首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
构造煤中煤层气扩散-渗流特征及其机理   总被引:2,自引:0,他引:2       下载免费PDF全文
煤层气产出一般要经过解吸、扩散和渗流三个阶段,而煤层气在变形较强的构造煤中的扩散过程不同于在原生结构煤或变形较弱的煤体中的扩散。外界压力的变化只是构造煤吸附与解吸整个过程的一种外在因素,构造煤的变形和结构变化以及吸附势场的转换才是构造煤吸附与解吸的内在因素,是导致解吸过程不可逆性的根本原因。当构造煤体与CH4等多元气体间的吸附平衡状态遭到破坏时,变形较强的构造煤在降压后会产生解吸滞后现象;而变形较弱的煤,分子结构中的气体会很快解吸,第一阶段是气体解吸作用,第二阶段是游离气体从微孔向较大孔隙扩散的过程,气体扩散速率主要由第二阶段决定。构造煤气体扩散机理主要是由孔隙形状、大小、连通性和多元气体性质和状态所决定的。韧性变形煤的微孔隙比较发达,所以韧性变形煤以Knudsen扩散为主,脆性变形煤的中、大孔隙所占比例较大,而且脆性变形煤的孔隙之间具有很好的连通性,所以脆性变形煤以Fick型扩散为主,脆-韧性变形煤以及接近脆-韧性变形煤的脆性变形煤和韧性变形煤均以过渡型扩散为主。在试井渗透率比较中,一定变形程度的脆性变形煤>韧性变形煤,脆性变形煤中以过渡孔为主,其余为微孔,测不出亚微孔和极微孔,脆性变形还增加了各孔隙之间的相互连通性。韧性变形煤中过渡孔比表面积所占比例下降,微孔和亚微孔增高,扩散主要发生在微孔和过渡孔中,所以韧性变形煤的试井渗透率低于脆性变形煤的试井渗透率。  相似文献   

2.
丁家林-太阳坪脆-韧性剪切带处于扬子地台、秦岭及松潘-甘孜褶皱带的结合部,出露长度大于10 km,走向40~50°,以密集的褶曲带、劈理带、石英脉带单独或组合出现为标志.主要经历了2期变形,第1期脆-韧性剪切变形分2个阶段.S1阶段茂县群地体发生低级变质并形成千枚理S1,分异石英脉q1;S2阶段分异q2并发生金矿化,形成S2.第2期韧-脆性剪切变形发育韧-脆性断层S3,分异q3,并发育擦痕和阶步及强烈金矿化.晚期韧-脆性剪切作用叠加在早期脆-韧性剪切变形之上.丁家林-太阳坪金矿带的2期内生成矿作用与变形作用同步进行,其控、容矿构造为脆-韧性剪切变形组构.  相似文献   

3.
大理岩脆-韧性转换变形实验研究   总被引:1,自引:0,他引:1  
吴树仁  晏同珍  简文星 《地球学报》1996,17(Z1):104-111
本文利用两组大理岩岩样进行脆-韧性变形有实验,一组在室温条件,围压变化范围为20-400MPa;另一组围压为50MPa,温度变化范围为15-200℃。前者发生脆-韧性转换的围岩范围为50-400MPa,其中变形最敏感的围压为50-150MPa,脆-韧性转换过程表现为应变硬化作用;后者发生脆-韧性转换的温度为50-200℃,其中变形最敏感的温度为100℃左右,脆-韧性转换过程表现为应变软化作用为主。在变形(实验)岩样宏观变形行为和微观构造特征分析的基础上,讨论了岩石脆-韧性转换变形的若干标志(包括力学性质、宏观变形行为和显微构造标志等),并阐明了大理岩脆-韧性转换变形方式是以微破裂、晶内滑移和碎裂流动作用为主。这些实验研究结果对于地壳中浅层次构造变形及表层构造软弱带成因研究肯有重要意义。  相似文献   

4.
关于脆-韧性转换带的变形过程与机制,长期以来缺乏明确的认识。郯庐断裂带南段出露的新元古界张八岭群为浅变质火山-沉积岩系。这套岩层的韧性变形与低级变质作用发生在印支期,当时处于中地壳层次,是认识中地壳脆-韧性转换带变形特征与过程的天然对象。详细的构造研究表明,区内张八岭隆起北段出露的张八岭群呈现为平缓的韧性拆离带,而大别造山带东缘则为陡立的左行走滑韧性剪切带,两者代表了中地壳不同类型的变形带,这两类变形带在印支期递进变形中经历了相似的变形转换,即早阶段透入性韧性变形和晚阶段脆-韧性变形。早阶段韧性变形中,发育片内A型褶皱和透入性面理和矿物拉伸线理为特征的糜棱岩;晚阶段脆-韧性变形中,发育膝折、皱纹线理、褶劈理、石英脉、张裂隙、B型剪切褶皱等构造。变形早阶段应变软化促进了韧性变形的发展,而变形晚阶段降温所导致的应变硬化使得韧性变形无法继续,从而转变为脆-韧性变形。这些研究显示,中地壳脆-韧性转换带在深度不变的递进变形中是可以发生韧性向脆-韧性变形的转变。  相似文献   

5.
曹洁  程建新  邱斌  杨兴科 《新疆地质》2006,24(2):141-145
通过对新疆红石金矿区韧性剪切变形特征的研究,金矿化带的分布明显受韧性剪切带的控制,所有的金矿体及金矿化体均赋存于秋格明塔什-黄山韧性剪切带的不同部位,其变形期次可划分为3期,即韧性剪切变形、脆-韧性剪切变形和脆性剪切变形,其中脆-韧性剪切变形阶段是最有利的成矿阶段.  相似文献   

6.
滇中小水井金矿床控矿构造与矿化富集规律   总被引:1,自引:0,他引:1  
周云满 《地质与勘探》2009,45(5):588-594
构造控矿是小水井金矿床的主要特点,本文通过对矿床控矿构造空间形态、构造岩分带、活动期次、力学性质、矿床构造类型的研究,认为小水井金矿床受控于区域三级断裂(F3),其内更次级的断层、剪切裂隙破碎带、层间破碎带控制了矿体的空间产出位置;矿床控矿构造类型为脆-韧性剪切断裂构造,构造破碎带起码经历了三期应力作用的改造,早期为压扭性韧性剪切变形,中、晚期为张扭性脆-韧性剪切变形,后期为脆性剪切作用—形成碎裂状岩石;矿床金矿化作用主要与中、晚期的脆-韧性剪切变形作用有关,发生在脆-韧性剪切变形阶段或稍晚。进而总结了金矿化富集规律,指出在断裂产状变化地段、不同方向断层交切附近、破碎带的膨大部位,是厚大透镜状矿体富集的有利空间;破碎带变窄地段,矿体变薄、尖灭,形成脉状矿体。  相似文献   

7.
丁家林-太阳坪金矿带与丁家林-太阳坪脆-韧性剪切带同位分布、同能源作用、同步生成,是脆-韧性剪切变形形成的石英脉型金矿,总体走向NE,主要由丁家林和太阳坪2个金矿床组成,分石英单脉、单脉密集带、复脉带3个亚型。丁家林以含Au石英复脉为主,太阳坪以含Au石英单脉为主;成矿物质来源于富含Si质的志留系黄坪组,成矿流体主要是构造水;内生成矿作用分脆.韧性剪切变形-构造分异热液期和韧-脆性剪切变形-构造分异热液期,与2期脆-韧性剪切变形相对应,第2期为主成矿期。其成矿机理是脆-韧性剪切变形动力成岩成矿。  相似文献   

8.
焦家断裂带位于胶东西北部,产出焦家、新城、寺庄等超大型、大型"焦家式"金矿,与脆韧性变形构造有关。但是关于韧脆性变形的研究尚需要加强,缺乏脆性韧性断裂定量化的测量与研究。文中用穿过焦家断裂蚀变带的1 800多m的钻孔岩心为对象,对焦家断裂下盘蚀变花岗岩区开展观测分析。经过岩石学矿物学定量化研究确定蚀变分带为,黄铁绢英岩质碎裂岩带、强钾长石化花岗质蚀变岩带、弱钾长石化花岗岩带和未蚀变黑云母二长花岗岩带。其相应特征是:黄铁绢英岩带宽35.7m,岩石变形总量和韧/脆性变形比率依次为75%~85%和0.07,以脆性变形为主,矿化蚀变作用强烈;强钾化花岗质蚀变岩带宽10.6m,其变形总量和韧/脆性变形比例为75%~80%,0.78,以韧脆性变形为主,矿化蚀变作用变弱;弱钾长石化花岗岩带宽76.92m,其变形量和韧/脆性变形比为45%~55%,1.75,以韧性变形为主,几乎不发生矿化。总体来说,主裂面以脆性变形为主,远离主裂面韧性变形为主,矿化主要产于脆性与韧脆性变形转换带,即黄铁绢英岩碎裂岩与强钾化蚀变岩过渡带。  相似文献   

9.
西林河脆-韧性剪切带是区域上富尔河-古洞河岩石圈深断裂带的重要组成部分,总体走向330°,由东部(F1,F2,F3)、中部(F4,F5)和西部(F6)3条脆-韧性剪切断层带组成。东部带以脆性变形为主,延长约4km;中部带除脆性变形外兼有塑性变形,延长约5km;西部带以塑性变形为主,总延长5.5km。构造岩比较发育,分为脆性变形构造岩系列和塑性变形构造岩系列。构造岩的变形和退变作用同时进行。西林河脆-韧性剪切带反映了西林河金矿的成矿时代为燕山期,是金成矿的导矿和容矿构造。本着就矿找矿的原则,根据成矿地质条件,在已有的6个矿体的延伸方向进行追索找矿;根据边缘成矿作用观点,可在矿区内太古宙灰色片麻岩与元古宙浅变质岩的接触带进行找矿。确立了6条找矿标志。  相似文献   

10.
阿吾拉勒成矿带是西天山重要成矿带之一,经历了多期构造作用,并伴生多期成矿作用。本文对成矿带内查岗诺尔矿区及邻区构造变形特征以及变形序列精细解析,探讨构造变形对铁矿的成矿作用以及后期改造作用的影响,为西天山地区铁矿床成因和找矿方向提供新启示。野外构造观察发现,研究区断裂构造主要分为NW-NWW向高角度韧性-韧脆性走滑断层及逆冲推覆断层,以近EW向、近SN向为主的高角度共轭脆(韧)性走滑断层和近SN向脆性右行走滑断层。年代学研究表明,断层分别形成于燕山晚期-喜马拉雅早期、喜马拉雅中期和喜马拉雅晚期,均为成矿期-成矿期后的构造记录。早期高角度韧性-韧脆性走滑断层是区域性控矿构造,而逆冲推覆断层是矿区主导控制性构造;中期共轭脆(韧)性走滑断层对矿体具有较为强烈的破坏和改造作用;晚期脆性右行走滑断层对矿体影响较小。查岗诺尔和智博矿区的断裂构造主要表现为对矿体的破坏和改造作用,而在松湖和塔尔塔格矿区,韧性-韧脆性剪切带是主要的控矿构造。主矿脉与构造密切伴生,具体表现为与成矿作用密切相关的磁铁矿化、绿泥石绿帘石化、碳酸盐化等蚀变多沿构造裂隙发生。  相似文献   

11.
构造煤的发育是产生煤粉的关键,破碎后煤岩会产生固有煤粉,而疏松的结构会使得煤岩更容易受钻井、压裂和排采等工程扰动影响,进而产生更多的煤粉。韩城区块经历多期构造,断裂构造造成的煤岩脆性变形、褶皱拉伸与挤压造成的煤岩韧性变形导致构造煤发育。以采集煤样宏观特征差异划分煤体结构类型,运用测井解释识别不同煤体结构类型煤,从纵向和横向上总结区块煤体结构分布规律,并揭示不同煤体结构类型对产出煤粉形态、浓度、粒度特征的影响。  相似文献   

12.
煤的孔隙-裂隙结构特征是研究储层渗透性的关键问题。为了定量描述孔隙-裂隙结构的复杂程度,以黄陇侏罗纪煤田永陇矿区郭家河井田原生结构煤和碎裂结构煤为研究对象,基于压汞实验数据和扫描电镜(SEM)图像,采用Menger分形模型和计盒维数方法,分别计算不同煤体结构煤的孔隙-裂隙分形维数;同时采用不同孔径段的孔隙体积比作为权重值,计算得到孔隙综合分形维数,探讨孔隙-裂隙结构分形维数和渗透率之间的关系。研究结果表明,脆性构造变形作用对孔隙整体复杂性,裂隙孔、渗流孔复杂性以及微观裂隙复杂程度均具有积极改造作用,对吸附孔结构复杂性具有均一化作用;微观裂隙分形维数与渗透率具有较高非线性关系,脆性构造作用改造下形成的碎裂煤,其具有的孔隙-裂隙结构优势配比是决定储层高渗透性的关键。因此,建议优先考虑弱脆性变形的碎裂结构煤为主体的断层、向斜和背斜区域进行煤层气抽采。   相似文献   

13.
以大别造山带楚地区石炭纪含煤岩系为研究对象,利用显微及超微分析手段,将构造煤划分为脆性变形和韧性变形两大类,结合X衍射分析方法研究结果认为,脆性变形不引起煤级的变化,而韧性变形可以促进煤的变质;温度是引起煤级升高的主导因素,定向压力是煤化作用进程的“催化剂”。  相似文献   

14.
A number of studies have shown that development areas of weak deformation brittle series of tectonically deformed coal are often the favorable areas for coalbed methane development, and the distribution area of the mylonitic coal of ductile deformation is a danger zone of mine gas outburst. Therefore, faced with solving the key scientific issues and technical problems of the coal bed methane exploration and development and gas outburst prediction and evaluation, more and more attention has been paid to the research on tectonically deformed coal. This paper first systematically elaborated the main research progress on the concept and classification of tectonically deformed coals, their deformation characteristics, and the pore fissure structure and chemical structure. Then, it pointed out that there was a lack of research on the ductile deformation mechanism of coal, and this key scientific problem needs further research in the future. It seemed that the structural and geochemical process of chemical elements migration and accumulation during coal deformation was a new field which is worth exploring. Through refining stress sensitive elements, their distribution and evolution patterns in different stress-strain environments and different types of tectonically deformed coals might be revealed, and then they could become a predictive index which indicates the significance of distribution of tectonically deformed coals and gas outburst prediction. It was thought that geophysical response characteristics and research of detection theory and interpretation method of different types of tectonically deformed coal and gas enrichment area should be an important development direction in the future.  相似文献   

15.
康古尔金矿具有独特的成矿地质特征,矿床位于石炭系火山岩区大型韧性剪切带的次级构造中.控矿构造表现为脆韧性剪切活动的特点,该脆韧性剪切带在成矿期的活动具有中低温、高应变速率、高差异应力的动力学特征.金矿床的分布受脆韧性剪切带控制,矿体由蚀变千糜岩和糜棱岩化火山岩中矿化富集地段组成,矿体产状平行于糜棱岩面理.矿化产于脆韧性变形强烈部位,脆性变形叠加有利于形成富金矿.  相似文献   

16.
唐哲民  陈方远 《地球科学》2006,31(4):527-532
对CCSD主孔3 000 m岩心叶理、具断层擦痕的微断层及断层擦痕产状特征进行了统计分析, 并分析了脆、韧性剪切带的运动学特征, 研究表明(1) 榴辉岩类叶理产状明显较片麻岩类陡, 可能与其岩石能干性较强有关, 因而在挤压褶皱变形过程中表现出不同的变形行为.韧性变形主体表现为顺层剪切, 含断层擦痕的微断层最主要的一组产状与叶理面一致或接近一致, 部分伴随与之呈共轭关系的另一组微断层. (2) 脆、韧性变形以SEE-NWW向剪切为主, 部分为近SN向, 脆性、韧性变形域断层运动方向基本一致.但现在所保留下来的构造变形中韧性变形以SEE向NWW的逆冲型剪切为主, 部分为近SN向韧性剪切作用; 而脆性变形以NWW向SEE的正滑作用为主. (3) 主孔构造应力场初步可划分为4期, 现在所保留的主期构造为SEE-NWW向挤压构造应力场所致.   相似文献   

17.
为查明构造性质不明、空间位置不清楚的南海北缘琼南缝合带西段——九所-陵水断裂带,采集断裂带东段小妹韧性剪切带中花岗岩、石榴石石英片岩和花岗质片麻岩3类样品,探讨其纳米尺度特征.扫描电镜(scanning electron microscope,SEM)观测结果表明:这3类岩石存在多种纳米结构和构造,结合野外实践得到的该剪切带纳米颗粒的发育程度与其所受剪切作用有关.纳米颗粒的形成机制可能有:(1) 剪切力作用下层状硅酸盐热分解;(2) 颗粒塑性变形后发生脆性破裂,再经剪切作用研磨而成.与台湾太鲁阁深大断裂带中的韧性剪切带岩石样品进行SEM测试结果对比,发现其纳米颗粒特征和研究区具可比性,据此推测小妹韧性剪切带在区域构造归属上可能与九所-陵水深大断裂带密切相关.   相似文献   

18.
榴辉岩相变质岩中石榴石的塑性微裂隙   总被引:3,自引:1,他引:3  
陈晶 《岩石学报》1996,12(4):589-593
在变质岩中石榴石广泛发育微裂隙,这些微裂隙一直认为是在脆性变形过程中产生的。本文应用透射电子显微镜(TEM)研究证明,在榴辉岩相变质岩中,石榴石的微裂隙是塑性变形的产物。同时较为深入的探讨了这些塑性微裂隙的形成机制  相似文献   

19.
煤岩构造变形与动力变质作用   总被引:1,自引:0,他引:1       下载免费PDF全文
煤岩是一种对温度、压力等地质环境因素十分敏感的有机岩,地质演化过程中的各种构造-热事件必然导致煤岩发生一系列物理与化学结构的变化,并形成不同类型的构造煤。在构造应力作用下,煤岩不仅发生脆性和韧性变形,而且还产生不同程度的动力变质作用。因而,关于煤岩构造变形与动力变质作用的研究不仅具有重要的科学意义,而且在煤层气资源评价以及煤与瓦斯突出危险性预测方面也具有重要的实际意义。文中在已有研究成果基础上,通过对构造煤系列Ro,max、XRD和NMR(CP/MAS+TOSS)等测试和实验方法的对比研究,深入分析了煤岩不同构造变形和动力变质特征,进一步探讨了构造应力下煤岩动力变质作用的机理。研究成果表明,在构造应力作用下,煤岩脆性变形主要是通过破裂面上快速机械摩擦转化为热能而引起煤岩化学结构与其成分的改变;而韧性变形煤主要是通过局部区域应变能的积累而引起煤岩化学结构的破坏,从而发生不同机制的动力变质作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号