首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究   总被引:71,自引:6,他引:65  
矿物质与重金属离子间的相互作用已是当今环境科学、矿物学,土壤化学等学科领域研究的热点。通过蒙脱石,伊利石和高龄石在一定的介质条件下对Cu^2+、Pb^2+、Zn^2+、Cd^2+、Cr^3+五种重金属离子的竞争吸附实验研究,阐明了三种粘土矿物对五种重金属离子的吸附选择性。  相似文献   

2.
Removal of Lead,Copper, Zinc and Cadmium from Water Using Phosphate Rock   总被引:2,自引:0,他引:2  
Removal of Pb^2+, Cu^2+, Zn^2+ and Cd^2+ from aqueous solutions by sorption on a natural phosphate rock (FAP) was investigated. The effects of the contact time and initial metal concentration were examined in the batch method. The percentage sorption of heavy metals from solution ranges generally between 50% and 99%. The amount of sorbed metal ions follows the order Cu〉Pb〉Cd〉Zn. Heavy metal immobilization was attributed to both surface complexation of metal ions on the surface of FAP grains and partial dissolution and precipitation of a heavy metal-containing phosphate. The very low desorption ratio of heavy metals further supports the effectiveness of FAP as an alternative and low-cost material to remove toxic Pb^2+, Cu^2+, Zn^2+ and Cd^2+ from polluted waters.  相似文献   

3.
The effects of varying operating conditions on metals removal from aqueous solution using a novel nano-size composite adsorbent are reported in this paper. Characterization of the composite adsorbent material showed successful production of carbon nanotubes on granular activated carbon using 1 % nickel as catalyst. In the laboratory adsorption experiment, initial mixed metals concentration of 2.0 mg/L Cu2+, 1.5 mg/L Pb2+ and 0.8 mg/L Ni2+ were synthesized based on metals concentration from samples collected from a semiconductor industry effluent. The effects of operation conditions on metals removal using composite adsorbent were investigated. Experimental conditions resulting in optimal metals adsorption were observed at pH 5, 1 g/L dosage and 60 min contact time. It was noted that the percentage of metals removal at the equilibrium condition varied for each metal, with lead recording 99 %, copper 61 % and nickel 20 %, giving metal affinity trend of Pb2+ > Cu2+ > Ni2+ on the adsorbent. Langmuir’s adsorption isotherm model gave a higher R2 value of 0.93, 0.89 and 0.986 for copper, nickel and lead, respectively, over that of Freundlich model during the adsorption process of the three metals in matrix solution.  相似文献   

4.
In this study, the speciation of Zn2+, Pb2+, and Cu2+ ions sorbed at the calcite surface was monitored during a 2.5-year reaction period, using extended X-ray absorption spectroscopy to characterize metal speciation on the molecular scale. Experiments were performed using pre-equilibrated calcite-water suspensions of pH 8.3, at metal concentrations below the solubility of metal hydroxide and carbonate precipitates, and at constant metal surface loadings. The EXAFS results indicate that all three metals remained coordinated at the calcite surface as inner-sphere adsorption complexes during the 2.5-year ageing period, with no evidence to suggest slow formation of dilute metal-calcite solid solutions under the reaction conditions employed. All three divalent metals were found to form non-octahedral complexes upon coordination to the calcite surface, with Zn2+ adsorbing as a tetrahedral complex, Cu2+ as a Jahn-Teller distorted octahedral complex, and Pb2+ coordinating as a trigonal- or square-pyramidal surface complex. The non-octahedral configurations of these surface complexes may have hindered metal transfer from the calcite surface into the bulk, where Ca2+ is in octahedral coordination with respect to first-shell O. The use of pre-equilibrated calcite suspensions, with no net calcite dissolution or precipitation, likely prevented metal incorporation into the lattice as a result of surface recrystallization. The results from this study imply that ageing alone does not increase the stability of Zn2+, Pb2+, and Cu2+ partitioning to calcite if equilibrium with the solution is maintained during reaction; under these conditions, these metals are likely to remain available for exchange even after extended sorption times.  相似文献   

5.
The results of experimental studies of ion exchange properties of Co-bearing ferromanganese crusts in the Magellan Seamounts (Pacific Ocean) are discussed. Maximum reactivity in reactions with the participation of manganese minerals (Fe-vernadite, vernadite) is typical of Na+, K+, and Ca2+ cations, whereas minimum activity is recorded for cations Pb2+ and Co2+. The exchange complex of ore minerals in crusts is composed of Na+, K+, Ca2+, Mg2+, and Mn2+ cations. The exchange capacity of manganese minerals increases from the alkali metal cations to rare and heavy metal cations. Peculiarities of the affiliation of Co2+, Mn2+, and Mg2+ cations in manganese minerals of crusts are discussed. In manganese minerals, Co occurs as Co2+ and Co3+ cations. Metal cations in manganese minerals occur in different chemical forms: sorbed (Na+, K+, Ca2+, Mn2+, Co2+, Cu2+, Zn2+, Cd2+, and Pb2+); sorbed and chemically bound (Mg2+, Ni2+, Y3+, La3+, and Mo6+); and only chemically bound (Co3+). It is shown that the age of crust, its preservation time in the air-dry state, and type of host substrate do not affect the ion exchange indicators of manganese minerals. It has been established that alkali metal cations are characterized by completely reversible equivalent sorption, whereas heavy metal cations are sorbed by a complex mechanism: equivalent ion exchange for all metal cations; superequivalent, partly reversible sorption for Ba2+, Pb2+, Co2+, and Cu2+ cations, relative to exchange cations of manganese minerals. The obtained results refine the role of ion exchange processes during the hydrogenic formation of Co-bearing ferromanganese crusts.  相似文献   

6.
Various soil zones such as Bw, C1, and C3 are developed on spilite. Montmorillonite, vermiculite and chlorite is moderately occurred in the C1 and C3 soil zones, in contrast montmorillonite and vermiculite are absent in Bw soils whereas illite and sesquioxide are relatively increased. The high cation exchange capacity (CEC) of montmorillonite and vermiculte and moderate CEC of chlorite and illite resulted in the high adsorption of heavy metals. The adsorption of the heavy metals on spilite soil zones was studied at different concentrations and pH levels. Heavy metals like lead, cadmium, and copper were selected for adsorption studies considering their contribution as toxic metals in the environment. The initial solute concentrations ranged from 7.0 × 10−3 to 1.0 × 102 mg/L. The sorption behavior of Cd2+, Pb2+, and Cu2+ on soil zones of spilite was investigated using the batch equilibrium technique at 25°C. The characteristics of the adsorption process were investigated using Scatchard plot analysis (q/C vs. q) by the batch equilibrium technique at 25°C. In the adsorption of heavy metals, deviation from linearity in the plot of q/C versus q was observed, indicating the presence of multi-model interaction and non-Langmuirean behavior. When the Scatchard plot showed a deviation from linearity, greater emphasis was placed on the analysis of the adsorption data in terms of the Freundlich model, in order to construct the adsorption isotherms of the metal(s) at particular concentration(s) in solutions. The adsorption behavior of these metal ions on spilite soil zones is expressed by the Freundlich isotherms. Adsorption constants and correlation coefficients for the Cd, Pb, and Cu on spilite soil zones were calculated from Freundlich plots.  相似文献   

7.
A binary mixture of humic acid and geothite was prepared and used to modify kaolinite to produce geothite–humic acid (GHA)-modified kaolinite adsorbent useful for the adsorption of Pb2+, Cd2+, Zn2+, Ni2+ and Cu2+ from Single and Quinary (5) metal ion systems. The cation exchange capacity (CEC) and specific surface area of GHA-modified kaolinite clay adsorbent were found to be 40 meq/100 g and 13 m2/g, respectively, with the CEC being five times that of raw kaolinite clay (7.81 meq/100 g). The Langmuir–Freundlich equilibrium isotherm model gave better fit to experimental data as compared with other isotherm models. In Quinary metal ion system, the presence of Zn2+ and Cu2+ appears to have an antagonistic effect on the adsorption of Pb2+, Cd2+ and Ni2+, while the presence of Pb2+, Cd2+ and Ni2+ shows a synergistic effect on the adsorption of Zn2+ and Cu2+. The GHA-modified kaolinite showed strong preference for the adsorption of Pb2+ in both metal ion systems. Brouers–Weron–Sotolongo (BWS) kinetic model gave better fit to kinetic data compared with other kinetic models used. Data from BWS kinetic model indicate that adsorption of metal ions onto GHA-modified adsorbent in both metal ion systems followed strictly, diffusion-controlled mechanism with adsorption reaction proceeding to 50 % equilibrium in <2 min in the Single metal ion system and <1 min in the Quinary metal ion system. Adsorption of metal ions onto GHA-modified kaolinite is fairly spontaneous and endothermic in nature in both metal ion systems although the rate of metal ion uptake and spontaneity of reaction are reduced in the Quinary metal ion system.  相似文献   

8.
The sorption of Cu(II) and Pb(II) to kaolinite-fulvic acid colloids was investigated by potentiometric titrations. To assess the possible interactions between kaolinite and fulvic acid during metal sorption, experimental sorption isotherms were compared with predictions based on a linear additivity model (LAM). Suspensions of 5 g L−1 kaolinite and 0.03 g L−1 fulvic acid in 0.01 M NaNO3 were titrated with Cu and Pb solutions, respectively. The suspension pH was kept constant at pH 4, 6, or 8. The free ion activities of Cu2+ and Pb2+ were monitored in the titration vessel using ion selective electrodes. Total dissolved concentrations of metals (by ICP-MS) and fulvic acid (by UV-absorption) were determined in samples taken after each titration step. The amounts of metals sorbed to the solid phase, comprised of kaolinite plus surface-bound fulvic acid, were calculated by difference. Compared to pure kaolinite, addition of fulvic acid to the clay strongly increased metal sorption to the solid phase. This effect was more pronounced at pH 4 and 6 than at pH 8, because more fulvic acid was sorbed to the kaolinite surface under acidic conditions. Addition of Pb enhanced the sorption of fulvic acid onto kaolinite at pH 6 and 8, but not at pH 4. Addition of Cu had no effect on the sorption of fulvic acid onto kaolinite. In the LAM, metal sorption to the kaolinite surface was predicted by a two-site, 1-pK basic Stern model and metal sorption to the fulvic acid was calculated with the NICA-Donnan model, respectively. The LAM provided good predictions of Cu sorption to the kaolinite-fulvic acid colloids over the entire range in pH and free Cu2+ ion activity (10−12 to 10−5). The sorption of Pb was slightly underestimated by the LAM under most conditions. A fractionation of the fulvic acid during sorption to kaolinite was observed, but this could not explain the observed deviations of the LAM predictions from the experimental Pb sorption isotherms.  相似文献   

9.
The objective of the present study is to evaluate the absorption efficacy of H. fusiformis biochar (HFB) for the removal of phenol and heavy metals from single and mixed solute systems of these species under different experimental conditions. The effects of contact time, pH change, initial phenol concentration, and heavy metal concentration on the adsorption capacity of HFB were investigated. The kinetics and equilibrium models of sorption of the components of the single and mixed solute systems on HFB were also studied. The experimental data were fitted to kinetic and equilibrium models. The batch experiments revealed that 360 min of contact time was sufficient to achieve equilibrium for the adsorption of both phenol and heavy metals. The adsorption of phenol and nickel by HFB followed the pseudo-second-order kinetic model, which was quite adequate for describing the adsorption mechanism. The equilibrium data for the adsorption of phenol and heavy metals fit well to the Langmuir model with regression coefficients of R 2 > 0.819. The maximum Langmuir adsorption capacities were 10.39, 12.13, 22.25, 2.24, 2.89, and 22.03 mg/g for phenol, Ni2+, Zn2+, Cu2+, Pb2+, and Cd2+, respectively. Moreover, HFB exhibited optimal sorption under slightly acidic conditions at pH 6. The HFB used in the present study exhibited higher adsorption capacity for the removal of phenol and heavy metals from aqueous solutions compared to documented sorbents. These results demonstrate that HFB is potentially useful for alleviating the harmful effects of phenol and heavy metal in wastewater treatment systems.  相似文献   

10.
The impacts of common ions on the adsorption of heavy metal   总被引:1,自引:0,他引:1  
Researches on the impact of common ions onto sediments are of great importance for the study of the heavy metal adsorption mechanisms. Considering the surface sediments from the relatively clean reach in the Baotou section of the Yellow River as the adsorbent, this work presents the impacts of common ions (Na+, Mg2+, K+, Ca2+, Cl, SO4 2−, and NH4 +) on heavy metals (Cu2+, Zn2+, Cd2+, and Pb2+) adsorption. The experimental results reveal that the adsorptive capacities of the heavy metals are controlled by different adsorption mechanisms in different ion concentration ranges. With the increase of the ionic strength, the adsorption of the heavy metals increases for the compression of the electric double layer, whereas decreases for the decreasing of the ionic activities of the heavy metals. The competitive adsorption and complexations between the heavy metals and common ions are also important factors controlling the heavy metal adsorption. According to the experimental results and the real concentration of common ions in the Baotou section of the Yellow River, the increase of the concentrations of Na+, Mg2+, K+, and Ca2+ would cause the increase of Zn2+ adsorption and reduce the Zn pollution. The NH4 + from the industrial discharge of the tributaries has a strong impact on the heavy metal adsorption.  相似文献   

11.
邵坤  赵改红  赵朝辉 《岩矿测试》2019,38(6):715-723
磁铁矿是一种绿色廉价的矿物材料,对水体中重金属离子具有良好的吸附性,但吸附容量低,选择性差,易团聚,通过改性可以克服该缺点并提高其吸附性能。本文以腐植酸为改性剂,采用常温水相反应制备了腐植酸改性磁铁矿吸附材料。通过傅里叶红外光谱(FTIR)、扫描电镜(SEM)和X射线光电子能谱(XPS)表征研究其表面形貌和微观结构。采用静态平衡实验考察了pH、吸附时间等因素对铅、镉吸附性能的影响,探讨了吸附动力学规律,拟合了吸附等温线。结果表明:腐植酸上的羧基、羟基被成功地接枝到了磁铁矿表面。在室温下,溶液初始pH对Pb~(2+)的吸附率几乎无影响,对Cd~(2+)的影响较大,当pH=7时,Pb~(2+)和Cd~(2+)吸附率均达到了95%。对初始质量浓度为10mg/L的Pb~(2+)、Cd~(2+)最佳吸附平衡时间为360min,吸附过程符合准二级动力学方程。吸附等温线实验得到的竞争吸附顺序为Pb~(2+)Cd~(2+),由Langmuir等温吸附模型得到Pb~(2+)、Cd~(2+)饱和吸附容量分别为39.27mg/g、28.95mg/g,显著大于磁铁矿的饱和吸附容量,表明磁铁矿经腐植酸改性后增强了对水中铅镉的吸附能力。  相似文献   

12.
本文首先分析了江西德兴铜矿区周围土壤的微量元素和矿物组成特征,结果显示该地区重金属元素富集,且表层土中重金属元素含量与粘土矿物相对含量变化具有较好的一致性。室内土柱淋滤实验结果表明,当总淋滤时间为451 h时,土壤对Pb2+的总吸附量为2 584.75 mg/kg,淋滤实验的前半期存在多种竞争吸附机制,后半期土壤对Pb2+的吸附基本达到动态平衡。淋滤后土壤矿物的相对质量分数发生了改变,粘土矿物有所减少。粘土矿物在不同土壤层对Pb2+的吸附能力也各异。  相似文献   

13.
The adsorption of copper and cobalt from aqueous solution on to illite and other substrates has been studied as a function of pH, solution composition and solid phase concentration. The results are interpreted in terms of a model whereby the trace metals are adsorbed in exchange for surface bound H+ ions. Adsorption varies with solution ionic strength and the concentrations of complex forming ligands; both of these parameters tend to reduce the trace metal adsorption. The Cu2+ is two orders of magnitude more reactive toward solid surfaces than Co2+ , which is consistent with the general reactivities of these two metal ions. It is also found that Mg2+ interferes with adsorption, presumably by competing with the trace metals for the surface sites. A quantitative model was developed which describes adsorption of these metals from natural waters ranging from river water to sea water as a function of pH, complexing ligands and magnesium activity.  相似文献   

14.
Biosorption is a promising technology for the removal of heavy metals from industrial wastes and effluents. In the present study, biosorption of Pb2+, Cu2+, Fe2+ and Zn2+ onto the dried biomass of Eucheuma denticulatum (Rhodophyte) was investigated as a function of solution pH, contact time, temperature and initial metal ion concentration. The experimental data were evaluated by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The sorption isotherm data followed Langmuir and Freundlich models, and the maximum Langmuir monolayer biosorption capacity was found as 81.97, 66.23, 51.02 and 43.48 mg g?1 for Pb2+, Cu2+, Fe2+ and Zn2+, respectively. The sorption kinetic data followed pseudo-second-order and intraparticle diffusion models. Thermodynamic study revealed feasible, spontaneous and endothermic nature of the sorption process. Fourier transform infrared analysis showed the presence of amine, aliphatic, carboxylate, carboxyl, sulfonate and ether groups in the cell wall matrix involved in metal biosorption process. A total of nine error functions were applied in order to evaluate the best-fitting models. We strongly suggest the analysis of error functions for evaluating the fitness of the isotherm and kinetic models. The present work shows that E. denticulatum can be a promising low-cost biosorbent for removal of the experimental heavy metals from aqueous solutions. Further study is warranted to evaluate its potential for the removal of heavy metals from the real environment.  相似文献   

15.
以齐齐哈尔碾子山麦饭石为研究对象,通过比表面积及孔隙分析、阳离子交换容量(CEC)测试以及p H值缓冲能力测试等,对碾子山区麦饭石的结构和性能进行表征,并进一步研究麦饭石对Pb~(2+)、Cd~(2+)、Cr~(3+)的吸附行为。结果显示:碾子山区麦饭石具有海绵体大孔结构,阳离子交换容量(CEC)13~20 mmol/100 g。碾子山麦饭石对酸碱溶液都具有较好的调节能力,尤其对酸液的调节更高效。重金属吸附性能方面,对Pb~(2+)、Cd~(2+)、Cr~(3+)这3种离子吸附关系为:Pb~(2+)Cr~(3+)Cd~(2+)。  相似文献   

16.
To evaluate the risk of contaminant transport by mobile colloids, it is necessary to understand how colloids and associated pollutants behave during their migration through uncontaminated soil or groundwater. In this study, we investigated the influence of aggregation induced by Ca2+ and trace metals (Pb2+, Cu2+) concentrations on the transport of humic-coated kaolinite colloids through a natural quartz sand at pH=4. Adsorbed divalent cations reduce the colloids surface charge and thereby induce aggregation and deposition in porous media. To cite this article: R. Ait Akbour et al., C. R. Geoscience 334 (2002) 981–985.  相似文献   

17.
《Applied Geochemistry》2003,18(5):693-710
In experiments of 7 days duration using voltammetric and radiotracer measurement techniques, the role of different particle types in the sorption of dissolved metal species in a disturbed deep-sea bottom seawater system were investigated. Resuspension of oxic to suboxic surface sediment into the bottom water in the deep sea (either by natural events or industrial activities like Mn nodule mining) has been shown to be followed quickly by scavenging of dissolved heavy metals, e.g. released from interstitial water, on the resuspended particles. Compared to other deep-sea particles (like clay minerals, calcite and apatite), Mn and Fe oxides and oxyhydroxides were found to be by far the most important phases in scavenging many dissolved heavy metals. Only Pb was sorbed strongly on all particles used, with highest affinity to carbonate fluorapatite. Caesium+ was significantly scavenged only by clay minerals like illite. The sorption experiments support a simple electrostatic model: Hydrated cations and labile cationic chloro-complexes in seawater like Mn2+, MnCl+, Co2+, Ni2+, Cu2+, Zn2+, Ba2+, and PbCl+, are preferentially adsorbed or ion-exchanged on the negatively charged surfaces of Mn oxides. In contrast, oxyanions and neutrally or negatively charged complexes like HVO42−, MoO42−, HAsO42−, UO2(CO3)22−, and PbCO30 associate with neutral to slightly positive amphoteric Fe oxyhydroxide particles. Metals forming strong chloro-complexes in seawater like Cd (CdCl20), are less readily sorbed by oxides than others. A comparison of the results of voltammetric and radiotracer techniques revealed that after fast sorption within the first hour, isotopic exchange dominated reactions on MnO2-rich particles in the following days. This was especially pronounced for Mn and Co which are bound to the Mn oxide surface via a redox transformation.  相似文献   

18.
The adsorption capacity of seven organic wastes/by-products (slash pine, red gum and western cypress bark, composted green waste, prawn exoskeletons, spent brewery yeast and mill mud from a sugar mill) for transition metals were determined at two metal concentrations (10 and 100 mg L−1) and three equilibrium pH values (4.0, 6.0 and 8.0) in batch adsorption experiments. All tested materials indicate a positive affinity to adsorb metal cations from aqueous solution and spent yeast was the least effective. Adsorption generally increased with increasing pH and the order of selectivity of metals was: Cr3+ > Cu2+ > Pb2+ > Zn2+ ≥ Cd2+. For pine bark, compost, spent yeast and prawn shell, quantities of previously adsorbed Pb and Cd desorbed in 0.01 M NaNO3 electrolyte were negligible. However, 0.01 M HNO3, and more particularly 0.10 and 0.50 M HNO3 were effective at removing both adsorbed Pb and Cd. Using 0.10 M HNO3 as the regenerating agent, pine bark and compost maintained their Pb and Cd adsorption capacity over eight successive adsorption/regeneration cycles. For mill mud and prawn shell, there was a pronounced decrease in adsorption capacity after only one regeneration cycle. A subsidiary experiment confirmed that acid pre-treatment of the latter two materials appreciably reduced their Pb and Cd adsorption capacity. This was ascribed to the metal adsorption capacity of prawn shell and mill mud being partially attributable to their significant CaCO3 content and acid treatment induces dissolution of the CaCO3. It was shown that in relation to both adsorption capacity and desorption/regeneration capability, composted green waste showed the greatest potential.  相似文献   

19.
Heavy metal ions (Pb2+, Cd2+, Ni2+, and Zn2+) were biosorbed by brown seaweed (Hizikia fusiformis), which was collected from Jeju Island of South Korea. The metal adsorption capacity of H. fusiformis improved significantly by washing with water or by base or acid treatments. The maximum sorption by NaOH-pretreated biomass was observed near a slightly acidic pH (pH 4?6) for Pb2+, Cd2+, Ni2+, and Zn2+. This result suggests that the treatment of H. fusiformis biomass with NaOH helped increase the functional forms of carboxylate ester units. Kinetic data showed that the biosorption occurred rapidly during the first 60 min, and most of the heavy metals were bound to the seaweed within 180 min. The maximum metal adsorption capacities assumed by a Langmuir model were on the order of Pb2+ > Cd2+ > Ni2+ > Zn2+. Equilibrium adsorption data for the heavy metal ions could fit well in the Langmuir model with regression coefficients R 2 > 0.97.  相似文献   

20.
设施农业中土壤重金属污染问题日趋严重。由于土壤中矿物、腐植酸、微生物等多相组分之间存在交互作用,重金属与土壤单组分体系中所获得的结合机制并不能真实有效地评价其在自然条件下的转化与归趋。本研究以蒙脱石(Mont)和高岭石(Kao)为辽宁蔬菜大棚及农田土壤层状硅酸盐代表矿物,选取胡敏酸(HA)为有机质代表,土著微生物革兰氏阳性枯草芽孢杆菌(Bacillus subtilis,B.s)、革兰氏阴性恶臭假单胞菌(Pseudomonas putida,P.p)为细菌微生物代表,以此三元体系为主要供试蔬菜大棚土壤组分,以Cd~(2+)、Cu~(2+)为目标元素,借助宏观吸附实验,结合X射线衍射(XRD)、衰减全反射-傅立叶变换红外光谱(ATR-FTIR)、扫描电镜(SEM)测试分析了Cd~(2+)、Cu~(2+)在矿物-腐植酸-细菌三元混合物上的吸附机理以及Cd~(2+)、Cu~(2+)在复合体上的结合机制。研究结果表明,蒙脱石/高岭石-腐殖酸、蒙脱石/高岭石-B.s及蒙脱石/高岭石-P.p二元复合体对Cd~(2+)及Cu~(2+)的吸附具有加和性,矿物-腐植酸-微生物三元复合体之间表现为拮抗作用。吸附动力学研究表明矿物、有机质、微生物复合体对重金属的吸附动力学符合准二级动力学模型。体系对Cu~(2+)的吸附能力由强到弱为:B. s P. p Mont/Kao-B. s Mont/Kao-P. p Mont/KaoHA-P.p Mont/Kao-HA Mont/Kao。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号