首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 152 毫秒
1.
A Large-Scale Seasonal Modeling Study of the California Current System   总被引:1,自引:0,他引:1  
A high-resolution, multi-level, primitive equation ocean model has been used to investigate the combined role of seasonal wind forcing, seasonal thermohaline gradients, and coastline irregularities on the formation of currents, meanders, eddies, and filaments in the entire California Current System (CCS) region, from Baja to the Washington-Canada border. Additional objectives are to further characterize the meandering jet south of Cape Blanco and the seasonal variability off Baja. Model results show the following: All of the major currents of the CCS (i.e., the California Current, the California Undercurrent, the Davidson Current, the Southern California Countercurrent, and the Southern California Eddy) as well as filaments, meanders and eddies are generated. The results are consistent with the generation of eddies from instabilities of the southward current and northward undercurrent via barotropic and baroclinic instability processes. The meandering southward jet, which divides coastally-influenced water from water of offshore origin, is a continuous feature in the CCS, and covers an alongshore distance of over 2000 km from south of Cape Blanco to Baja. Off Baja, the southward jet strengthens (weakens) during spring and summer (fall and winter). The area off southern Baja is a highly dynamic environment for meanders, filaments, and eddies, while the region off Point Eugenia, which represents the largest coastline perturbation along the Baja peninsula, is shown to be a persistent cyclonic eddy generation region. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The critical role played by observations during ocean data assimilation was explored when the Regional Ocean Modeling System (ROMS) 4-dimensional variational (4D-Var) data assimilation system was applied sequentially to the California Current circulation. The adjoint of the 4D-Var gain matrix was used to quantify the impact of individual observations and observation platforms on different aspects of the 4D-Var circulation estimates during both analysis and subsequent forecast cycles. In this study we focus on the alongshore and cross-shore transport of the California Current System associated with wind-induced coastal upwelling along the central California coast. The majority of the observations available during any given analysis cycle are from satellite platforms in the form of SST and SSH, and on average these data exert the largest controlling influence on the analysis increments and forecast skill of coastal transport. However, subsurface in situ observations from Argo floats, CTDs, XBTs and tagged marine mammals often have a considerable impact on analyses and forecasts of coastal transport, even though these observations represent a relatively small fraction of the available data at any particular time.During 4D-Var the observations are used to correct for uncertainties in the model control variables, namely the initial conditions, surface forcing, and open boundary conditions. It is found that correcting for uncertainties in both the initial conditions and surface forcing has the largest impact on the analysis increments in alongshore transport, while the cross-shore transport is controlled mainly by the surface forcing. The memory of the circulation associated with the control variable increments was also explored in relation to 7 day forecasts of the coastal circulation. Despite the importance of correcting for surface forcing uncertainties during analysis cycles, the coastal transport during forecast cycles initialized from the analyses has less memory of the surface forcing corrections, and is controlled primarily by the analysis initial conditions.Using the adjoint of the entire 4D-Var system we have also explored the sensitivity of the coastal transport to changes in the observations and the observation array. A single integration of the adjoint of 4D-Var can be used to predict the change that occurs when observations from different platforms are omitted from the 4D-Var analysis. Thus observing system experiments can be performed for each data assimilation cycle at a fraction of the computational cost that would be required to repeat the 4D-Var analyses when observations are withheld. This is the third part of a three part series describing the ROMS 4D-Var systems.  相似文献   

3.
The option for surface forcing correction, recently developed in the 4D-variational (4DVAR) data assimilation systems of the Regional Ocean Model System (ROMS), is presented. Assimilation of remotely-sensed (satellite sea surface height anomaly and sea surface temperature) and in situ (from mechanical and expendable bathythermographs, Argo floats and CTD profiles) oceanic observations has been applied in a realistic, high resolution configuration of the California Current System (CCS) to sequentially correct model initial conditions and surface forcing, using the Incremental Strong constraint version of ROMS-4DVAR (ROMS-IS4DVAR). Results from both twin and real data experiments are presented where it is demonstrated that ROMS-IS4DVAR always reduces the difference between the model and the observations that are assimilated. However, without corrections to the surface forcing, the assimilation of surface data can degrade the temperature structure at depth. When using surface forcing adjustment in ROMS-IS4DVAR the system does not degrade the temperature structure at depth, because differences between the model and surface observations can be reduced through corrections to surface forcing rather than to temperature at depth. However, corrections to surface forcing can generate abnormal spatial and temporal variability in the structure of the wind stress or surface heat flux fields if not properly constrained. This behavior can be partially controlled via the choice of decorrelation length scales that are assumed for the forcing errors. Abnormal forcing corrections may also arise due to the effects of model error which are not accounted for in IS4DVAR. In particular, data assimilation tends to weaken the alongshore wind stress in an attempt to reduce the rate of coastal upwelling, which seems to be too strong due to other sources of error. However, corrections to wind stress and surface heat flux improve systematically the ocean state analyses. Trends in the correction of surface heat fluxes indicate that, given the ocean model used and its potential limitations, the heat flux data from the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) used to impose surface conditions in the model are generally too low except in spring-summer, in the upwelling region, where they are too high. Comparisons with independent data provide confidence in the resulting forecast ocean circulation on timescales ~14 days, with less than 1.5 °C, 0.3 psu, and 9 cm RMS error in temperature, salinity and sea surface height anomaly, respectively, compared to observations.  相似文献   

4.
The primary purpose of this paper is to describe the seasonal variation of the various currents which comprise the California Current System—the California Current, the California Undercurrent, the Davidson Current and the Southern California Countercurrent—and to investigate qualitatively the dynamical relationships among these currents. Although the majority of information was derived from existing literature, previously unpublished data are introduced to provide direct evidence for the existence of a jet-like Undercurrent over the continental slope off Washington, to illustrate ‘event’-scale fluctuations in the Undercurrent and to investigate the existence of the Undercurrent during the winter season.The existing literature is thoroughly reviewed and synthesized. In addition, and more important, geostrophic velocities are computed along several sections from the Columbia River to Cape San Lazaro from dynamic heights given by (1966), and (1964), and and (1976). From these data and from long-term monthly wind stress data and vertical component of wind stress curl data (denoted curl τ) given by (1977), interesting new conclusions are made. 1. The flow that has been denoted the California Current generally has both an offshore and a nearshore maximum in its alongshore coponent. 2. The seasonal variation of the nearshore region of strong flow appears to be related to the seasonal variation of the alongshore component of wind stress at the coast, τyN, at all latitudes. Curl τ near the coast may also contribute to the seasonal signal, accounting for the lead of maximum current over maximum wind stress from about 40°N northward. Large-scale flow separation and fall countercurrents that of headlands may account for the sudden occurrence of late summer and fall countercurrents that appear as large anomalies from the wind-driven coastal flow south of 40°N. 3. From Cape Mendocino southward a northward mean is imposed on the nearshore current distribution. The mean is largest where curl τ is locally strongest, in particular, off and south of San Francisco and in the California Bight. It may be responsible for the portion of the Davidson Current that occurs off California, for the San Francisco Eddy and for the Southern California Eddy or Countercurrent. When southward wind stress weakens in these regions, the northward mean dominates the flow. Flow separation in the vicinity of headlands may also be responsible for these northward flows. There is some evidence that during periods of northward flow a mean monthly τyN-driven southward current occurs inshore of the mean northward flow. At all latitudes, wind-driven ‘event’-scale fluctuations are expected to be superimposed on the seasonal nearshore flow. 4. The spatial distribution and seasonal variation oftthe offshore region of southward flow appear to be related to the spatial distribution and seasonal variation of curl τ. The seasonal variation of curl τ in these areas, curl τl, is roughly in phase with the seasonal variation of τy near the coast and roughly 180° out of phase with the seasonal variation of curl τ near the coast. Southward flow lags negative curl τ by from two to four months. The offshore region of southward flow is strongest during the summer and early fall. The mean annual location of the maximum flow is at about 250–350 km from shore off Washington and Oregon, and at 430 km off Cape Mendocino, 270 km off Point Conception and 240 km off northern Baja. The offshore branch of the flow bends shoreward near 30°N, which is consistent with the shoreward extension of the region of negative curl τ, so that by Cape San Lazaro (25°N), a single region of strong flow is observed within 200 km of the coast. 5. A third region of strong southward flow occurs at distances exceeding 500 km from the coast. The spatial distribution of this flow appears to be related to the spatial distribution of curl τ. 6. The mean northward flow known as the Davidson Current consists of two regions in which the forcing may be dynamically different—seaward of the continental slope off Washington and Oregon and between Cape Mendocino and Point Conception, the mean monthly northward currents appear to be related to the occurrence of positive curl τ; along the coast of Oregon and Washington the northward currents are not related to the occurrence of positive curl τ but are consistent with forcing by the mean monthly northward wind stress at the coast. 7. A region of southward flow that is continuous with the California Current to the south is generally maintained off Oregon and parts of Washington during the winter. This southward flow appears to separate the northward-flowing Davidson and Alaskan Currents in some time-dependent region south of Vancouver Island. The banded current structure is consistent with the distribution of curl τ, if southward flow is related to negative curl τ. 8. The seasonal progression of the California Undercurrent may be related both to the seasonal variation of the offshore region of strong flow (hence to curl τl) and to the alongshore component of wind stress at the coast. South of Cape Mendocino a northward mean also seems to be superimposed on the flow. This mean may be related to the occurrence of strong positive curl τ near the coast. Velocities at Undercurrent depths have two maxima, one in late summer and one in winter. The slope Undercurrent is indistinguishable, except by location, from the undercurrent that is observed on the Oregon-Washington continental shelf.  相似文献   

5.
6.
The development of the strongest El Niño event on record in the equatorial Pacific in 1997–1998 and the rapid transition to strong La Niña conditions in 1998–1999 had a large impact on the physical and biological environment of the West Coast. We investigate the evolution of the physical structure and circulation dynamics of the southern California Current System (CCS) during this period based on hydrographic data collected on 25 cruises over a 45-month period (February 1996–October 1999). The El Niño period was characterized by a significant increase in dynamic height, extreme water mass characteristics, a strengthening and broadening of the poleward nearshore flow, and a temporary reversal of net alongshore transport. By early 1999, conditions in the CCS had reversed. The data suggest that remotely driven forcing (propagating oceanic waves) contributed to the anomalies observed during the El Niño period, while the cool-water conditions of 1999 were most likely a result of anomalous local atmospheric forcing.  相似文献   

7.
东海冷涡对东亚季风年代际变化   总被引:1,自引:0,他引:1  
张俊鹏  蔡榕硕 《海洋与湖沼》2013,44(6):1427-1435
利用CORA、COADS和SODA 等高分辨率的海洋和大气再分析资料及区域海洋模式(ROMS), 研究了东海冷涡对1976/1977 年前后东亚季风年代际跃变(减弱)的响应。结果表明: (1)1976/1977年前后东亚季风跃变后, 夏季东海冷涡明显增强, 主要表现为冷涡的温度显著降低, 而冬季东海冷涡有所变弱但其温度上升不明显; (2)东亚冬季风跃变后, 济州岛西南侧的黄海暖流减弱, 冷涡区出现一个反气旋式环流异常, 这有利于冬季东海冷涡的减弱; (3)东亚夏季风跃变后, 台湾暖流外海侧分支及济州岛西南侧的黄海暖流分支增强, 使得冷涡区的气旋性环流变强, 这有利于夏季东海冷涡的加强。数值试验的结果表明, 东亚冬、夏季风的跃变在东中国海引起了不同的中尺度海洋环流异常, 从而导致东海冷涡对东亚冬、夏季风的跃变产生不同的响应。  相似文献   

8.
The paper evaluates atmospheric reanalysis as possible forcing of model simulations of the ocean circulation inter-annual variability in the Gulf of Lions in the Western Mediterranean Sea between 1990 and 2000. The sensitivity of the coastal atmospheric patterns to the model resolution is investigated using the REMO regional climate model (18 km, 1 h), and the recent global atmospheric reanalysis ERA40 (125 km, 6 h). At scales from a few years to a few days, both atmospheric data sets exhibit a very similar weather, and agreement between REMO and ERA40 is especially good on the seasonal cycle and at the daily variability scale. At smaller scales, REMO reproduces more realistic spatio-temporal patterns in the ocean forcing: specific wind systems, particular atmospheric behaviour on the shelf, diurnal cycle, sea-breeze. Ocean twin experiments (1990–1993) clearly underline REMO skills to drive dominant oceanic processes in this microtidal area. Finer wind patterns induce a more realistic circulation and hydrology of the shelf water: unique shelf circulation, upwelling, temperature and salinity exchanges at the shelf break. The hourly sampling of REMO introduces a diurnal forcing which enhances the behaviour of the ocean mixed layer. In addition, the more numerous wind extremes modify the exchanges at the shelf break: favouring the export of dense shelf water, enhancing the mesoscale variability and the interactions of the along slope current with the bathymetry.  相似文献   

9.
ROMS with horizontal grid spacing of 3.5 km for the region off Central California was compared to RAFOS float observations and satellite altimetry on meso/submesoscales. The approach introduced and used two new metrics for model-data comparison, as well as suggested how to calculate these metrics for different spatio-temporal scales. The first metric consisted of the first two moments of exit time and was used to compare ROMS against RAFOS float observations at mid-depths (between 300 m and 350 m). Exit time is the time a float launched at a point takes to leave a domain for the first time. The second metric was spectral entropy and was used to estimate how well ROMS reproduced variability of the sea surface height (SSH) anomaly field extracted from an AVISO data set (1992–2007) for specified temporal and spatial scales. Calculations showed that ROMS reproduced the mid-depth mesoscale/submesoscale currents next to the coast in a very accurate manner (low-order exit time statistics of floats were reproduced by ROMS with an accuracy better than 95%); but ROMS overestimated the speed of westward drift of floats by as much as 20–30% at distances greater than 350 km from the coastline. ROMS predicted the variability of the mesoscale (100–400 km) SSH anomaly field for temporal scales of 1–12 months with a reasonable accuracy. A wavelet transform modulus maxima technique applied to the spectral entropy of SSH anomaly also demonstrated good agreement between ROMS and satellite altimetry for mesoscales characterized by singular exponents and multi-fractal spectra for 1–12 month time scales.  相似文献   

10.
We study the dynamics of the planktonic ecosystem in the coastal upwelling zone within the California Current System using a three-dimensional (3-D), eddy-resolving circulation model coupled to an ecosystem/biogeochemistry model. The physical model is based on the Regional Oceanic Modeling System (ROMS), configured at a resolution of 15 km for a domain covering the entire US West Coast, with an embedded child grid covering the central California upwelling region at a resolution of 5 km. The model is forced with monthly mean boundary conditions at the open lateral boundaries as well as at the surface. The ecological/biogeochemical model is nitrogen based, includes single classes for phytoplankton and zooplankton, and considers two detrital pools with different sinking speeds. The model also explicitly simulates a variable chlorophyll-to-carbon ratio. Comparisons of model results with either remote sensing observations (AVHRR, SeaWiFS) or in-situ measurements from the CalCOFI program indicate that our model is capable of replicating many of the large-scale, time-averaged features of the coastal upwelling system. An exception is the underestimation of the chlorophyll levels in the northern part of the domain, perhaps because of the lack of short-term variations in the atmospheric forcing. Another shortcoming is that the modeled thermocline is too diffuse, and that the upward slope of the isolines toward the coast is too small. Detailed time-series comparisons with observations from Monterey Bay reveal similar agreements and discrepancies. We attribute the good agreement between the modeled and observed ecological properties in large part to the accuracy of the physical fields. In turn, many of the discrepancies can be traced back to our use of monthly mean forcing. Analysis of the ecosystem structure and dynamics reveal that the magnitude and pattern of phytoplankton biomass in the nearshore region are determined largely by the balance of growth and zooplankton grazing, while in the offshore region, growth is balanced by mortality. The latter appears to be inconsistent with in situ observations and is a result of our consideration of only one zooplankton size class (mesozooplankton), neglecting the importance of microzooplankton grazing in the offshore region. A comparison of the allocation of nitrogen into the different pools of the ecosystem in the 3-D results with those obtained from a box model configuration of the same ecosystem model reveals that only a few components of the ecosystem reach a local steady-state, i.e. where biological sources and sinks balance each other. The balances for the majority of the components are achieved by local biological source and sink terms balancing the net physical divergence, confirming the importance of the 3-D nature of circulation and mixing in a coastal upwelling system.  相似文献   

11.
We examined and compared tidal currents and water column structure between a near-shore station (12 km from the coast) and an offshore station (32 km from the coast) adjacent to the Caeté River, Pará Region, Brazil. Although the coastal system of Pará is largely influenced by local tides and wind, we found substantial differences in the dominant forcing agents between stations. Water column dynamics at the near-shore station were largely affected by local tidal processes, while differences between surface and bottom layer flows also indicated the importance of gravitational circulation at this station and a substantial influence of the adjacent Caeté River discharge. In comparison, at the offshore station, water column structure was largely influenced by a semi-diurnal tidal flow, an along-coastal current flow (mainly associated with the North Brazil Current) and the dynamics of local wind flow. The near-shore station at low tide showed a high level of stratification; at high tide such stratification was reduced. In comparison, stratification was only apparent within the upper 6 m at the offshore station, the rest of the water column was relatively well-mixed. The stratification within Station 1 at low tide was a result of the bi-directional movement of water discharged from the Caeté River, with lower salinity surface water and high salinity bottom water resulting in an estuarine-like circulation environment. The spatial variability and lack of correlation in current flow and water column structure between the near-shore and offshore stations suggest that a flow field resulting from differences in local circulation, tidal variability and wind persistence separate areas. We argue that this separation may indicate that the offshore station is located in a transition region between the Caeté River waters and the local coastal area.  相似文献   

12.
It is not clear whether global warming will favour or reduce global ocean phytoplankton productivity in coastal areas. Moreover, the relative contributions made by natural and/or anthropogenic factors to possible changes in phytoplankton productivity are not clear. As the relationship between primary production and alongshore wind forcing is well established for the Eastern Boundary Current (EBC) ecosystems, our aim is to determine whether the changes experienced over the last five decades (1958–2007) in atmospheric CO2 and solar activity have been able to affect the wind regime and water column stability in the most biologically productive upwelling areas of California, Canary, Humboldt and Benguela. We approached the work by statistically studying the effect of solar activity and atmospheric CO2 on surface alongshore wind stress and on water column stability. There was an increasing trend in wind stress and water column stability in all the upwelling areas over the period studied (with the single exception of stability in the California EBC system). The analysis of detrended series evidenced significant relationships between atmospheric CO2 concentration and wind stress and water column stability in the coastal upwelling areas investigated. In addition, wind stress and stability data were found to be consistent, with negative linear relationships between wind stress and CO2 in most of the sites in the Benguela, Canary and Humboldt regions associated, as expected, to positive relationships when water column stability is used as regressand. The results of the present study suggest that greenhouse gas forcing, independent of its well known general increasing trend, was able to decrease wind stress intensity and increase water column stability for the period 1958 to present in most of the sites of the four Eastern Boundary Ecosystems studied, with the one exception of the California region. Conversely, the impact of solar activity appeared to be quite low compared to the greenhouse gas forcing.  相似文献   

13.
The southwestern tropical Atlantic (05°S–25°S/20°W–47°W), where part of the South Equatorial Current (SEC) enters at its eastern border, is of particular interest as it is fed by many western boundary currents along the eastern Brazilian continental shelf. However, the long-term variability of the dynamics in this region, which are also important as they contribute to the climate over northeastern Brazil, is largely unknown. We use the Regional Ocean Model System (ROMS) here for the first time in this area to simulate the ocean circulation with an isotropic horizontal grid resolution of 1/12° and 40 terrain-following layers. As a primary evaluation of the ROMS configuration, we explore surface and vertical thermal structures, the surface mixed layer, and mass transports within the upper levels. Interannual variability results are compared with the first two-year series of observed thermal profiles derived from the three PIRATA-SWE moorings. The simulated thermal structure in the upper ocean layers agrees well with in-situ data. ROMS simulations point out a broad and relatively weak SEC flow composed of a sequence of more or less defined near-surface cores. The westward SEC transport for the upper 400 m along the PIRATA-SWE section, calculated from the ROMS simulation for 2005–2007, shows an average volume transport of 14.9 Sv, with a maximum observed in JFM (15.7 Sv), and a minimum during MJJ (13.8 Sv). ROMS results indicate that the 2005–2007 seasonal near-surface westward SEC transport is modulated by the zonal wind variability. Three zonal sections extending from the American continent to the PIRATA buoy sites confirm that stronger northward NBUC transport and decreasing BC transport were achieved during May 2006 and May 2007, i.e. at the time the sSEC bifurcation reaches its southernmost position. On the other hand, the maximum southward BC flow was verified during January 2006, January 2007 and March 2007, with a minimum northward NBUC flow in December 2005 and October/December 2006, corresponding to the period when the sSEC bifurcation reaches its lowest latitude (OND). Sea Surface Height (SSH) and the surface Eddy Kinetic Energy (EKE) derived from simulations and AVISO Rio05 product point out the highest surface meso-scale activity (EKE  50 cm2 s−2) along the cSEC and NBUC/BC patches. Preliminary results provide additional ingredients in the complexity of the SEC divergence region and encourage us to conduct a more detailed exploration of the dynamics of this region using the ROMS. This also shows the need to continue, extend, and vertically upgrade the observational PIRATA-SWE array system, especially with more levels of salinity measurements and the installation of current measurements.  相似文献   

14.
Spatial gradients in biomass and community composition have important consequences for ecosystem structure and function. In this study, small-scale inshore-offshore (1-10 km) and vertical (1-50 m) patterns of microphytoplankton biomass and community composition are described, and the environmental controls of microphytoplankton biomass are evaluated in a coastal ecosystem of the Southern California Bight (SCB). During a two-year period, persistent inshore-offshore gradients in phytoplankton biomass and occasional inshore-offshore gradients in community composition, coincident with regional precipitation, were found, although the strength of the gradients varied between sampling periods. The chlorophyll a maximum was generally present between 15 and 45 m, the cell abundance maximum occurred in surface waters, and there was little evidence of vertical gradients in community composition. Variability in chlorophyll a concentrations was linked to variability in environmental parameters only after some rain and upwelling events. This study demonstrates that inshore-offshore patterns in phytoplankton biomass previously documented at large spatial scales (100-700 km) in the SCB can also persist at smaller scales (1-10 km), although the mechanisms for the gradients are likely to be different at the different spatial scales. The results provide a baseline data set that can be used to focus monitoring and management efforts in the SCB. In particular, this work shows that a limited number of sampling stations are sufficient for phytoplankton monitoring in Santa Monica Bay.  相似文献   

15.
A process-oriented, quasi-geostrophic, barotropic model has been developed with the aim of studying the relative importance of wind and topographic forcing on oceanic eddy generation by tall, deep water islands. As a case study, we chose the island of Gran Canaria. Topographic forcing was established using different intensities (weak, medium, strong, and very strong) for the oceanic current incident to the island. Wind forcing was introduced to simulate the mean wind curl observed in atmospheric tall island wakes. As observed from in situ data, the resulting wind curl consists of two cells of opposite sign which become a complementary source of vorticity at the island lee. The intensity and the shape of the two cells depend on the strength of the incident wind against the obstacle. The oceanic model was forced at three different wind (trade winds) speeds which correspond to weak, medium and strong wind intensities. Results from several numerical experiments show that in those periods where the incident wind is in the medium–strong range and the incident current speed is low (low Reynolds number), the wind forcing is the trigger mechanism for oceanic eddy generation. Eddies are spun off from the island for a lower Reynolds number (Re)/intensity of the oceanic flow (Re = 20) when compared with only topographic forcing (Re > 60). However, when the current speed is strong (high Reynolds number), the vorticity input by the wind is quickly advected by the oceanic flow and does not contribute to oceanic eddy generation. When only wind forcing is considered, only two stationary eddies are generated in the island wake. In this case, eddies of opposite sign are not sequentially spun off by the island and a Von-Kármán-like eddy street is not developed downstream of the island. Therefore, the main mechanism responsible for the development of an eddy street is the topographic perturbation of the oceanic flow by the island flanks. The wind over the island wake acts only as an additional source of vorticity, promoting the generation of an eddy street at a lower intensity of the incident oceanic flow, but not being capable of generating an eddy street without the topographic forcing.  相似文献   

16.
The mechanism governing the mean state and the seasonal variation of the transports through the straits of the Japan Sea is studied using a newly presented, simple analytical model and a basin scale general circulation model (GCM). The GCM reproduces the transports through the straits of the Japan Sea realistically owing to its fine horizontal resolution of about 20 km and realistic topography. A series of experiments conducted by changing surface forcing shows that the annual mean wind-driven circulation in the North Pacific Ocean is most responsible for the formation of the mean transports. It is also found that the seasonal variation of the alongshore component of monsoonal wind stress over the North Pacific basin, especially that over the Okhotsk Sea, is responsible for the seasonal variation of the transports. The simple analytical model can explain these simulated features very well. The physical concept of this model is based on the formation of the around-island circulation through the adjustment of coastally trapped waves and Rossby waves and geostrophic control at the narrow straits. It solves the sea surface heights (SSHs) at the edge of each strait and the transport through it. The value of the line integral of the SSH along the island is determined by the baroclinic Rossby waves approaching the island from the east and the alongshore wind stress around the island. The basin scale seasonal variation of SSH along the coast induced by the variation of the alongshore monsoonal wind stress can also be incorporated into this model by giving the SSH anomaly at the northeastern point of the Soya Strait. Thus, it is suggested that both the mean state and the seasonal variation are caused mainly by wind stress forcing. Minor modification by the seasonal heat flux forcing brings the amplitude and the phase of the seasonal variation closer to the observed values.  相似文献   

17.
A coupled waves–currents-bathymetric evolution model (DELFT-3D) is compared with field measurements to test hypotheses regarding the processes responsible for alongshore varying nearshore morphological changes at seasonal time scales. A 2001 field experiment, along the beaches adjacent to Grays Harbor, Washington, USA, captured the transition between the high-energy erosive conditions of winter and the low-energy beach-building conditions typical of summer. The experiment documented shoreline progradation on the order of 10–20 m and on average approximately 70 m of onshore sandbar migration during a four-month period. Significant alongshore variability was observed in the morphological response of the sandbar over a 4 km reach of coast with sandbar movement ranging from 20 m of offshore migration to over 175 m of onshore bar migration, the largest seasonal-scale onshore migration event observed in a natural setting. Both observations and model results suggest that, in the case investigated here, alongshore variations in initial bathymetry are primarily responsible for the observed alongshore variable morphological changes. Alongshore varying incident hydrodynamic forcing, occasionally significant in this region due to a tidal inlet and associated ebb-tidal delta, was relatively minor during the study period and appears to play an insignificant role in the observed alongshore variability in sandbar behavior at kilometer-scale. The role of fully three-dimensional cell circulation patterns in explaining the observed morphological variability also appears to be minor, at least in the case investigated here.  相似文献   

18.
Dynamical downscaling is developed to better predict the regional impact of global changes in the framework of scenarios. As an intermediary step towards this objective we used the Regional Ocean Modeling System (ROMS) to downscale a low resolution coupled atmosphere–ocean global circulation model (AOGCM; IPSL-CM4) for simulating the recent-past dynamics and biogeochemistry of the Benguela eastern boundary current. Both physical and biogeochemical improvements are discussed over the present climate scenario (1980–1999) under the light of downscaling.Despite biases introduced through boundary conditions (atmospheric and oceanic), the physical and biogeochemical processes in the Benguela Upwelling System (BUS) have been improved by the ROMS model, relative to the IPSL-CM4 simulation. Nevertheless, using coarse-resolution AOGCM daily atmospheric forcing interpolated on ROMS grids resulted in a shifted SST seasonality in the southern BUS, a deterioration of the northern Benguela region and a very shallow mixed layer depth over the whole regional domain. We then investigated the effect of wind downscaling on ROMS solution. Together with a finer resolution of dynamical processes and of bathymetric features (continental shelf and Walvis Ridge), wind downscaling allowed correction of the seasonality, the mixed layer depth, and provided a better circulation over the domain and substantial modifications of subsurface biogeochemical properties. It has also changed the structure of the lower trophic levels by shifting large offshore areas from autotrophic to heterotrophic regimes with potential important consequences on ecosystem functioning. The regional downscaling also improved the phytoplankton distribution and the southward extension of low oxygen waters in the Northern Benguela. It allowed simulating low oxygen events in the northern BUS and highlighted a potential upscaling effect related to the nitrogen irrigation from the productive BUS towards the tropical/subtropical South Atlantic basin. This study shows that forcing a downscaled ocean model with higher resolution winds than those issued from an AOGCM, results in improved representation of physical and biogeochemical processes.  相似文献   

19.
郭琳  刘娜  王国建  修鹏 《海洋与湖沼》2016,47(3):491-501
本文利用三维数值模型(ROMS-Co Si NE)分析了整个加利福尼亚流系水平流场的季节性演变过程,研究了美国加州中部海域流场垂直结构的季节性变化特征,并探讨了其动力学机制。研究发现:(1)数值模型能够较为准确的模拟流场的季节性变化,与浮标观测数据以及前人的研究结果符合良好;(2)从表层到200m,加利福尼亚潜流向高纬度扩张,近岸上升流急流则向高纬度撤退,加州南部海域的中尺度涡更显著;(3)在加州中部海域,近岸急流的最大值(约15cm/s)发生在夏季,位于近岸的表层海域;加利福尼亚潜流最大值(约4cm/s)发生于冬季,出现在离岸100km的125m处;加利福尼亚流在春季达到全年最大值(约5cm/s),流轴位于离岸(400—600km)的表层海水。加利福尼亚流系的流场具有显著的季节性变化,研究进一步表明这主要受地转关系调控。  相似文献   

20.
During the 1997/1998 El Niño event, extensive oceanic temperature profiles were taken off the coast of California in January and February 1998 using Airborne Expendable Bathythermographs (AXBTs). These AXBT measurements are compared with altimetry-based upper-ocean temperature estimates using TOPEX and ERS satellite altimetry data. The altimetry-based temperature estimates are well correlated with the AXBT data, in particular when combining the two satellite data sets together to form a blended altimeter temperature estimate. Both the AXBT and altimetry data show that the nearshore coastal El Niño signal differed from that further offshore. The AXBT data show that near shore, the warm anomalies extended to much greater depths and had greater amplitude. A time series of the satellite-derived layer-averaged temperatures, averaged separately over the nearshore and offshore halves of the AXBT analysis domain, also shows a larger El Niño signal in the nearshore half. The role of local atmospheric forcing of the coastal oceanic temperature anomalies is analyzed using NCEP reanalysis and coastal upwelling data sets. The forcing terms include Ekman pumping, radiation, surface heat fluxes, precipitation, and alongshore wind stresses that drive coastal upwelling (expressed as a coastal downwelling index, CDI). The temperature forcing from all of the terms except the CDI anomalies are small. The CDI anomalies can explain most of the slowly varying temperature changes that occur near the coast during a two-year period spanning the El Niño event, as well as some of the larger amplitude, rapid (monthly) warming episodes that appear to be part of the El Niño signal. Several distinct rapid warming episodes, however, are not correlated with the CDI anomalies, and therefore we conclude that the nearshore El Niño signal originates from a combination of both a remote oceanic pathway and local atmospheric forcing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号