首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The Oligocene Balleny Group of Chalky Island, southwestern Fiordland, comprises a typical continental margin sequence 900 m in thickness. Thin nearshore traction deposited sediments at the base are overlain by submarine canyon and fan lithofacies that were deposited by the full range of subaqueous mass-transport processes. A steep-walled channel within Balleny Group is interpreted as a fossil proximal fan-channel. The sedimentary fill of the channel is texturally similar to sediments moving by slump-creep in Recent submarine canyons and fan-valleys. The field data presented indicate (1) that a small canyon complex at Sealers Bay was initially cut by subaqueous debris-flows derived from an adjacent cliffed continental coast; (2) that transport within the upper parts of the canyon and fanchannel complex was primarily by inertia-flow and slump-creep; and (3) that these more proximal types of mass-transport gave way gradationally and successively to fluxoturbidity and turbidity currents at locations further down-slope, with consequent deposition of sediment in more distal fan-channel and fan-surface environments as fluxoturbidites and turbidites, with lesser contributions from inertia-flows.  相似文献   

2.
The late Proterozoic Adelaide Geosyncline, along with overlying Cambrian strata, comprises a thick sequence of sediments and sparse volcanics which accumulated in a major rift and passive margin setting. During late syn-rift or early post-rift phases, large volumes of terrigenous and carbonate sediments of the late Proterozoic Umberatana and Wilpena Groups and Cambrian Hawker Group filled the rift. Submarine canyon development was related to at least four of these depositional cycles, the most notable of which resulted in incision and subsequent filling of the major (several kilometres in width and up to 1.5 km deep) submarine canyons by the Wonoka Formation. The Wonoka Formation canyons are not obviously fault controlled. They are interpreted to have been eroded by turbidity currents during a relative low-stand of sea-level. They were subsequently filled by a fining-upwards suite of sediments which reflects subsequent relative rise of sea-level and carbonate platform development. Ultimately the canyon complex was buried by north-westerly progradation of overlying fluvial and slope sequences (Billy Springs Beds and possibly correlative upper Pound Subgroup). It is considered likely that more distal elements of this prograding clastic wedge provided the necessary material for canyon erosion, prior to canyon filling and ultimate burial by what may have been elements of the same depositional cycle. It is considered possible that the series of isolated outcrops of canyon cross-sections within the Wonoka Formation are sections of a single canyon thalweg developed within a considerably broader zone of slope degradation. If this interpretation is correct, then the gorge-like Patsy Springs Canyon lies in more proximal regions of the basin-slope, whereas 40 km to the north-east the lower slope is cut by the Fortress Hill Canyon Complex. Palaeocurrent analyses of channel-fill turbidites within the canyons imply that the Fortress Hill Complex is in fact the outcropping western edge of a sinuous, incised canyon thalweg. The Wonoka Formation canyons, containing basal sedimentary breccias but only minor conglomerates, are considered typical of passive margin canyon development. They are contrasted with the generally highly conglomeratic channel-fills observed in outcropping Tertiary and Cretaceous examples of active margin canyons and upper fan valleys.  相似文献   

3.
This study, based on 3.5 kHz SBP, 3D seismic data and long piston cores obtained during MD179 cruise, elucidated the timing and causes of pockmark and submarine canyon formation on the Joetsu Knoll in the eastern margin of the Sea of Japan. Gas hydrate mounds and pockmarks aligned parallel to the axis on the top of the Joetsu Knoll are associated with gas chimneys, pull-up structures, faults, and multiple bottom-simulating reflectors (BSRs), suggesting that thermogenic gas migrated upward through gas chimneys and faults from deep hydrocarbon sources and reservoirs. Seismic and core data suggest that submarine canyons on the western slope of the Joetsu Knoll were formed by turbidity currents generated by sand and mud ejection from pockmarks on the knoll. The pockmark and canyon formation probably commenced during the sea-level fall, lasting until transgression stages. Subsequently, hydropressure release during the sea level lowering might have instigated dissociation of the gas hydrate around the base of the gas hydrate, leading to generation and migration of large volumes of methane gas to the seafloor. Accumulation of hydrate caps below mounds eventually caused the collapse of the mounds and the formation of large depressions (pockmarks) along with ejection of sand and mud out of the pockmarks, thereby generating turbidity currents. Prolonged pockmark and submarine canyon activities might have persisted until the transgression stage because of time lags from gas hydrate dissociation around the base of the gas hydrate until upward migration to the seafloor. This study revealed the possibility that submarine canyons were formed by pockmark activities. If that process occurred, it would present important implications for reconstructing the long-term history of shallow gas hydrate activity based on submarine canyon development.  相似文献   

4.
The deeply dissected Southwest Grand Banks Slope offshore the Grand Banks of Newfoundland was investigated using multiple data sets in order to determine how canyons and intercanyon ridges developed and what sedimentary processes acted on glacially influenced slopes. The canyons are a product of Quaternary ice‐related processes that operated along the margin, such as ice stream outwash and proglacial plume fallout. Three types of canyon are defined based on their dimensions, axial sedimentary processes and the location of the canyon head. There are canyons formed by glacial outwash with aggradational and erosional floors, and canyons formed on the slope by retrogressive failure. The steep, narrow intercanyon ridges that separate the canyons are composite morphological features formed by a complex history of sediment aggradation and degradation. Ridge aggradation occurred as a result of mid to late Quaternary background sedimentation (proglacial plume fallout and hemipelagic settling) and turbidite deposition. Intercanyon ridge degradation was caused mainly by sediment removal due to local slump failures and erosive sediment gravity flows. Levée‐like deposits are present as little as 15 km from the shelf break. At 30 km from the shelf, turbidity currents spilled over a 400 m high ridge and reconfined in a canyon formed by retrogressive failure, where a thalweg channel was developed. These observations imply that turbidity currents evolved rapidly in this slope‐proximal environment and attained flow depths of hundreds of metres over distances of a few tens of kilometres, suggesting turbulent subglacial outwash from tunnel valleys as the principal turbidity current‐generating mechanism.  相似文献   

5.
The relationship of sea-level changes and short-term climatic changes with turbidite deposition is poorly documented, although the mechanisms of gravity-driven sediment transport in submarine canyons during sea-level changes have been reported from many regions. This study focuses on the activity of the Dakar Canyon off southern Senegal in response to major glacial/interglacial sea-level shifts and variability in the NW-African continental climate. The sedimentary record from the canyon allows us to determine the timing of turbidite events and, on the basis of XRF-scanning element data, we have identified the climate signal at a sub-millennial time scale from the surrounding hemipelagic sediments. Over the late Quaternary the highest frequency in turbidite activity in the Dakar Canyon is confined to major climatic terminations when remobilisation of sediments from the shelf was triggered by the eustatic sea-level rise. However, episodic turbidite events coincide with the timing of Heinrich events in the North Atlantic. During these times continental climate has changed rapidly, with evidence for higher dust supply over NW Africa which has fed turbidity currents. Increased aridity and enhanced wind strength in the southern Saharan-Sahelian zone may have provided a source for this dust.  相似文献   

6.
Normark  Piper  & Hiscott 《Sedimentology》1998,45(1):53-70
Hueneme and Dume submarine fans in Santa Monica Basin consist of sandy channel and muddy levee facies on the upper fan, lenticular sand sheets on the middle fan, and thinly bedded turbidite and hemipelagic facies elsewhere. Fifteen widely correlatable key seismic reflections in high-resolution airgun and deep-towed boomer profiles subdivide the fan and basin deposits into time-slices that show different thickness and seismic-facies distributions, inferred to result from changes in Quaternary sea level and sediment supply. At times of low sea level, highly efficient turbidity currents generated by hyperpycnal flows or sediment failures at river deltas carry sand well out onto the middle-fan area. Thick, muddy flows formed rapidly prograding high levees mainly on the western (right-hand) side of three valleys that fed Hueneme fan at different times; the most recently active of the lowstand fan valleys, Hueneme fan valley, now heads in Hueneme Canyon. At times of high sea level, fans receive sand from submarine canyons that intercept littoral-drift cells and mixed sediment from earthquake-triggered slumps. Turbidity currents are confined to ‘underfit’ talweg channels in fan valleys and to steep, small, basin-margin fans like Dume fan. Mud is effectively separated from sand at high sea level and moves basinward across the shelf in plumes and in storm-generated lutite flows, contributing to a basin-floor blanket that is locally thicker than contemporary fan deposits and that onlaps older fans at the basin margin. The infilling of Santa Monica Basin has involved both fan and basin-floor aggradation accompanied by landward and basinward facies shifts. Progradation was restricted to the downslope growth of high muddy levees and the periodic basinward advance of the toe of the steeper and sandier Dume fan. Although the region is tectonically active, major sedimentation changes can be related to eustatic sea-level changes. The primary controls on facies shifts and fan growth appear to be an interplay of texture of source sediment, the efficiency with which turbidity currents transport sand, and the effects of delta distributary switching, all of which reflect sea-level changes.  相似文献   

7.
在南海西北部首次发现中建南峡谷群,目前对其地质信息尚未开展相关研究.综合利用水深地形数据和二维多道地震资料,主要分析中建南峡谷群的地形地貌特征、平面展布与分段性特点,精细刻画峡谷沉积充填结构及演化特征,再进一步讨论峡谷形成的控制因素.中建南海底峡谷群分布于中建阶地与中建北海台之间,它是由西侧的一条主轴峡谷和东侧的多条小型分支峡谷组成,整体呈SE-S-SE走向,以走向转折拐点为起点,将峡谷分为三段式:北段、中段和南段,北段以侵蚀作用为主,中段和南段主要受侵蚀作用、沉积作用,东南部的峡谷口外主要受沉积作用.研究区晚中新世?第四纪时广泛分布峡谷沉积体系,包括半深海相、三角洲相、峡谷/水道充填相、滑塌相、块体搬运复合沉积和浊积扇相.揭示了该海底峡谷群的发育和演化主要受海平面变化、沉积物源供给和重力流、底流作用的控制.通过对该峡谷群的地形地貌和沉积演化特征的分析,将对海洋地质灾害、南海深水沉积体系研究及油气资源勘探有重要的科学意义.   相似文献   

8.
Submarine canyons are conduits for the distribution of sediment across continental margins. Although many canyons connect directly with fluvial or marine littoral system feeders, canyons detached from direct hinterland supply are also recognized. The fill of detached canyons remains enigmatic, because their deep‐water setting restricts analysis of their evolution and stratigraphic architecture. Therefore, this study aims to investigate the sedimentary processes that infilled deep‐water canyons and the resulting architecture. Miocene outcrops of an exhumed deep‐water system from the East Coast Basin, New Zealand, are documented and compared with the morphology and seismic scale architecture of a modern detached canyon system on the same convergent margin. The outcropping system preserves the downstream margin of a sub‐basin deposited at palaeo‐water depths >700 m. A 6 km wide by 430 m deep incision is filled by heterogeneous siliciclastic sediments, 50% of which comprise graded thin‐beds with traction structures, interpreted to result from oscillatory flows. These are intercalated with concave‐up lenses, up to 15 m thick, of sigmoidally‐bedded, amalgamated sandstones, which preserve ripple casts on bed bases, interpreted as deposits at the head of a deep‐marine canyon. Palaeo‐flow was eastward, into the sub‐basin margin. On the adjacent margin of the sub‐basin down‐dip, stacked and amalgamated sandstones and conglomerates represent the fill of a submarine channel complex, at least 3 km wide. The channels are inferred to have been fed by the up‐dip canyon, which traversed the intervening structural high; similar relationships are seen in the bathymetry data. Seismic studies on this margin demonstrate that multiple phases of canyon cut and fill may occur, with downstream architectural evolution comparable to that seen at outcrop, demonstrating that detached canyons may act as sediment conduits. Breaching of developing sea‐floor structures by detached canyons can modify tortuous sediment pathways, supplying sediment to otherwise starved areas of the slope.  相似文献   

9.
The Fall River Formation is a 45 m thick layer of fluvial-dominated valley-fills and shore-zone strata deposited on the stable cratonic margin of the Cretaceous Western Interior Seaway. Fall River deposits in Red Canyon, in the south-west corner of South Dakota (USA), expose a cross-section of a 3.5 km wide valley-fill sandstone and laterally adjacent marine deposits. The marine deposits comprise three 10 m thick upward-shoaling sequences; each composed of multiple metres-thick upward-coarsening successions. The lower two of these sequences are laterally cut by the valley-fill sandstone, and are capped by metres-thick muddy palaeosols. The upper sequence spans the top of the valley-fill sandstone, and is overlain by the Skull Creek Shale. The 30 m thick valley sandstone is partitioned into four distinct fills by major erosion surfaces, and each of these fills contain many metres-thick channel-form bodies. Deposits in the lower parts of these fills are sheet-like, top-truncated channel bodies, whereas deposits in the upper parts of fills are upward-concave, laterally amalgamated channel bodies, more completely preserved heterolithic channel bodies, or wave-deposited sheets. Each valley-fill basal erosion surface records an episode of valley incision and relative sea-level fall, and the gradual progression from fluvial to more estuarine deposits upwards within each fill records relative sea-level rise. All fills are dominantly channel deposits and are capped by marine flooding surfaces. The dominance of channel deposits, the gradual change to more estuarine facies in the upper parts of fills, and the location of flooding surfaces at valley-fill tops all suggest that sediment supply initially kept pace with relative sea-level rise and valleys filled during late marine lowstand and transgression, not during subsequent highstands. Recently proposed facies models have focused on variations in the relative strength of tide, wave and river currents as controls on valley-fill deposits. However, relative rates of sediment supply and basin accommodation change, and the shift in this ratio along the depositional profile during multiple-scale cycles in relative sea-level, are equally important controls on the style of valley-fill deposits.  相似文献   

10.
尼日尔三角洲盆地深水油气资源丰富,其中盆地东部深水区已发现的亿顿级油气田数量和累计油气可采储量均约为西部深水区的两倍,东、西部深水区油气差异巨大,开展尼日尔三角洲盆地深水沉积特征和差异研究具有重要的生产意义和学术价值。通过对该盆地大量地震、测井和岩心等资料的分析,提出了西部深水扇主要是由三角洲提供物源,通过大型峡谷的运输,在深水平原区形成树枝状发散的深水扇,又称作“有根深水扇”;东部深水扇也是由三角洲供源,但由于缺乏大型峡谷的运输,沉积物沿大陆斜坡滑移至半深海—深海平原,形成根部不发育的“扇面状”深水扇,又称作“无根深水扇”。尼日尔三角洲盆地东西部深水区油气分布差异,除构造等因素外,其最主要的原因为有/无峡谷作为物源运输通道,分别形成的不同沉积类型,进而分别形成两种样式的深水圈闭类型,最终造成东西部深水区油气分布的巨大差异。  相似文献   

11.
Interpretation of a grid of high resolution seismic profiles from the offshore eastern part of the Benin (Dahomey) basin in southwestern Nigeria area permitted the identification of cyclic events of cut and fill associated with the Avon canyon. Seismic stratigraphic analysis was carried out to evaluate the canyon morphology, origin and evolution. At least three generations of ancient submarine canyons and a newly formed submarine canyon have been identified. Seismic reflection parameters of the ancient canyons are characterized by transparent to slightly transparent, continuous to slightly discontinuous, high to moderate amplitude and parallel to sub-parallel reflections. Locally, high amplitude and chaotic reflections were observed. The reflection configurations consist of regular oblique, chaotic oblique, progradational and parallel to sub-parallel types. These seismic reflection characteristics are probably due to variable sedimentation processes within the canyons, which were affected by mass wasting. Canyon morphological features include step-wise and spoon-shaped wall development, deep valley incision, a V-shaped valley, similar orientation in the southeast direction, and simple to complex erosion features in the axial floor. The canyons have a composite origin, caused partly by lowering of the sea level probably associated with the formation of the Antarctic Ice Sheet about 30 Ma ago and partly by complex sedimentary processes. Regional correlation with geological ages using the reflectors show that the canyons cut through the Cretaceous and lower Tertiary sediments while the sedimentary infill of the canyon is predominantly Miocene and younger. Gravity-driven depositional processes, downward excavation by down slope sediment flows, mass wasting from the canyon walls and variation in terrigenous sediment supply have played significant roles in maintaining the canyons. These canyons were probably conduits for sediment transport to deep-waters in the Gulf of Guinea during their period of formation.  相似文献   

12.
为揭示南海北部东沙海底峡谷沉积演化及其资源效应,利用高分辨率二维多道地震与多波束测深数据,对该峡谷中-上游段的沉积层序、地貌特征及沉积构型展开剖析.东沙海底峡谷上游段表现为6个分支峡谷,中游段则汇聚为2条主峡谷,峡谷头部广泛发育分支水道.峡谷中游段于早中新世晚期开始发育,处于岩浆岩体和构造凸起之间;上游段分支峡谷形成于晚中新世以来,其与峡谷头部分支水道的形成分别受断裂体系和底流作用影响较大.东沙海底峡谷演化分为3个阶段:(1)早中新世晚期-中中新世,峡谷初始发育阶段;(2)晚中新世,峡谷拓展阶段;(3)上新世以来,现代峡谷发育阶段.东沙海底峡谷向马尼拉海沟提供了充足的富有机质沉积物,构成了马尼拉海沟增生楔天然气水合物形成的重要物质基础.   相似文献   

13.
This paper reports the composition and age of rocks dredged from the Kashevarov Trough (central Sea of Okhotsk) during cruise 41 of the R/V Akademik M.A. Lavrentyev in 2006. It was found that the Late Cretaceous and Eocene volcanics from the Kashevarov Trough and Okhotsk-Chukotka volcanic belt, structures of which are traceable in the Sea of Okhotsk, have similar petrographic and geochemical features. The Cenozoic sedimentary cover consists of three different-age complexes: (1) the late Oligocene (∼28.2–24.0 Ma); (2) the terminal late Oligocene-early Miocene (24.0–20.3 Ma); (3) the terminal late Pliocene-early Pleistocene (2.0–1.0 Ma). The upper Oligocene-lower Miocene sediments were deposited in relatively shallow-water settings, whereas the late Pliocene-early Pleistocene complex was formed in deeper environments, which was probably determined by tectonic processes. The geological data indicate that the Kashevarov Trough and the surrounding underwater rises represented in the Oligocene-early Miocene a single shelf zone of the Sea of Okhotsk, which is underlain by a structurally integral Mesozoic basement and is now subsided to depths of 800–1000 m.  相似文献   

14.
南海北部琼东南盆地深水区陵水凹陷南部油气成藏条件   总被引:2,自引:1,他引:1  
勘探已证实陵水凹陷浅层新近系发育中央峡谷莺歌海组—黄流组有效天然气成藏组合。渐新统崖城组煤系是陵水凹陷的主力气源岩,也可为陵水凹陷南部提供烃源。渐新统上部陵水组一段—中新统下部三亚组二段发育扇三角洲、浊积水道、海底扇砂岩储层,砂体富集的主控因素是凹陷边界断裂转换带、断阶带及构造坡折。陵水凹陷南部具有晚期成藏的特点,陵水凹陷生成的烃类通过断裂、砂体向南侧发生垂向与侧向运聚。综合储层、运移及圈闭条件等因素,优选出陵南斜坡反向断阶构造带为有利勘探区带。  相似文献   

15.
海底浊流的运动及其沉积,是目前浊流研究的热点之一。根据经过验证的基于雷诺平均纳维尔-斯托克斯方程及浮力项修正 k-ε 湍流模型的三维数值计算模型模拟了海底弯曲圆弧形峡谷内的浊流的流动和沉积,结果表明:(1)浊流在运动过程中由于对环境水体的夹带厚度不断增加,浊流厚度一般会超过峡谷深度,溢出峡谷,使浊流产生密度和动量损失;(2)浊流到达弯道部分后,由于离心力的作用会产生剥离,溢出更多的浊流至漫滩区域。浊流剥离的最大处为弯道顶点外岸下游处,其过量密度可达入流的37.5%;(3)对于模拟的横剖面为圆弧型的峡谷内的浊流来说,弯道顶点处的二次流在底部形成一个顺时针的循环圈,靠近峡谷底部从外岸指向内岸;(4)在峡谷中间及弯道顶点内岸下游处形成沉积,在弯道顶点外岸下游处形成侵蚀。这些特征对根据浊流的沉积观察推测其形成环境及油气储层的调查等方面有一定的参考意义。  相似文献   

16.
The current topographic maps of the Rhone Delta—and of Lake Geneva in general—are mainly based on hydrographic data that were acquired during the time of F.-A. Forel at the end of the nineteenth century. In this paper we present results of a new bathymetric survey, based on single- and multi-beam echosounder data. The new data, presented as a digital terrain model, show a well-structured lake bottom morphology, reflecting depositional and erosional processes that shape the lake floor. As a major geomorphologic element, the sub-aquatic Rhone Delta extends from the coastal platform to the depositional fans of the central plain of the lake at 310 m depth. 9 canyons cut the platform edge of the delta. These are sinuous (“meandering”) channels formed by erosional and depositional processes, as indicated by the steep erosional canyon walls and the depositional levees on the canyon shoulders. Ripples or dune-like morphologies wrinkle the canyon bottoms and some slope areas. Subaquatic mass movements are apparently missing on the delta and are of minor importance on the lateral lake slopes. Morphologies of the underlying bedrock and small local river deltas are located along the lateral slopes of Lake Geneva. Based on historical maps, the recent history of the Rhone River connection to the sub-aquatic delta and the canyons is reconstructed. The transition from three to two river branches dates to 1830–1840, when the river branch to the Le Bouveret lake bay was cut. The transition from two to one river branch corresponds to the achievement of the correction and dam construction work on the modern Rhone River channel between 1870 and 1880.  相似文献   

17.
Subaqueous liquefied and fluidized sediment flows and their deposits   总被引:3,自引:0,他引:3  
A clear distinction must be made between liquefied and fluidized systems. In liquefied beds and flows, the solids settle downward through the fluid, displacing it upward, whereas, in fluidized beds, the fluid moves upward through the solids, which are temporarily suspended without net downward movement. Many recent references to fluidized sediment gravity flows refer, in fact, to flows of liquefied debris. Most uniformly liquefied beds of well-sorted sand- or gravel-sized sediment will resediment as simple two-layer systems. Liquefied flows can originate either by liquefaction followed by failure, as in many retrogressive flow slides, or by failure followed by liquefaction, as in the case of some slumps. Empirical and theoretical estimates of flow velocity, thickness, and travel distance suggest that natural laminar liquefied flows of fine-grained sand will generally resediment after moving a kilometre or less. Laminar flows of coarse-grained sand will resediment after moving only a few metres. Grain dispersive pressure is thought to be of little significance in the development or maintenance of liquefied flows. Many surficial submarine sand beds are apparently susceptible to liquefaction, including submarine canyon and continental rise deposits. Within submarine canyons and narrow fjords, steep slopes and channels promote the evolution of liquefied flows from slumps by liquefaction after failure and of high density turbidity currents from liquefied flows by the development of turbulence. Upon moving into the lower parts of submarine canyons or into proximal fan channels, liquefied flows will resediment and high density turbidity currents will tend to decline to flows transitional between liquefied flows and turbidity currents. The liquefied, coarser detritus within such transitional flows will be deposited while finer-grained debris will remain in suspension and continue downslope as dilute turbidity currents. Resedimentation of the liquefied portions of such flows may be responsible for the deposition of the A-subdivision of many turbidites and many thick, structureless ‘proximal turbidites’ or ‘fluxoturbidites’. Similar units can originate by liquefaction of the traction deposits of normal turbidity currents. Fluidized flows are probably uncommon, thin, and, where formed, originate through fluidization of the fine-grained tops of liquefied graded beds.  相似文献   

18.
自1993年至今,美国地质调查局的科学家及其合作伙伴在美国西海岸的Monterey海底峡谷进行了针对现代浊流过程的一系列基础性研究,并成功地在世界上首次实地测量到高精度浊流流速及粒度参数.近20年来的数据和知识积累为解释海底峡谷内沉积物和其他颗粒物质输运的机理,以及浊流在维持深海峡谷中生机勃勃的生态系统所起的重要作用提供了直接依据.通过展示把海底观测应用于海洋沉积动力学研究过程中的成果、经验、教训,以及介绍目前还在讨论中的研究计划,以期达到以下宏观论点:在海洋科学里,只有科学与技术不脱节的科研团队才有希望获得成果和突破.  相似文献   

19.
ABSTRACT

The North Palawan Canyon is a large, previously undescribed submarine canyon that incises the continental shelf and slope of the southern South China Sea. Using multibeam bathymetric data and two-dimensional seismic reflection data, we have characterized current canyon morphology and documented lower-canyon migration in cross-section since the middle Miocene. We have also explored possible causes for the ancient migrations. The 175 km modern canyon is flanked by sediment waves outside its northern bank, and depositional lobes fan out from the canyon mouth. Over the past 15 million years, at least 20 cycles of significant canyon incising and infilling have occurred, along with significant canyon migration. This migration, as recorded in the sedimentary (seismic) record near a leftward bend in the canyon’s lower reach, can be divided into three stages: southward migration during the middle Miocene (averaging 1.24 km/m.y.), northward migration during the late Miocene (1.34 km/m.y.), and stationarity since the Pliocene. The overall zigzagging pattern of the canyon thalweg (as seen in cross-section through time) results from lateral and downstream migration in an aggradational environment. The early (middle to late Miocene) rapid zigzagging migration of the lower main channel, first southward and then northward, was probably associated with the strong collision of the North Palawan Block with the Philippine Mobile Belt, which would have triggered submarine instabilities and deformed the seafloor. The more recent (Pliocene and later) slowing or cessation of canyon migration is likely the result of the now quieter tectonic setting and long-term climatic cooling and drying.  相似文献   

20.
The canyon mouth is an important component of submarine‐fan systems and is thought to play a significant role in the transformation of turbidity currents. However, the depositional and erosional structures that characterize canyon mouths have received less attention than other components of submarine‐fan systems. This study investigates the facies organization and geometry of turbidites that are interpreted to have developed at a canyon mouth in the early Pleistocene Kazusa forearc basin on the Boso Peninsula, Japan. The canyon‐mouth deposits have the following distinctive features: (i) The turbidite succession is thinner than both the canyon‐fill and submarine‐fan successions and is represented by amalgamation of sandstones and pebbly sandstones as a result of bypassing of turbidity currents. (ii) Sandstone beds and bedsets show an overall lenticular geometry and are commonly overlain by mud drapes, which are massive and contain fewer bioturbation structures than do the hemipelagic muddy deposits. (iii) The mud drapes have a microstructure characterized by aggregates of clay particles, which show features similar to those of fluid‐mud deposits, and are interpreted to represent deposition from fluid mud developed from turbidity current clouds. (iv) Large‐scale erosional surfaces are infilled with thick‐bedded to very thick‐bedded turbidites, which show lithofacies quite similar to those of the surrounding deposits, and are considered to be equivalent to scours. (v) Concave‐up erosional surfaces, some of which face in the upslope direction, are overlain by backset bedding, which is associated with many mud clasts. (vi) Tractional structures, some of which are equivalent to coarse‐grained sediment waves, were also developed, and were overlain locally by mud drapes, in association with mud drape‐filled scours, cut and fill structures and backset bedding. The combination of these outcrop‐scale erosional and depositional structures, together with the microstructure of the mud drapes, can be used to identify canyon‐mouth deposits in ancient deep‐water successions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号