336.9±14.2 DU.后续对国内多站点观测数据分析将有助于进一步理解臭氧探空与卫星反演臭氧资料在不同区域的一致性.  相似文献   

4.
通过对1 9 9 3年9月~2 0 0 3年1 1月瓦里关地区(3 6.1 7°N,1 0 0.5 3°E)Brewer资料和TOMS资料的比较分析,结果表明:1)瓦里关Brewer臭氧光谱仪的观测数据与卫星的TOMS观测数据之间存在一定的差异,两者的差异8 0%以上集中在-2.5%~2.5%之间;2)1 9 9 3~2 0 0 3年瓦里关地区的大气臭氧总量有着明显的下降趋势,这与北半球中纬度地区观测到的平流层臭氧减少的趋势相吻合;3)瓦里关地区大气臭氧总量存在明显的年际变化和季节变化,且每年的2~4月较高,8~1 0月较低,一年中振荡的幅度达到6 0 DU;4)TOMS两个版本的观测数据与地面观测结果呈现出较好的一致性和相关性,相关系数达到0.9以上。  相似文献   

5.
中国4个地点地基与卫星臭氧总量长期观测比较   总被引:1,自引:0,他引:1       下载免费PDF全文
对我国河北香河、云南昆明、青海瓦里关及黑龙江龙凤山地基观测臭氧总量与不同时期、不同卫星反演的产品差别特点进行比较,评估地基和卫星观测臭氧总量数据的质量信息以及近30年来我国不同区域臭氧总量的变化趋势特征。结果表明:4个站点的地基与卫星观测臭氧总量的绝对和相对差别分别为-5~10 DU和-5%~4%;日平均相对差别基本上呈现随机分布特征。TOMS算法反演的卫星臭氧总量与地基差别总体上要优于与DOAS算法反演的同期产品。地基与卫星臭氧总量差别呈明显的区域特点,可能反映了卫星反演计算中所需的臭氧、温度垂直分布等初始条件的纬度分布差异对卫星产品精度的影响。在过去30年,4个站点的臭氧总量在经历1993年前的显著降低后于1995—1996年逐渐回升,而瓦里关站在2001年前后的回升更为明显。  相似文献   

6.
利用探空资料验证GOME卫星臭氧数据   总被引:2,自引:0,他引:2       下载免费PDF全文
利用1996年3月-2003年6月部分时段拉萨、西宁、北京3个站的臭氧探空资料验证了GOME(Global Ozone Monitoring Experiment)卫星臭氧廓线及对流层臭氧柱总量。对比结果表明:在对流层中下层,拉萨和西宁两地GOME与探空的平均偏差小于5%,北京地区平均偏差小于10%;在对流层上层/平流层下层,拉萨和西宁平均偏差小于10%,北京小于20%;在平流层中上层3个站的平均偏差均小于5%。在对流层上层/平流层下层区域,GOME与臭氧探空的平均偏差在北京明显高于拉萨和西宁。3个地区对流层柱总量的平均偏差都在10%以内,表明该资料可用于研究我国对流层臭氧总量的变化规律。同时段的GOME最低层(0~2.5km)月平均臭氧浓度对比结果显示,GOME结果同地面臭氧观测值有很好的相关性,GOME臭氧浓度反映了拉萨、瓦里关、临安地面臭氧浓度的主要变化特征。  相似文献   

7.
南极春季臭氧的TOVS反演及其与BREWER观测的比较   总被引:1,自引:1,他引:1       下载免费PDF全文
通过改进臭氧的统计反演算法,从NOAA卫星的TOVS资料中提取了1993年南极臭氧洞期间中山站上空大气臭氧含量的资料。本文的结果与NOAA的TOVS臭氧产品以及中山站的Brewer观测进行了比较。尽管3种资料对在臭氧洞期间臭氧含量的显著减少这一特征上相当一致,但此项结果相对于Brewer观测,其均方根误差29 DU,优于NOAA的业务反演产品。此外,还初步讨论了这两种反演的误差特征。  相似文献   

8.
利用气溶胶指数(Aerosol Index,AI)资料研究了东亚地区紫外吸收性气溶胶的时空分布特征,主要得出以下结论:1)雨云七号卫星(Nimbus 7,N7)和地球探测卫星(Earth Probe,EP)搭载的臭氧总量测绘光谱仪(Total Ozone Mapping Spectrometer,TOMS)以及臭氧监测仪(Ozone Monitoring Instrument,OMI)反演的AI数据在东亚大陆具有较好的一致性,但EP/TOMS-OMI AI的连续性较好,而N7/TOMS-EP/TOMS AI的连续性较差;2)东亚地区紫外吸收性气溶胶主要位于塔克拉玛干沙漠及其东部周边的库姆塔格、柴达木盆地沙漠、古尔班通古特沙漠、内蒙古中西部、蒙古国南部以及我国东北、华北地区;3)紫外吸收性气溶胶具有明显的月际变化特征;4)旋转正交经验函数分析不仅能分离紫外吸收性气溶胶的源区范围,还能给出源强相对大小的定性信息。  相似文献   

9.
近30a北极平流层臭氧的季节和年际变化特征   总被引:1,自引:0,他引:1  
综合利用1978-2011年TOMS(Total Ozone Mapping Spectrometer)和OMI(Ozone Monitoring Instrument)臭氧总量资料,MLS(Microwave Limb Sounder)臭氧廓线资料以及NCEP/NCAR再分析气象场资料,对比研究了近30a南北极臭氧总量的年际变化和季节变化差异,重点分析了2010/2011年冬末春初北极臭氧出现的异常损耗现象,探讨北极春季臭氧低值产生的原因。结果表明:与南极地区一年四季都保持一个臭氧低值中心明显不同,北极臭氧总量的减少则是伴随着整个春夏季(4-8月),在秋季(10月)达到最低值,冬季(11月-次年2月)北极臭氧快速恢复,这主要是由于南北半球极地地区环流差异和温度差异造成的。南北两极年均O3总量呈下降趋势,两极地区O3总量年际变化最大的季节是春季。近30a,北极在1997和2011年春季(3-4月)分别达到极低值355DU和361DU,但近年来两极臭氧年际变化趋势不明显。2011年春季,北极地区出现的较严重臭氧低值现象从3月中旬至4月中旬持续了近1个月,2010/2011年冬春季平流层低温和臭氧低值对应关系很好。  相似文献   

10.
利用臭氧探空资料,分析了西太平洋地区香港(Hong Kong)、那霸(Naha)和札幌(Sapporo)三个站点2000~2010年期间大气边界层内臭氧(O3)的季节分布和年变化趋势。结果表明,三个站点O3的季节分布存在明显的差异。其中,那霸和香港大气边界层内O3季节平均呈双峰值分布,其峰值分别出现在春季和秋季;而札幌站为单峰分布,峰值出现在春季。造成季节分布差异的主要原因包括人为污染源和自然因素如气象条件。另外,三个站点大气边界层内O3均呈上升趋势。其中札幌、那霸上升最快,分别达0.80 ppb a-1和0.77 ppb a-1。(ppb表示10-9,下同)香港的年际增长较不明显,但秋季增长却非常明显,高达1.21 ppb a-1。结合GOME (Global Ozone Monitoring Experiment) 和SCIAMACHY (Scanning Imaging Absorption Spectro Meter for Atmospheric Chartography)卫星反演的NO2数据发现,过去10年中国京津唐和东北地区的对流层内NO2柱总量增加极为迅速。这些O3前体物通过远距离输送是导致札幌、那霸O3浓度增加的主要原因之一。珠江三角洲人为污染源的增加及偏北气流的影响,是导致香港地区秋季O3增加的主要原因。  相似文献   

11.
气溶胶单次散射反照率(SSA)表征气溶胶吸收特性,很大程度上决定了气溶胶辐射强迫的正负,对准确评估气候变化中的气溶胶辐射强迫具有重要意义。根据2004年10月至2016年12月地基AERONET(AERosol RObotic NETwork)和OMI(Ozone Monitoring Instrument)卫星数据,分析了中国北方典型地区(北京、香河、兴隆和兰州郊区)SSA的变化趋势以及两组数据的一致性。4个站AERONET和OMI 的SSA年均值分别为:北京0.89±0.04和0.90±0.04,香河0.89±0.04和0.91±0.04,兴隆0.92±0.04和0.91±0.04,兰州0.91±0.04和0.90±0.04。4个站点SSA季节变化一致,夏季高冬季低。SSA年际变化趋势分析时,因有效数据较少且为非正态分布,用月中位数代替月均值,同时需对数据进行筛选和去季节变化,结果显示北京和香河均有地基和卫星有效数据时间尺度不同的情况,而兴隆OMI和兰州AERONET满足趋势分析要求。在研究期间,4站SSA均呈上升趋势,说明近年来中国北方气溶胶的吸收性减弱,散射特性增强,尤其北京四季地基和卫星数据均呈上升趋势,但香河秋冬吸收性增强。同时,对AERONET和OMI两种反演算法得到的SSA一致性进行分析。香河结果差异较大,仅30%的数据在误差±0.03的范围内,55%在±0.05的范围内;北京分别为46%(±0.03)和68%(±0.05),兴隆分别为50%(±0.03)和76%(±0.05),兰州数据一致性较好,分别为51%(±0.03)和86%(±0.05),总体来说是受人为活动影响比较明显的地区,数据一致性较差。  相似文献   

12.
根据Dobson和TOMS资料分析北京和昆明大气臭氧总量变化特征   总被引:11,自引:0,他引:11  
用约20年 Dobson和TOMS资料来分析北京(39.93°N,116.40°E)和昆明 (25.02°N,102.68°)两地大气臭氧总量的变化特征,结果表明:(1)在1979-2000年间北京大气臭氧长期变化趋势是-0.642 DU/年,而昆明在1980-2000年间的趋势是-0.009 DU/年;(2)北京和昆明两地大气臭氧都有很强的季节内变化(尤其冬季更强),与季节性变化强度相当;(3)在北京和昆明,由记录较短的大气臭氧资料分析得到的长期变化趋势,与较长记录得到的结果有显著差异;(4)在北京(中纬度)和昆明(低纬度)大气臭氧都有显著的准两年振荡信号;(5)两个站点大气臭氧的年际变化主要由长期趋势项和准两年振荡信号组成;(6)Dobson仪测量得到的臭氧总量与TOMS资料非常一致。  相似文献   

13.
Abstract

Regular ground-based measurements of total ozone are available over the full Russian territory using M-124 filter ozonometers, Brewer spectrophotometers, and Système d'Analyse par Observation Zénithale (SAOZ) spectrometers in the Arctic region where these observations are essential for evaluating ozone loss in winter. Daily measurements are performed by three Brewer spectrophotometers; these are located in Kislovodsk (43.7°N, 42.7°E), Obninsk (55.1°N, 36.6°E), and Tomsk (56.5°N, 85.1°E). Two SAOZ spectrometers are deployed at the Arctic Circle in Salekhard (66.5°N, 66.7°E) and Zhigansk (66.8°N, 123.4°E). In addition, regular winter–spring ozonesonde soundings are carried out in Salekhard. Altogether, they have provided the unique measurements over the eastern Arctic required for characterizing ozone loss during each winter and will also monitor the anticipated ozone recovery following the reduction of chlorine and bromine ozone-depleting substances in the atmosphere.  相似文献   

14.
Comparisons of total column ozone measurements from Dobson, Brewer and SAOZ instruments are presented for the period 1990 to 1995 at seven stations covering the mid- and the high northern latitudes, as well as the Antarctic region. The main purpose of these comparisons is to assess, by reference to the well established Dobson network, the accuracy of the zenith-sky visible spectroscopy for the measurement of total ozone. The strengths and present limitations of this latter technique are investigated. As a general result, the different instruments are found to agree within a few percent at all stations, the best agreement being obtained at mid-latitudes. On average, for the mid-latitudes, SAOZ O3 measurements are approximately 2% higher than Dobson ones, with a scatter of about 5%. At higher latitudes, both scatter and systematic deviation tend to increase. In all cases, the relative differences between SAOZ and Dobson or Brewer column ozone are characterised by a significant seasonal signal, the amplitude of which increases from about 2.5% at mid-latitude to a maximum of 7.5% at Faraday, Antarctica. Although it introduces a significant contribution to the seasonality at high latitude, the temperature sensitivity of the O3 absorption coefficients of the Dobson and Brewer instruments is shown to be too small to account for the observed SAOZ/Dobson differences. Except for Faraday, these differences can however be largely reduced if SAOZ AMFs are calculated with realistic climatological profiles of ozone, pressure and temperature. Other sources of uncertainties that might affect the comparison are investigated. Evidence is found that the differences in the air masses sampled by the SAOZ and the other instruments contribute significantly to the scatter, and the impact of the tropospheric clouds on SAOZ measurements is displayed.  相似文献   

15.
The well calibrated Brewer spectrophotometer 17 (Sci-Tec Instruments Inc., Canada) stayed at the Meteorological Observatory Hohenpeissenberg (MOHP) from August 27 until September 1, 1984, in order to check and recalibrate Brewer 10, which had some stability problems. Brewer 17 was initially calibrated in July 1983, the validity of this calibration was repeatedly verified before and after the stay at the MOHP (Kerr et al., 1985; Kerr, 1984). The instrument proved itself to be very stable and appropriate as travellings standard instrument.As Dobson 104 didn't seem to be well calibrated at that time, the occasion was taken to perform also a Dobson recalibration. The methods normally used were not satisfactory, but a different method, presuming Effective Absorption Coefficients (EAC), presented by Kerr et al. at the Quadrennial Ozone Symposium 1984 in Greece, yielded encouraging results. Before recalibration Dobson 104 showed a difference of 2–3% in comparison to Brewer 10-, Brewer 17- and TOMS- (on satellite Nimbus 7) measurements, whereas the agreement with the Brewers after EAC-calibration was good (X rel < 1%). The different Dobson calibration methods are compared and the results of the Dobson 104 and Brewer 10 recalibrations are presented.
Zusammenfassung Vom 27. August bis 1. September 1984 befand sich das Brewer Standard Spektrophotometer 17 (Sci-Tec Instruments Inc., Canada) am Meteorologischen Observatorium Hohenpeißenberg (MOHP), um den nicht sehr stabilen Brewer 10 zu überprüfen und neu zu kalibrieren. Der Brewer 17 wurde erstmals im Juli 1983 kalibriert, die Gültigkeit dieser Eichung wurde mehrfach vor und einmal nach dem Aufenthalt am MOHP bestätigt (Kerr et al., 1985; Kerr, 1984). Das Instrument erwies sich als sehr stabil und geeignet als transportables Standardinstrument.Da der Dobson 104 zum damaligen Zeipunkt ebenfalls nicht gut kalibriert schien, wurde die Gelegenheit einer Dobson-Neukalibrierung wahrgenommen. Die normalerweise benutzten Methoden waren nicht zufriedenstellend im Gegensatz zu einer Methode, die von Effektiven Absorption Coeffizienten (EAC) ausgeht. Diese von Kerr et al. auf dem Quadrennial Ozon Symposium 1984 in Griechenland vorgestellte Methode lieferte hier ermutigende Ergebnisse. Vor der Neueichung zeigte der Dobson 104 eine Differenz von etwa 2–3% im Vergleich mit Brewer 10-, Brewer 17- und TOMS- (auf dem Nimbus-7-Satelliten) Messungen, während die Übereinstimmung mit den Brewer-Geräten nach der EAC-Kalibrierung gut war (X rel < 1%). Die verschiedenen Dobson-Kalibrierungsmethoden werden verglichen und Ergebnisse der Dobson 104- und Brewer 10-Neukalibrierungen werden vorgestellt.
  相似文献   

16.
Abstract

On the basis of two well‐known ozone‐weather relationships, an algorithm is proposed that estimates total ozone amounts using readily available meteorological information. The technique has been labelled METOZ from Meteorological Total Ozone. A rationale and derivation of the technique is presented.

METOZ total ozone amounts were generated for Toronto and Edmonton locations and compared with ground‐based Brewer spectrophotometer measures for these two stations in the Canadian ozone monitoring network for data from January to April 1989. Per cent differences between METOZ and Brewer total ozone measurements were calculated and are presented.

This mid‐latitude wînter metoz algorithm was also used to produce a hemispherical total ozone field for 16 March 1986, which was compared with the corresponding TOMS data to demonstrate other potential applications of the technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号