首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Kerala, a southern state of India, experienced a severe flooding due to multi-day extreme rain events during July and August months of 2018. This disaster was one of the worst floods to hit the state and resulted in heavy losses of lives and property. Natural Disaster Management Authority of India reported that 483 people lost their lives and more than 50 lakhs population were affected severely. This short communication focuses on examining this flood event using satellite remote sensing. It is reported that Kerala received an excess of about 56% rainfall during July and August from multi-day extreme rainfall episodes. Few regions of Kerala received the rainfall in the range of 270–300 mm on August 14 and 15. Hourly rainfall events in the excess of 25 mm have also been reported during heavy rainy days. The present study reports that multi-day heavy rainy events during July and August brought an accumulated rainfall of about 1600 mm, which resulted in extreme flooding over Kerala.

  相似文献   

2.
Orissa is one of the most flood prone states of India. The floods in Orissa mostly occur during monsoon season due to very heavy rainfall caused by synoptic scale monsoon disturbances. Hence a study is undertaken to find out the characteristic features of very heavy rainfall (24 hours rainfall ≥125 mm) over Orissa during summer monsoon season (June–September) by analysing 20 years (1980–1999) daily rainfall data of different stations in Orissa. The principal objective of this study is to find out the role of synoptic scale monsoon disturbances in spatial and temporal variability of very heavy rainfall over Orissa. Most of the very heavy rainfall events occur in July and August. The region, extending from central part of coastal Orissa in the southeast towards Sambalpur district in the northwest, experiences higher frequency and higher intensity of very heavy rainfall with less interannual variability. It is due to the fact that most of the causative synoptic disturbances like low pressure systems (LPS) develop over northwest (NW) Bay of Bengal with minimum interannual variation and the monsoon trough extends in west-northwesterly direction from the centre of the system. The very heavy rainfall occurs more frequently with less interannual variability on the western side of Eastern Ghat during all the months and the season except September. It occurs more frequently with less interannual variability on the eastern side of Eastern Ghat during September. The NW Bay followed by Gangetic West Bengal/Orissa is the most favourable region of LPS to cause very heavy rainfall over different parts of Orissa except eastern side of Eastern Ghat. The NW Bay and west central (WC) Bay are equally favourable regions of LPS to cause very heavy rainfall over eastern side of Eastern Ghat. The frequency of very heavy rainfall does not show any significant trend in recent years over Orissa except some places in north-east Orissa which exhibit significant rising trend in all the monsoon months and the season as a whole.  相似文献   

3.
Most urban agglomerations located in the Mumbai coastal region in India are vulnerable to flooding due to increasing frequency of the short-duration heavy rainfall, by virtue of their location at foothills on one side and tidal variations on the other side. Steep slopes in the catchment ensure fast runoff and tidal variation adds to backwater effect in the drainage system, which together are favorable for flooding. The present study simulates the flood inundation due to heavy rainfall and high-tide conditions in a coastal urban catchment within Mumbai region with detention pond. Overland flow is modeled using a mass balance approach, which can adapt to hilly slopes and smoothly accommodate detention pond hydraulics. Dynamic wave channel routing based on finite element method captures the backwater effects due to tidal variation, and raster-based flood inundation model enables direct use of digital elevation model. The integrated model is capable of simulating detention pond hydraulics within the raster flood model for heavy rainfall events. The database required for the model is obtained from the geographical information system (GIS) and remote sensing techniques. Application of the integrated model to literature problems and the catchment of the study area for two non-flooding events gave satisfactory results. Further, the model is applied to an extreme rainfall event of July 26, 2005, coinciding with high-tide conditions, which revealed vulnerability of the area to flooding despite of an existing detention pond. A sensitivity analysis on the location of detention pond indicated that catchment response can be better governed by relocating the detention pond to upstream of existing detention pond especially when heavy rainfall events are becoming frequent.  相似文献   

4.
Meresa  Hadush  Tischbein  Bernhard  Mekonnen  Tewodros 《Natural Hazards》2022,111(3):2649-2679
Natural Hazards - Changes in climate intensity and frequency, including extreme events, heavy and intense rainfall, have the greatest impact on water resource management and flood risk management....  相似文献   

5.
Objective analysis of daily rainfall at the resolution of 1° grid for the Indian monsoon region has been carried out merging dense land rainfall observations and INSAT derived precipitation estimates. This daily analysis, being based on high dense rain gauge observations was found to be very realistic and able to reproduce detailed features of Indian summer monsoon. The inter-comparison with the observations suggests that the new analysis could distinctly capture characteristic features of the summer monsoon such as north-south oriented belt of heavy rainfall along the Western Ghats with sharp gradient of rainfall between the west coast heavy rain region and the rain shadow region to the east, pockets of heavy rainfall along the location of monsoon trough/low, over the east central parts of the country, over north-east India, along the foothills of Himalayas and over the north Bay of Bengal. When this product was used to assess the quality of other available standard climate products (CMAP and ECMWF reanalysis) at the gird resolution of 2.5°, it was found that the orographic heavy rainfall along Western Ghats of India was poorly identified by them. However, the GPCC analysis (gauge only) at the resolution of 1° grid closely discerns the new analysis. This suggests that there is a need for a higher resolution analysis with adequate rain gauge observations to retain important aspects of the summer monsoon over India. The case studies illustrated show that the daily analysis is able to capture large-scale as well as mesoscale features of monsoon precipitation systems. This study with data of two seasons (2001 and 2003) has shown sufficiently promising results for operational application, particularly for the validation of NWP models.  相似文献   

6.
阿克苏河洪水类型及其形成的500hPa环流特征   总被引:15,自引:6,他引:9  
利用阿克苏河两条支流和干流的月径流量以及年最大洪峰流量资料,分析了阿克苏河的洪水特征.阿克苏河西支托什干河主汛期在5~8月,北支库玛拉克河与阿克苏河干流的主汛期在7~8月,库玛拉克河的洪水对阿克苏河干流洪水作用更大.托什干河洪水以融雪型、融雪叠加暴雨型两种类型为主,库玛拉克河洪水以融雪(冰)型、融雪(冰)叠加冰湖溃坝型为主,阿克苏河干流洪水以混合型最多见,其次是融雪(冰)型.年最大流量排名前15位的洪水中,阿克苏河两条支流与干流在1987年以后分别出现了7~9a,在此基础上分析归纳了三类形成阿克苏河流域主要洪水的500hPa环流模型.阿克苏河流域主汛期形成混合型洪水的500hPa环流特征为:新疆高压脊稳定在天山山区中部及以东地区,5880gpm等高线北界稳定在天山上空或天山以北,西部边界在帕米尔高原以东的南疆盆地上空,中亚地区为副热带低槽活动区,环流形势相对稳定.主汛期形成融雪(冰)型洪水的500hPa环流特征为:新疆高压脊向北发展且稳定维持3d以上,5880gpm等高线北界稳定在天山以北,西部边界在帕米尔高原以西.春季形成融雪型洪水的500hPa环流特征为:帕米尔高原及西天山受新疆高压脊控制,稳定维持3d以上,高压脊内5840gpm等高线北边界维持在40°N以北.  相似文献   

7.
The summer monsoon rainfall over Orissa occurs mostly due to low pressure systems (LPS) developing over the Bay of Bengal and moving along the monsoon trough. A study is hence undertaken to find out characteristic features of the relationship between LPS over different regions and rain-fall over Orissa during the summer monsoon season (June-September). For this purpose, rainfall and rainy days over 31 selected stations in Orissa and LPS days over Orissa and adjoining land and sea regions during different monsoon months and the season as a whole over a period of 20 years (1980-1999) are analysed. The principal objective of this study is to find out the role of LPS on spatial and temporal variability of summer monsoon rainfall over Orissa. The rainfall has been significantly less than normal over most parts of Orissa except the eastern side of Eastern Ghats during July and hence during the season as a whole due to a significantly less number of LPS days over northwest Bay in July over the period of 1980-1999. The seasonal rainfall shows higher interannual variation (increase in coefficient of variation by about 5%) during 1980-1999 than that during 1901-1990 over most parts of Orissa except northeast Orissa. Most parts of Orissa, especially the region extending from central part of coastal Orissa to western Orissa (central zone) and western side of the Eastern Ghats get more seasonal monsoon rainfall with the development and persistence of LPS over northwest Bay and their subsequent movement and persistence over Orissa. The north Orissa adjoining central zone also gets more seasonal rainfall with development and persistence of LPS over northwest Bay. While the seasonal rainfall over the western side of the Eastern Ghats is adversely affected due to increase in LPS days over west central Bay, Jharkhand and Bangladesh, that over the eastern side of the Eastern Ghats is adversely affected due to increase in LPS days over all the regions to the north of Orissa. There are significant decreasing trends in rainfall and number of rainy days over some parts of southwest Orissa during June and decreasing trends in rainy days over some parts of north interior Orissa and central part of coastal Orissa during July over the period of 1980-1999  相似文献   

8.
Liu  Jiandong  Doan  Chi Dung  Liong  Shie-Yui  Sanders  Richard  Dao  Anh Tuan  Fewtrell  Timothy 《Natural Hazards》2015,75(2):1075-1104
Natural Hazards - Jakarta is vulnerable to flooding and extreme rainfall events are always the main cause of the occurrence of heavy flood events with loss of life and property. The flood in...  相似文献   

9.
Flood hazard evaluation is an important input for Nuclear Power Plants external events safety studies. In the present study, flood hazard at various nuclear sites in India due to rainfall has been evaluated. Hazard estimation is a statistical procedure by which rainfall intensity versus occurrence frequency is estimated from historical records of rainfall data and extrapolated with asymptotic extreme value distribution. Rainfall data needed for flood hazard assessment are daily annual maximum rainfall (24?h data). The observed data points have been fitted using Gumbel, power law and exponential distribution, and return period has been estimated. To study the stationarity of rainfall data, a moving window estimate of the parameters has been performed. The rainfall pattern is stationary in both coastal and inland regions over the period of observation. The coastal regions show intense rainfall and higher variability than inland regions. Based on the plant layout, catchment area and drainage capacity, the prototype fast breeder reactor (PFBR) site is unlikely to be flooded.  相似文献   

10.
Many developing countries are very vulnerable to flood risk since they are located in climatic zones characterised by extreme precipitation events, such as cyclones and heavy monsoon rainfall. Adequate flood mitigation requires a routing mechanism that can predict the dynamics of flood waves as they travel from source to flood-prone areas, and thus allow for early warning and adequate flood defences. A number of cutting edge hydrodynamic models have been developed in industrialised countries that can predict the advance of flood waves efficiently. These models are not readily applicable to flood prediction in developing countries in Asia, Africa and Latin America, however, due to lack of data, particularly terrain and hydrological data. This paper explores the adaptations and adjustments that are essential to employ hydrodynamic models like LISFLOOD-FP to route very high-magnitude floods by utilising freely available Shuttle Radar Topographic Mission digital elevation model, available topographical maps and sparse network of river gauging stations. A 110 km reach of the lower Damodar River in eastern India was taken as the study area since it suffers from chronic floods caused by water release from upstream dams during intense monsoon storm events. The uncertainty in model outputs, which is likely to increase with coarse data inputs, was quantified in a generalised likelihood uncertainty estimation framework to demonstrate the level of confidence that one can have on such flood routing approaches. Validation results with an extreme flood event of 2009 reveal an encouraging index of agreement of 0.77 with observed records, while most of the observed time series records of a 2007 major flood were found to be within 95 % upper and lower uncertainty bounds of the modelled outcomes.  相似文献   

11.
Flood events, fatalities and damages in India from 1978 to 2006   总被引:1,自引:1,他引:0  
High temporal and spatial variability of rainfall qualifies India to be highly vulnerable to floods. Recurring floods of various magnitudes play havoc with the lives and property of the people, leading to unplanned development and unchecked environmental degradation, thwarting and retarding the overall development of the country. Therefore, the purpose of the present study is to analyze the types and trends in terms of flood events, frequency, number of people killed, injured, missing and economic damage both in space and time on the basis of a nationwide database published by India Meteorological Department, Pune, from 1978 to 2006. Analysis of these long-term data has revealed that 2,443 flood events claimed about 44,991 lives with the average of 1,551 lives each year. In terms of population size, these figures translate into a loss of 1.5 human lives per million of the population. A majority (56 %) of flood fatalities were caused during severe flood events. However, the frequency of these events was just 19 % in comparison with heavy rainfall events (65 %). In spatial context, flood-related fatalities are distributed all over the country with highest fatalities in Uttar Pradesh (17 %), Maharashtra (13 %), and Bihar and Gujarat (10 % each). Most fatalities occurred during the summer season monsoon months of August (30 %) followed by July (29 %) and September (20 %). The country suffered a cumulative flood-related economic loss of about 16 billion US$ between 1978 and 2006 and a maximum economic loss of 1.6 billion US$ in the year 2000 alone. The study further suggests that both flood events and fatalities have increased in India over a period of time.  相似文献   

12.
The year 1999 was an exceptionally wet year, with severe floods in China, India and Australia and very high flow in the Nile. In Sudan, the July rainfall was unusually early and heavy, and persistent rains throughout August and early September caused severe floods in much of central Sudan, including Khartoum.The synoptic conditions historically associated with extreme rainfall events in central Sudan include a warm equatorial Indian Ocean, a strong summer monsoon over both Africa and India, a northward shift of the Inter-tropical Convergence Zone earlier and further north than usual, and the presence of deep, well-developed westerly air masses accompanied by a strong Tropical Easterly Jet that allowed more moisture transport into Africa from the South Atlantic via the Congo basin, leading to very heavy precipitation in the Ethiopian uplands and the central Sudan.The intense late wet season rains in 1999 caused a major canal in the Gezira Irrigation Area to break its banks and filled normally dry depressions between dunes with water, providing a partial analogue of early Holocene environments in this region when small groups of Later Stone Age peoples occupied the sandy ridges seasonally. Global Circulation Models cannot provide such detailed local information.  相似文献   

13.
新疆阿尔泰山地区极端水文事件对气候变化的响应   总被引:3,自引:2,他引:1  
新疆北部阿尔泰山地区受西风带气流影响, 降水丰沛, 尤其冬季积雪厚而稳定, 山区产流发育了额尔齐斯河与乌伦古河, 从西到东形成主要支流十余条. 在全球气候变化下, 山区气温上升明显, 极端降水增多, 气候变暖带来的水循环加快, 极端水文事件也趋于增多. 由于冬季气温升高, 春季积雪消融提前, 春季融雪洪水提前, 洪峰流量增强; 夏季极端降水增加, 使得暴雨洪水增多. 由于冬、 春季积雪增多, 雪灾发生频率增加, 春季的融雪洪水灾害危害增强. 极端水文事件引起的自然灾害已经威胁到阿勒泰地区的牧业生产、 交通安全和水资源供给, 应加强水文水资源安全对气候变化的应对措施, 提高水资源安全保障, 减缓气候变化的危害.  相似文献   

14.
Rainfall is one of the pivotal climatic variables, which influence spatio-temporal patterns of water availability. In this study, we have attempted to understand the interannual long-term trend analysis of the daily rainfall events of ≥?2.5 mm and rainfall events of extreme threshold, over the Western Ghats and coastal region of Karnataka. High spatial resolution (0.25°?×?0.25°) daily gridded rainfall data set of Indian Meteorological Department was used for this study. Thirty-eight grid points in the study area was selected to analyze the daily precipitation for 113 years (1901–2013). Grid points were divided into two zones: low land (exposed to the sea and low elevated area/coastal region) and high land (interior from the sea and high elevated area/Western Ghats). The indices were selected from the list of climate change indices recommended by ETCCDI and are based on annual rainfall total (RR), yearly 1-day maximum rainfall, consecutive wet days (≥?2.5 mm), Simple Daily Intensity Index (SDII), annual frequency of very heavy rainfall (≥?100 mm), frequency of very heavy rainfall (≥?65–100 mm), moderate rainfall (≥?2.5–65 mm), frequency of medium rainfall (≥?40–65 mm), and frequency of low rainfall (≥?20–40 mm). Mann-Kendall test was applied to the nine rainfall indices, and Theil-Sen estimator perceived the nature and the magnitude of slope in rainfall indices. The results show contrasting trends in the extreme rainfall indices in low land and high land regions. The changes in daily rainfall events in the low land region primarily indicate statistically significant positive trends in the annual total rainfall, yearly 1-day maximum rainfall, SDII, frequency of very heavy rainfall, and heavy rainfall as well as medium rainfall events. Furthermore, the overall annual rainfall strongly correlated with all the rainfall indices in both regions, especially with indices that represent heavy rainfall events which is responsible for the total increase of rainfall.  相似文献   

15.
淮河流域近500年洪旱事件演变特征分析   总被引:1,自引:0,他引:1  
为了认识淮河流域过去500年洪旱事件发生规律并鉴别当前的洪旱情势,收集并对比分析了流域实测降雨资料、重建历史雨季降雨资料、历史旱涝等级资料、历史洪旱文献记录和历史调查洪水资料等多源洪旱灾害数据。以重建历史雨季降雨资料和历史旱涝等级资料为主要依据,通过滑动平均、频率计算、小波分析和突变检验等方法,分析流域过去500年洪水干旱时空分布特征和演变规律。结果表明,17世纪淮河流域洪旱灾害最严重,但20世纪极端洪旱事件发生频次最多。淮河流域洪旱事件存在40年左右的稳定长周期,主周期从18世纪的15~20年逐渐减少到19世纪的5年周期,近20年来出现2~3年的主周期,洪旱灾害事件呈增加趋势,流域社会经济发展面临着严峻的洪旱灾害威胁。  相似文献   

16.
中国极端降水事件的频数和强度特征   总被引:26,自引:0,他引:26       下载免费PDF全文
使用1951-2004年中国738个测站逐日降水资料,采用百分位的方法定义极端降水事件的阈值,分析了不同持续时间的极端降水事件的时空分布及变化趋势特征。结果表明,极端降水事件多发于35°N以南,特别是在长江中下游和江南地区以及高原东南部,且在这些地区极端降水事件持续时间也较长。季节分布上,主要出现在夏季,以低持续性事件为主。在中国东部地区,持续时间越长的极端降水其强度往往越强。趋势分析表明,全国持续1d极端事件的相对频数具有上升趋势而平均强度具有下降趋势,其空间上均表现为全国大部分上升、华北和西南等地下降的趋势。持续2d以上极端事件在长江中下游流域、江南地区和高原东部等地区有显著增多和增强的趋势,而在华北和西南地区有减少和减弱趋势,但全国平均的趋势不显著。  相似文献   

17.
Long-term records are needed to investigate the impact of extreme events in the current framework of global change. Sedimentary reconstruction with a high resolution remains difficult without conducting expensive, destructive and/or time-consuming analyses. In this study, high resolution CT-scan profiles (0·6 mm resolution) were used to investigate their potential for detecting flood deposits induced by heavy rainfall events. This method was applied to a sediment core dated with fallout radionuclides – covering a 120 year period – collected in a pond draining a small forested catchment (French Massif Central – Central France). Between 1960 and 2017, 28 layers were deposited. Seventy-six percent of these deposits were correlated to the occurrence of heavy rainfall (>50 mm) recorded during one or two consecutive days. The remainder of the deposits detected with the Computer Tomography (CT) scanner (n = 5) were not correlated to weather events. They mainly occurred in response to landscape management operations (for example, afforestation works as a result of the major 1999 storm). This period was indeed characterized by an increase in the delivery of 137Cs-enriched sediment, demonstrating a greater topsoil contribution to sediment during major forest management operations. The intensity of detrital layers has significantly decreased throughout time after a major land use change that took place in 1948 and land abandonment. The frequency of heavy rainfall and associated detrital deposits has nevertheless increased by 60% and 75%, respectively, between the years 1960 and 2017. These results outline the potential of CT-scan for reconstructing long-term flood deposits associated with heavy precipitation.  相似文献   

18.
The summer monsoon season of the year 2006 was highlighted by an unprecedented number of monsoon lows over the central and the western parts of India, particularly giving widespread rainfall over Gujarat and Rajasthan. Ahmedabad had received 540.2mm of rainfall in the month of August 2006 against the climatological mean of 219.8mm. The two spells of very heavy rainfall of 108.4mm and 97.7mm were recorded on 8 and 12 August 2006 respectively. Due to meteorological complexities involved in replicating the rainfall occurrences over a region, the Weather Research and Forecast (WRF-ARW version) modeling system with two different cumulus schemes in a nested configuration is chosen for simulating these events. The spatial distributions of large-scale circulation and moisture fields have been simulated reasonably well in this model, though there are some spatial biases in the simulated rainfall pattern. The rainfall amount over Ahmedabad has been underestimated by both the cumulus parameterization schemes. The quantitative validation of the simulated rainfall is done by calculating the categorical skill scores like frequency bias, threat scores (TS) and equitable threat scores (ETS). In this case the KF scheme has outperformed the GD scheme for the low precipitation threshold.  相似文献   

19.
With the increasing exposure of populations and economy to natural hazards, the spatio-temporal characteristics of extreme rainfall remain a key subject of study. Based on annual maximum rainfall (AM) and peaks over threshold rainfall series at 30 meteorological stations during 1960–2011 in the Huai River Basin (HRB), spatio-temporal characteristics of extreme rainfall are analyzed through regional frequency analysis method using L-moments. The accuracy and uncertainty analysis of quantile estimations are also carried out, and the regional and at-site frequency analyses are compared. Results indicate the following: (1) During 1960–2011, AM precipitation at 20 stations in the HRB shows an increasing trend, while at the other 10 stations, it shows a decreasing trend. And both the increased and decreased trends are not significant. (2) The HRB can be categorized into three homogeneous regions via cluster analysis. For both at-site and regional frequency analyses, the root mean square error values increase with the increase in return periods. The estimations are reliable enough for the return periods of less than 100 years. The quantile estimates of large return period from regional frequency analysis are more accurate and have smaller uncertainty than those from at-site frequency analysis. (3) Extreme precipitation in the HRB concentrates in the upstream of the Huai River and YiShuSi water system in the east of the HRB. Generally, the area with extreme precipitation, especially the upper reaches of the Huai River and Yimeng Mountain areas, also has large standard variations of extreme precipitation, which will increase the risk of natural hazards.  相似文献   

20.
Trends of pre-monsoon, monsoon and post-monsoon rainfall pattern were studied on decadal basis over different homogeneous monsoon regions in India for the period 1871–2008. It is attempted to understand the relation of monsoon rainfall with the global teleconnections of El Niño and La Niña, for which the correlation analysis has been carried out with Darwin pressure and Niño 3.4 sea surface temperature (Niño 3.4 SST). The correlation analysis inferred that the significant correlations were observed when monsoon rainfall is related to ENSO indices on decadal scale than on annual ones. The study also found that the north-west region is more affected by the moderate El Niño years compared to strong El Niño years. The regions Central North-East and North-East could not make any difference among weak, moderate and strong La Niña events. The authors also have carried out the extreme value analysis over different homogeneous monsoon regions of India as well as for whole India. The results show that the return values of rainfall are increasing with the return periods for the forthcoming 10, 20, 50 and 100 years. The heterogeneity in number of threshold years that were recorded for the extreme rainfall over north-east (humid climatic type) and north-west (arid climatic type) described the climate variability. The results of the present study may be useful for the policy makers in understanding the rainfall exceedance in different return periods for planning the risk management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号