首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An air-sea buoyancy flux out of the ocean between the surface outcroppings of different isopycnals must be balanced by a convergence of advective and diffusive fluxes of buoyancy across those isopycnals (Walin, 1982; Tziperman, 1986; Garrett et al., 1995). For steady conditions, the diapycnal diffusive flux due to vertical mixing in the surface mixed layer is very small, so that the advective buoyancy flux dominates (Speer, 1993; Garrett et al., 1995). The associated advective buoyancy flux can then be used to estimate the volume flux of water out of the base of the surface mixed layer. The resulting thermodynamic algorithm provides a valuable estimate of water mass formation in the ocean.In contrast, for the time-dependent real ocean with horizontal and vertical gradients of the horizontal buoyancy gradient, diurnal and seasonal mixed layer deepening and entrainment in the presence of a buoyancy jump at the base of the mixed layer contributes to the annual volume flux out of the base of the deepest (wintertime) mixed layer. The mismatch between the predictions of the ideal algorithm and measured rates of water mass formation (Speer, 1997) may thus be partly due to mixed layer processes rather than diapycnal mixing in the thermocline.  相似文献   

2.
宋伟  王玉  崔凤娟  谢强 《海洋与湖沼》2019,50(4):752-758
南海上层海洋热力结构年代际变化的研究,是海气相互作用与变化研究的热点之一,对南海区域及更大范围的气候异常的研究和南海海洋环流年际变化的研究都具有重要意义。本文采用多套海温、流场和海气界面通量资料,基于热平衡方程和统计分析方法,分析了南海上层热含量的年代际变化,研究了南海上层热含量影响因子的变化特征,比较了混合层及混合层以下热含量变化的异同,进而探讨了影响因子在混合层及混合层以下的不同作用;利用区域积分海温方程后得到的热量收支方程,诊断南海内区不同海域的热收支方程中的各项,发现了不同海域在影响热收支的物理过程方面存在差异。结果表明:南海混合层的热含量的变化主要受海气界面热通量的影响,夹卷效应在热含量的变化中也有接近1/3的贡献。在整个上层400m的热含量变化中,平流效应占据了主导地位。  相似文献   

3.
北冰洋上层双扩散阶梯热通量的分析   总被引:1,自引:1,他引:0  
北冰洋中,低温低盐的上层水与高温高盐的大西洋水之间,广泛存在着稳定的双扩散阶梯。基于锚定剖面仪、冰基剖面仪和微结构剖面仪的数据,对温盐廓线中的阶梯进行研究,分析阶梯的热通量。固定跟踪了锚定剖面仪的3个阶梯,研究阶梯参数随时间的变化。发现由经验公式得出的上下两界面的热通量差,与混合层内热量的变化有较好的相关性。利用微结构剖面仪数据,计算阶梯界面通过分子热传导输送的热通量。当选取最大位温梯度时,算出的传导热通量与经验公式算出的热通量接近。因此,实验室研究得到的热通量经验公式,可以用于计算北冰洋双扩散阶梯的热通量。  相似文献   

4.
From mean velocities measured in estuarine flows it has been found that the velocity distributions are log-linear in stratified flows and logarithmic in well-mixed flows. The results of salinity measurements reveal that the mean salinity profiles are geometrically similar and expressible as a power law. The buoyancy parameters, such as the Monin-Obukhov length scale, the gradient and the flux Richardson numbers, are independent of the flow state. The gradient and the flux Richardson numbers are almost equal, indicating the existence of a local equilibrium layer. The non-dimensional parameter describing dissipation rates of turbulent kinetic energy is a constant of 0·2 and 0·3 for stratified and well-mixed flows respectively. In well-mixed flow the drag coefficient varies with time approaching a constant of about 3·2 × 10?3 when the flow is stratified. The shape of the turbulent energy spectra are generally flatter and broader in stratified as compared with those of well-mixed flows.  相似文献   

5.
Though ubiquitous in the global oceans, double diffusive mixing has been largely ignored or poorly represented in the models of turbulent mixing in the ocean and in 3-D ocean models, until recently. Salt fingers occur in the interior of many marginal seas and ocean basins, the Tyrrhenian Sea and the subtropical Atlantic being two examples. Diffusive convection type of double diffusion occurs in the upper layers of many sub-polar seas and polar oceans due to cold melt water from sea ice. Consequently, it is important to be able to properly parameterize double diffusive mixing in basin scale and global ocean models, so that the water mass structure in the interior of the ocean can be properly simulated. This note describes a model for double diffusive mixing in the presence of background shear, based on Mellor–Yamada type second moment closure, more specifically Kantha, 2003, Kantha and Clayson, 2004 second moment closure models of resulting turbulence, following Canuto et al. (2008a) but employing a different strategy for modeling the pertinent terms in the second moment equations. The resulting model is suitable for inclusion in ocean general circulation models.  相似文献   

6.
A new approach to predict biogenic particle fluxes to the seafloor is presented, which is based on diffusive oxygen uptake and, in particular, opal fluxes to the seafloor. For this purpose, we used a recently published empirical equation coupling benthic silica to oxygen fluxes, and showing a clear negative correlation between Si and O2 fluxes. Dissolution of biogenic silica mediated by aerobic microbial activity has been inferred at 24 sites along the African and South American continental margins. Based on the assumption that these findings hold essentially for the entire Southern Atlantic Ocean, we applied the silica to oxygen flux ratio to a basin-wide grid of diffusive oxygen uptake extracted from the literature. Assuming that the silica release across the sediment-water interface equals the particulate flux of biogenic opal to the seafloor, we estimated minimum opal rain rates. We combined these calculations with published relationships between aerobic organic carbon mineralization and dissolution rates of calcite above the hydrographical lysocline, thereby assessing the calcite rain rate and particulate organic carbon flux to the seafloor. The addition of the buried fraction completes our budget of biogenic particulate rain fluxes. The combination of such empirical equations provides a powerful and convenient tool which greatly facilitates future investigations of biogenic particle fluxes to the seafloor.  相似文献   

7.
热盐驱动下的扩散对流现象是海洋中高纬度海域普遍存在的一种现象, 对其进行数值模拟可更细致地研究海洋小尺度动力过程。文章分析了扩散对流的形成机制, 建立了二维方腔模型, 通过有限体积法求解控制方程, 对其分层现象进行了数值模拟。研究给出了流场的温度及盐度随时间演化的关系, 展现了流场中速度的涡旋结构, 分析了温盐台阶结构的生成、合并的演化过程, 并对其物质和能量的输运进行了初步的理论解释。另外, 对不同热流密度情况下的扩散对流现象进行了对比研究, 发现随着热流密度的增加, 台阶结构的演变速率变快, 而且上边界冷却对其演化速率具有促进作用, 但热流密度的改变并没有对台阶结构的演变趋势产生明显的影响。  相似文献   

8.
Starting from physical oceanology characteristics of the China seas and for the short-term operational prediction of SST in the region,a two-dimensional (vertically integrated) primitive equation model,physically reasonable and operationally feasible,on the upper mixed layer is constructed and given here,which consists of three parts,the nondivergent residual current (the monthly mean field of the Kuroshio and its branches) equations,the dynamic forecasting equations,and the equation of model''s physics consisting of surface heat flux,coolings of the upper mixed layer due to the Ekman pumping and the entrainment by gale.This model may be used primarily to forecast the sea surface temperature,and to give estimations of the mean wind-driven current and the sea level,for a period of 3-5 d.In part 1 of this series,the physical conditions for establishing model equations are discussed first,that is,1.the existence of the upper well mixed layer in the region; 2.the distinguishability of currents 3.the splitting of thermodynamical equation.The equations of nondivergent residual current,and the dynamic forecasting equations with initial values and boundary conditions are also discussed.  相似文献   

9.
The paper discusses the data derived from a numerical experiment on the ocean’s response (between the equator and 64°N) to the seasonal variability of the atmospheric forcing (wind and heat flux through the ocean surface). A multilayer (7 layers) non-linear model is used incorporating the upper mixed layer interacting with the internal layers in the regimes of entraining and subduction. The restructuring of the layer composition, the currents and temperature variability, as well as the alternation of the entrainment and subduction regimes are analysed. Translated by Vladimir A. Puchkin.  相似文献   

10.
11.
根据含中层冷水海洋垂直热结构的特征,将其分为4层,并考虑来自海面的热力和动力强迫因子、水层界面剪切应力和卷挟热交换、热平流、混合及地形影响等条件下,从原始动量、连续方程组及热传导方程出发,对整个海洋和各水层分别进行垂向积分,导出相应的描述风生界面起伏、各水层平均流场和温度场的闭合方程组.当解得各水层的平均温度场Tk(k=1,2,3,4)后,根据Tk与对应水层界面特征温度间的关系获得后者,最后通过水温剖面表达式获得含中层冷水海洋的三维热结构.为了检验本模式的功能,以时效为5d试报了5月15日研究海域的三维热结构,并将试报结果与实测值进行了比较.结果表明,试报水温的均绝误差为025℃,效果令人满意.  相似文献   

12.
建立一个改进的二层非线性原始方程海洋模式,研究海洋对热带气旋的响应。采用湍流动能收支参数化风应力产生的垂直混合(夹卷),其中考虑了盐度对层结强度的影响。通过海洋对7002号台风响应的数值模拟,结果表明,在引起海表温度下降的各热通量分量中,夹卷约占了83%,余下的海表面热通量占了17%。在台风路径转向的右侧,海洋出现强烈的降温,表现出明显的右偏性。降温的幅度、范围和形状均与观测结果较为一致。  相似文献   

13.
The process of hydrostatic adjustment to horizontally homogeneous heating in a stably stratified atmosphere of arbitrary thermal structure is investigated in the limit of small perturbations. A linear differential equation is derived for the vertical pressure distribution in the final balanced state. Solutions of this equation are compared with the time dependent solution which is found by numerically integrating the equations in time. During the process of hydrostatic adjustment acoustic‐buoyancy oscillations are generated. The amplitudes of these oscillations become so great that static instability is generated at heights above 100 km, depending on where and how abruptly the heat is added. As a crude representation of the unstable breakdown and damping of these waves, Rayleigh damping is introduced. If the associated damping coefficient in the upper atmosphere is sufficiently large (greater than the Brunt Väisälä frequency), the oscillations vanish. Below a height of about 50 km the steady state predicted by the above mentioned differential equation is reached approximately in 10 min.  相似文献   

14.
We study possible mechanisms of mixing in the northwest part of the Tropical Atlantic (C-SALT) and show that homogeneous layers in the staircase structure can be observed across the entire frontal zone of the North Equatorial Countercurrent. In the central region of the frontal zone, one may observe horizontal motions of the upper parts of quasihomogeneous layers with respect to their lower parts and an essential role in the exchange processes is played by turbulence. The peripheral regions of the frontal zone are characterized by the presence of horizontal advection and isopycnic mixing. Far from the frontal interface, the principal contribution to the exchange processes is made by double diffusion. We demonstrate that, for the analysis of the vertical buoyancy fluxes caused by salt fingers, one can use both the Stern relation and the “law of 4/3”. Translated by Peter V. Malyshev and Dmitry V. Malyshev.  相似文献   

15.
《Ocean Modelling》2007,16(1-2):17-27
In z-coordinates ocean codes, mesoscale fluxes entering the T,S equations are represented by three terms: an eddy-induced velocity, a diapycnal flux Σ and a diffusion (Redi-like) term. Several eddy resolving codes have shown that the diapycnal flux Σ is quite large. However, all ocean codes have been run with zero diapycnal flux, Σ = 0.We model Σ and show that its contribution is of the same order of magnitude as the other two mesoscale terms usually accounted for.We also assess the validity of the two arguments most frequently cited to neglect Σ: (1) in an adiabatic regime, fluxes across isopycnal surfaces must vanish and so must the diapycnal flux Σ (we show that since Σ is not the total buoyancy flux but only part of it, there is no justification in demanding that Σ should satisfy the same conditions as the total flux) and (2) the results of a z-coordinate ocean code without Σ can be re-interpreted as those derived from the TRM (temporal residual mean) in which there is no Σ almost by definition since TRM is quite close to an isopycnal model.  相似文献   

16.
The representation of baroclinic instability in numerical models depends strongly upon the model physics and significant differences may be found depending on the vertical discretization of the governing dynamical equations. This dependency is explored in the context of the restratification of an idealized convective basin with no external forcing. A comparison is made between an isopycnic model including a mixed layer (the Miami Isopycnic Coordinate Ocean Model, MICOM), its adiabatic version (MICOM-ADIAB) in which the mixed layer physics are removed and the convective layer is described by a deep adiabatic layer outcropping at the surface instead of a thick dense mixed layer, and a z-coordinate model (OPA model).In the absence of a buoyancy source at the surface, the mixed layer geometry in MICOM prevents almost any retreat of this layer. As a result, lateral heat exchanges in the upper layers are limited while mass transfers across the outer boundary of the deep convective mixed layer result in an unrealistic outward spreading of this layer. Such a widespread deep mixed layer maintains a low level of baroclinic instability, and therefore limits lateral heat exchanges in the upper layers over most of the model domain. The behavior of the adiabatic isopycnic model and z-coordinate model is by far more satisfactory although contrasted features can be observed between the two simulations. In MICOM-ADIAB, the more baroclinic dynamics introduce a stronger contrast between the surface and the dense waters in the eddy kinetic energy and heat flux distributions. Better preservation of the density contrasts around the dense water patch maintains more persistent baroclinic instability, essentially associated with the process of dense water spreading. The OPA simulation shows a faster growth of the eddy kinetic energy in the early stages of the restratification which is attributed to more efficient baroclinic instability and leads to the most rapid buoyancy restoring in the convective area among the three simulations. Dense water spreading and warm surface capping occur on fairly similar time scales in MICOM-ADIAB although the former is more persistent that the latter. In this model, heat is mainly transported by anticyclonic eddies in the dense layer while both cyclonic and anticyclonic eddies are involved in the upper layers. In OPA, heat is mainly brought into the convective zone through the export of cold water trapped in cyclonic eddies with a strong barotropic structure. Probably the most interesting difference between the z-coordinate and the adiabatic isopycnic model is found in the temperature distribution ultimately produced by the restratification process. OPA generates a spurious volume of intermediate water which is not seen in MICOM-ADIAB where the volume of the dense water is preserved.  相似文献   

17.
《Marine Models》2002,2(1-4):35-56
We present a software environment, implemented in Matlab, which addresses a sphere moving steadily in a fluid. The sphere leaks solute which is transported through the fluid. The environment allows the fluid flow to be approximated with Stokes' flow, or the Navier–Stokes equations can be solved numerically. Subsequently, the advection–diffusion equation for the concentration of the solute is solved numerically. Our purpose for developing the environment was to investigate solute concentrations around sinking marine snow, but the environment has more general applicability. The allowable parameter range depends on computational ressources; on our PC we investigated Reynolds numbers up to 20 and Peclet numbers up to 20,000. The environment features a graphical user interface which makes it useful to people who have never used Matlab, but the experienced Matlab user can also operate from the command prompt.  相似文献   

18.
Some new results related to the theory of rising convective jets over heat and momentum sources are presented. The consideration is not restricted to free convective or forced jets—mixed situations are also possible. A known model is generalized to the case of a noticeable contribution of the effects of water-vapor buoyancy. It is established that a universal conservation law that is valid for any entrainment hypotheses exists. A simple approximate criterion of the possibility that jets “break” through barrier layers is derived. An analytic solution that describes a moist-adiabatic rise of a jet above the condensation level is found. The influence of jets on the transport of passive admixtures is assessed. A model is proposed for the horizontal spreading of the warm air transported by a jet below an intense barrier layer.  相似文献   

19.
The WOCE-era 3-D Pacific Ocean circulation and heat budget   总被引:2,自引:0,他引:2  
To address questions concerning the intensity and spatial structure of the three-dimensional circulation within the Pacific Ocean and the associated advective and diffusive property flux divergences, data from approximately 3000 high-quality hydrographic stations collected on 40 zonal and meridional cruises have been merged into a physically consistent model. The majority of the stations were occupied as part of the World Ocean Circulation Experiment (WOCE), which took place in the 1990s. These data are supplemented by a few pre-WOCE surveys of similar quality, and time-averaged direct-velocity and historical hydrographic measurements about the equator.An inverse box model formalism is employed to estimate the absolute along-isopycnal velocity field, the magnitude and spatial distribution of the associated diapycnal flow and the corresponding diapycnal advective and diffusive property flux divergences. The resulting large-scale WOCE Pacific circulation can be described as two shallow overturning cells at mid- to low latitudes, one in each hemisphere, and a single deep cell which brings abyssal waters from the Southern Ocean into the Pacific where they upwell across isopycnals and are returned south as deep waters. Upwelling is seen to occur throughout most of the basin with generally larger dianeutral transport and greater mixing occurring at depth. The derived pattern of ocean heat transport divergence is compared to published results based on air–sea flux estimates. The synthesis suggests a strongly east/west oriented pattern of air–sea heat flux with heat loss to the atmosphere throughout most of the western basins, and a gain of heat throughout the tropics extending poleward through the eastern basins. The calculated meridional heat transport agrees well with previous hydrographic estimates. Consistent with many of the climatologies at a variety of latitudes as well, our meridional heat transport estimates tend toward lower values in both hemispheres.  相似文献   

20.
Development of a thermal bar in a laboratory flume with an inclined bottom (3.7°–12°) under the conditions of cooling/heating of the water with a temperature close to that of the maximal density is studied. The structure of the temperature field and currents during different stages of the circulation is examined: (i) formation of an along-slope gravity current, (ii) generation of a subsurface jet, and (iii) transformation of one type of the circulation into another at passing the temperature of the maximum density. The “fall” and “spring” types of the thermal bar are shown to be dynamically equivalent: the transport of the near-shore waters to the deepwater part, which is driven by the buoyancy flux rather than by the heat flux across the surface, transforms stage (i) into stage (ii), while the opposite (on-shore) flow is generated in the intermediate layers. A comparison of the results with the field and laboratory data published allows us to suggest that the propagation of the thermal bar front in the “fast” stage can be considered as the development of a convective jet with its velocity Uh 3/4, which is proportional to the growing thickness of the upper layer h affected by the heating/cooling processes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号