首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
李卉 《地质与勘探》2022,58(6):1291-1299
页岩储层通常呈薄层状结构,一般认为其岩石力学参数具有横向各向同性,而其各向异性受围压(CP)、含水率和总有机质含量(TOC)等多种因素的影响。本文对不同围压下的鹰滩(Eagle Ford)页岩进行超声波波速进行测试实验,研究围压对鹰滩页岩波速及岩石力学各向异性的影响。实验结果表明,鹰滩页岩属于弱各向异性多孔介质,并具有横向各向同性、垂向各向异性的性质。纵波(P波)和横波(S波)波速随围压的增大而增大,特别是在低围压范围内增幅显著,同时围压增大会降低纵波和横波的各向异性,纵波各向异性比横波各向异性对围压更敏感。对鹰滩页岩各向异性分析为页岩储层压裂过程中裂缝的起裂和延伸规律研究提供了必要的力学参数。  相似文献   

2.
在煤岩弹性波响应特征研究中,较少系统地考虑轴压对煤岩纵、横波速度和衰减的影响。基于此,选取平煤八矿3种不同变质程度煤样,制备垂直层理、平行层理垂直面割理和平行层理垂直端割理3类煤样,进行煤岩单轴应力作用下的超声测试。实验结果表明:(1)在自然状态下,3种变质程度煤样3个方向的纵、横波速度以及品质因子均存在各向异性,一般情况下平行层理的两个方向纵、横波速度以及品质因子均大于垂直层理方向;(2)煤岩的纵、横波速度随着轴压的增加呈现先快速增加,后缓慢增大,直至煤样破坏后波速迅速降低的阶段性变化规律,横波速度阶段性变化规律不如纵波明显;(3)3个方向品质因子都随着应力的增加呈现先增加后减小的变化趋势,且Q_s普遍比Q_p大;(4)不同变质程度煤样,纵、横波速度和品质因子差异均比较明显,1/3焦煤纵、横波速度大于焦煤大于肥煤。  相似文献   

3.
裂隙性介质因其复杂的结构和可观的藏储量一直是资源勘查领域的重点研究对象。基于Hudson裂隙理论对裂隙介质中不同裂隙参数(数密度、角度、纵横比)下变化井径的井场响应进行数值模拟,得到如下结果:在裂隙数密度较小的情况下,纵波、横波以及斯通利波幅度对井径变化响应较敏感;在裂隙角度较大的情况下,斯通利波幅度对井径变化响应较敏感;在裂隙角度较小的情况下,横波幅度对井径变化响应较敏感;在裂隙纵横比较小的情况下,纵波、横波以及斯通利波幅度对井径变化响应较敏感;在频率-波数二维谱中,随着井径的增大,波动激发强度峰值所在的频率带以及波动的首次激发频率都向低频区域移动。由此认为:弹性波在裂隙性介质中传播时在受井径变化的影响下产生规律性响应,应用Hudson裂隙理论模拟裂隙介质的井场响应可以系统地分析裂隙参数和井径变化对声波传播规律的影响,进而指导实地裂隙储层声波测井勘探工作。  相似文献   

4.
岩石孔隙流体对纵横波速度影响的实验研究及意义   总被引:16,自引:0,他引:16  
我们用MTS的超声波测试系统研究了地表岩样饱和水及孔隙压力对纵横波速度的影响。在实验研究中,分别在常温常压条件下测量了干燥岩石和完全饱水岩石的纵横波速度,并在模拟地层条件下,测量了岩石纵横波速度随孔隙压力的变化。实验结果显示:(1)岩石完全饱和水后,与干燥时相比,纵波速度将明显增加,最大可增加30%,且岩石在干燥时的纵波速度越低速度增大的比例越大,但纵波速度增大的比例与孔隙度无明显关系。饱水前后横波速度几乎保持不变。(2)在模拟地层的温压条件下,当孔隙压力由低到高,纵横波速度均将线性减小,且横波速度比纵波速度下降的比例更大。据此,得到了识别地层异常高压和地层含气的地震速度标志。  相似文献   

5.
地下岩层中的裂隙带对地震波最突出的影响是横波分裂。依据横波分裂后产生的快横波与慢横波的时差,研究地层的各向异性,据此探测地下裂缝构造。利用纵横波速度比研究岩性的横向变化及含水裂隙,为生产矿井所面临的现实问题服务。  相似文献   

6.
李卉 《地质与勘探》2020,56(4):870-877
声波测试是研究岩石动态力学性质的一种重要的无损检测方法。在有机质丰富的页岩中,页岩的力学性质受含水量、岩石层理、总有机碳含量(TOC)和微观结构变化的影响。本研究在声波测试前,首先使用CT扫描技术对鹰滩页岩的每组测试样品进行扫描,对实验样品的完整性进行筛选,利用核磁共振法(NMR)测定样品的含水率。然后利用超声波脉冲传输技术在不同围压下对每组测试岩心进行声波测试。测试后,利用X射线衍射(XRD)分析了样品的矿物组分,利用扫描电子显微镜(SEM)对微结构进行了表征。研究结果表明:围压和含水率对纵波(P波)和横波(S波)速度均有显著影响,两种速度都随着围压的增加而增加。含水率的增加会降低横波与纵波的波速,含水率对横波速度比纵波速度的影响更大。含水率降低了杨氏模量和剪切模量,增加了体积模量、拉梅参数和泊松比。分析表明,引起岩石力学性质含水率变化的机制可能是粘土-水相互作用、化学反应和毛细压力变化的综合结果。  相似文献   

7.
本文在对100多块岩石标本不同方向的纵波速度、横波速度和衰减系数测试的基础上,进行了大量的分析研究工作,初步掌握了灰岩、泥岩和砂岩的纵、横波速度和衰减系数的各向异性特点,总结了产生和影响各向异性的主要因素及其形成机制。这一研究成果无疑对提高地球物理勘探的解释精度,尤其是对岩性勘探的发展具有十分重要的意义。  相似文献   

8.
在山西省沁水盆地和顺地区煤层气有利区带,选择层位稳定的太原组15号煤层采集煤岩四十四块样品.在不同压力下测试煤样的超声波纵波、横波速度,分析压力对纵波、横波速度的影响及纵波、横波速度的相关性.实验结果表明,煤岩样的纵波、横波速度随着压力的增加而增大,煤岩样的纵波、横波速度与压力之间表现出较好的二次项相关关系;煤样纵波、横波速度受压力的变化影响大于顶板岩样;煤岩样纵波、横波速度之间具有较好的相关关系.对于地震勘探中应用纵波速度预测煤层气储层的横波速度具有实践指导意义.  相似文献   

9.
不同粒径大理岩样声学特性的研究   总被引:2,自引:0,他引:2  
基于不同粒径大理岩样进行了超声波测试,研究了浸水时间和宏观裂隙对波速的影响规律,以及岩样声学参数的离散程度。结果表明,浸水时间对岩样的纵波速度有很大的影响,但对横波速度影响甚微;宏观裂隙的存在降低了岩样的纵波速度,波幅降低程度与岩样破坏程度有关;随着岩石平均粒径的增大,岩石的声学参数先减小后增大,并非单调关系,而且动态泊松比的变化幅度明显高于其他声学参数,不能作为材料的力学参数表征岩石的变形特性。   相似文献   

10.
李红星  刘财  陶春辉 《世界地质》2007,26(4):501-508
从BISQ模型弹性波的本构方程和运动方程出发,推导出了基于BISQ模型的各向同性孔隙介质弹性波三维高阶交错网格有限差分算法,进行了数值模拟,在低频下能看到明显的快纵波、快横波和微弱慢纵波,在高频情况下可以看到明显的快纵波、快横波、慢纵波和慢横波。在三维情况下对比了xoz、xoy、yoz平面内的波场切片,并对平行xoz平面,不同y值处的波场切片进行了对比,结果证明三维数值模拟可以从不同角度更好地反映波场的传播特性。  相似文献   

11.
Vp and Vs values have been measured experimentally and calculated for granulite-facies lower crustal xenoliths from central Ireland close to the Caledonian Iapetus suture zone. The xenoliths are predominantly foliated and lineated metapelitic (garnet–sillimanite–K-feldspar) granulites. Their metapelitic composition is unusual compared with the mostly mafic composition of lower crustal xenoliths world-wide. Based on thermobarometry, the metapelitic xenoliths were entrained from depths of c. 20–25 ± 3.5 km and rare mafic granulites from depths of 31–33 ± 3.4 km. The xenoliths were emplaced during Lower Carboniferous volcanism and are considered to represent samples of the present day lower crust.Vp values for the metapelitic granulites range between 6.26 and 7.99 km s− 1 with a mean value of 7.09 ± 0.4 km s− 1. Psammite and granitic orthogneiss samples have calculated Vp values of 6.51 and 6.23 km s− 1, respectively. Vs values for the metapelites are between 3.86 and 4.34 km s− 1, with a mean value of 4.1 ± 0.15 km s− 1. The psammite and orthogneiss have calculated Vs values of 3.95 and 3.97 km s− 1, respectively.The measured seismic velocities correlate with density and with modal mineralogy, especially the high content of sillimanite and garnet. Vp anisotropy is between 0.15% and 13.97%, and a clear compositional control is evident, mainly in relation to sillimanite abundance. Overall Vs anisotropy ranges from 1% to 11%. Poisson's ratio (σ) lies between 0.25 and 0.35 for the metapelitic granulites, mainly reflecting a high Vp value due to abundant sillimanite in the sample with the highest σ. Anisotropy is probably a function of deformation associated with the closure of the Iapetus ocean in the Silurian as well as later extension in the Devonian. The orientation of the bulk strain ellipsoid in the lower crust is difficult to constrain, but lineation is likely to be NE–SW, given the strike-slip nature of the late Caledonian and subsequent Acadian deformation.When corrected for present-day lower crustal temperature, the experimentally determined Vp values correspond well with velocities from the ICSSP, COOLE I and VARNET seismic refraction lines. Near the xenolith localities, the COOLE I line displays two lower crustal layers with in situ Vp values of 6.85–6.9 and 6.9–8.0 km s− 1, respectively. The upper (lower velocity) layer corresponds well with the metapelitic granulite xenoliths while the lower (higher velocity) layer matches that of the basic granulite xenoliths, though their metamorphic pressures suggest derivation from depths corresponding to the present-day upper mantle.  相似文献   

12.
Abstract: The ratio of P- to S-wave velocities (Vp/Vs) is regarded as one of the most diagnostic properties of natural rocks. It has been used as a discriminant of composition for the continental crust and provides valuable constraints on its formation and evolution processes. Furthermore, the spatial and temporal changes in Vp/Vs before and after earthquakes are probably the most promising avenue to understanding the source mechanics and possibly predicting earthquakes. Here we calibrate the variations in Vp/Vs in dry, anisotropic crustal rocks and provide a set of basic information for the interpretation of future seismic data from the Wenchuan earthquake Fault zone Scientific Drilling (WFSD) project and other surveys. Vp/Vs is a constant (Ф0) for an isotropic rock. However, most of crustal rocks are anisotropic due to lattice-preferred orientations of anisotropic minerals (e.g., mica, amphibole, plagioclase and pyroxene) and cracks as well as thin compositional layering. The Vp/Vs ratio of an anisotropic rock measured along a selected pair of propagation-vibration directions is an apparent value (Фij) that is significantly different from the value for its isotropic counterpart (Ф0). The usefulness of apparent Vp/Vs ratios as a diagnostic of crustal composition depends largely on rock seismic anisotropy. A 5% of P- and S-wave velocity anisotropy is sufficient to make it impossible to determine the crustal composition using the conventional criteria (Vp/Vs≤1.756 for felsic rocks, 1.7561.944 fluid-filled porous/fractured or partially molten rocks) if the information about the wave propagation-polarization directions with respect to the tectonic framework is unknown. However, the variations in Vp/Vs measured from borehole seismic experiments can be readily interpreted according to the orientations of the ray path and the polarization of the shear waves with respect to the present-day principal stress directions (i.e., the orientation of cracks) and the frozen fabric (i.e., foliation and lineation).  相似文献   

13.
江南造山带位于华南大陆扬子块体和华夏块体之间,其深部地壳结构与变形特征记录了扬子块体与华夏块体拼合与相互作用的痕迹,且在其内部与邻区发育了丰富的多金属矿床,并形成了巨型Cu-Au-Pb-Zn-Ag多金属成矿带,是深化认识华南大陆地壳演化、岩浆作用与成矿系统的关键地域。针对华南大陆地区的地壳结构与成矿过程,国家科技重点研发计划“华南陆内成矿系统的深部过程与物质响应”项目在该区实施了一条密集宽频带地震流动探测剖面,旨在探测其深部结构与物性变化特征和深部成矿背景。本文利用其中江西广昌-湖南浏阳段长320km的宽频带地震流动台站数据开展了远震P波接收函数研究,获得了剖面辖区深部地壳结构和Vp/Vs变化特征。研究结果表明:(1)剖面Moho界面深度在29~35km之间变化,呈近穹窿状分布,平均Moho界面深度为31km左右,低于全球大陆地壳平均值,且与地形高程在整体上呈镜像相关,均衡程度较好;(2)剖面沿线地壳Vp/Vs在1.64~1.83之间呈波浪状起伏变化,平均值为1.72左右,且华夏块体略高于江南造山带...  相似文献   

14.
Thirty‐three samples, including 22 eclogites, collected from the Dabie ultrahigh‐pressure (UHP) metamorphic belt in eastern China, have been studied for seismic properties. Compressional (Vp) and shear wave (Vs) velocities in three mutually perpendicular directions under hydrostatic pressures up to 1.0 GPa were measured for each sample. At 1.0 GPa, Vp (7.5–8.4 km s?1), Vs (4.2–4.8 km s?1), and densities (3.2–3.6 g cm?3) in the UHP eclogites are higher than those of UHP orthopyroxenite (7.3–7.5 km s?1, 4.1–4.3 km s?1, 3.2–3.3 g cm?3, respectively) and HP eclogites (7.1–7.9 km s?1, 4.0–4.5 km s?1, 3.1–3.5 g cm?3, respectively). Kyanitites (with 99.5% kyanite) show extremely high velocities and density (9.37 km s?1, 5.437 km s?1, 3.581 g cm?3, respectively). The eclogites show variation of Vp‐ and Vs‐anisotropy up to 9.70% and 9.17%, respectively. Poisson’s ratio (σ) ranges from 0.218 to 0.278 (with a mean of 0.255) for eclogites, 0.281–0.298 for granulites and 0.248 to 0.255 for amphibolites. The σ values for serpentinite (0.341) and marble (0.321) are higher than for other lithologies. The elastic moduli K, G, E of kyanitite were obtained as 163, 102 and 253 GPa, respectively. The Vp and density of representative UHP metamorphic rocks (eclogite & kyanitite) were extrapolated to mantle depth (15 GPa) following a reasonable geotherm, and compared to the one dimension mantle velocity and density model. The comparison shows that Vp and density in eclogite and kyanitite are greater than those of the ambient mantle, with differences of up to ΔVp > 0.3 km s?1 and Δρ > 0.3–0.4 g cm?3, respectively. This result favours the density‐induced delamination model and also provides evidence in support of distinguishing subducted high velocity materials in the upper mantle by means of seismic tomography. Such ultra‐deep subduction and delamination processes have been recognized by seismic tomography and geochemical tracing in the postcollisional magmatism in the Dabie region.  相似文献   

15.
We present an integrated study of geochemistry, petrofabrics and seismic properties of strongly sheared eclogites from the Chinese Continental Scientific Drilling (CCSD) project in the Sulu ultrahigh-pressure (UHP) metamorphic terrane, eastern China. First, geochemical data characterize diverse protoliths of the studied eclogites. The positive Eu- and Sr-anomalies, negative Nb anomaly and flat portion of heavy rare earth elements in coarse-grained rutile eclogites (samples B270 and B295) suggest a cumulate origin in the continental crust, whereas the negative Nb anomaly and enrichment of light rare earth elements in retrograde eclogites (samples B504, B15 and B19) imply an origin of continental basalts or island arc basalts. Second, P-wave velocities (Vp) of three typical eclogite samples were measured under confining pressures up to 500 MPa and temperatures to 700 °C. At 500 MPa and room temperature, the mean Vp reaches 8.50-8.53 km/s in samples B270 and B295 but drops to 7.86 km/s in sample B504, and the P-wave anisotropy changes from 1.7-2.7% to 5.5%, respectively. The pressure and temperature derivatives of Vp are larger in the retrograde eclogite than in fresh ones. Third, the electron backscatter diffraction (EBSD) measurements of the eclogites reveal random crystal preferred orientation (CPO) of garnet and pronounced CPO of omphacite, which is characterized by a strong concentration of [001]-axes sub-parallel to the lineation and of (010)-poles perpendicular to the foliation. The asymmetric CPO of omphacite in sample B270 recorded a top-to-the-south shear event during subduction of the Yangtze plate. The calculated fastest Vp is generally sub-parallel to the lineation, but a different deformation environment during exhumation could form second-order variations in omphacite CPO and affect the Vp distribution in eclogites (e.g., the fastest Vp is at ~ 35° from the foliation in sample B295). Comparison between measured and calculated seismic properties indicates that the CPO of omphacite controls the seismic anisotropy of eclogites at high pressure, and compositional layering and retrograde minerals will increase the anisotropy. Calculated P-wave velocities agree well with velocities measured at 500 MPa and room temperature for fresh eclogites, but much higher than those of retrograde eclogite. As a case study, the laboratory-derived Vp-P and Vp-T relationships were used to estimate P-wave velocities of eclogites and peridotites beneath the Western Superior Province, Canada. The results indicate that besides the fabric-induced anisotropy, the direction dependence of pressure and temperature derivatives of Vp can significantly increase seismic anisotropy of eclogites with depth, which results in eclogites being an important candidate for the seismic anisotropy in the upper mantle. Due to their very high density and velocity, garnet-rich eclogites within peridotite could be detected in seismic reflections in subduction zones.  相似文献   

16.
We determine detailed 3-D Vp and Vs structures of the crust and uppermost mantle beneath the Kyushu Island, southwest Japan, using a large number of arrival times from local earthquakes. From the obtained Vp and Vs models, we further calculate Poisson’s ratio images beneath the study area. By using this large data set, we successfully image the 3-D seismic velocity and Poisson’s ratio structures beneath Kyushu down to a depth of 150 km with a more reliable spatial resolution than previous studies. Our results show very clear low Vp and low Vs anomalies in the crust and uppermost mantle beneath the northern volcanoes, such as Abu, Kujyu and Unzen. Low-velocity anomalies are seen in the mantle beneath most other volcanoes. In contrast, there are no significant low-velocity anomalies in the crust or in the upper mantle between Aso and Kirishima. The subducting Philippine Sea slab is imaged generally as a high-velocity anomaly down to a depth of 150 km with some patches of normal to low seismic wave velocities. The Poisson’s ratio is almost normal beneath most volcanoes. The crustal seismicity is distributed in both the high- and low-velocity zones, but most distinctly in the low Poisson’s ratio zone. A high Poisson’s ratio region is found in the forearc crustal wedge above the slab in the junction area with Shikoku and Honshu; this high Poisson’s ratio could be caused by fluid-filled cracks induced by dehydration from the Philippine Sea slab. The Poisson’s ratio is normal to low in the forearc mantle in middle-south Kyushu. This is consistent with the absence of low-frequency tremors, and may indicate that dehydration from the subducting crust is not vigorous in this region.  相似文献   

17.
E.A. Hetland  F.T. Wu  J.L Song   《Tectonophysics》2004,386(3-4):157-175
During 1998–1999, we installed a temporary broadband seismic network in the Changbaishan volcanic region, NE China. We estimated crustal structure using teleseismic seismograms collected at the network. We detected a near surface region of strong anisotropy directly under the main volcanic edifice of the volcanic area. We modeled 109 receiver functions from 19 broadband stations using three techniques. First we used a “slant-stacking” method to model the principal crustal P reverberation phases to estimate crustal thickness and the average crustal P to S speed ratio (vp/vs), assuming an average P-wave velocity in the crust. We then estimated crustal S-wave velocity (vs) and vp/vs profiles by modeling stacked receiver functions using a direct search. Finally, we inverted several receiver functions recorded at stations closest to the main volcanic edifice using least squares to estimate vs velocity profiles, assuming a vp/vs value. The results from the three estimation techniques were consistent, and generally we found that the receiver functions constrained estimates of changes in wave speeds better than absolute values. We resolved that the crust is 30–39 km thick under the volcanic region and 28–32 km thick away from the volcanic region, with a midcrust velocity transition at about 10–15 km depth. We estimated that the average crust P-wave velocity is about 6.0–6.2 km/s surrounding the main volcanic region, while it is slightly lower in the vicinity of the main volcanic edifice. The estimates of vp/vs were more ambiguous, but we inferred that the bulk crustal Poisson's ratio (which is related to vp/vs) ranges between 0.20 and 0.30, with a suggestion that the Poisson's ratio is lower under the central volcanic region compared to the surrounding areas. We resolved low S-wave velocities (down to about 3 km/s) in the middle crust in the region of the main volcanic edifice. The low velocity anomaly extends from about 5–10 to 15–25 km below the surface, probably indicating a region of elevated temperatures. We were unable to determine if partial melt is present with the data we considered in this paper.  相似文献   

18.
Kang  X.  Cao  J.  Bate  B. 《Acta Geotechnica》2020,15(12):3605-3611

Shear wave velocity (Vs) anisotropy of kaolinite mixed with sodium chloride (NaCl) and organic polymer (polyethylene oxide, xanthan gum, and chitosan) solutions was investigated using a custom-made floating wall consolidometer-type bender element testing system. The addition of salt and polymers influenced the microfabric anisoopy of platy kaolinite particles, thus resulted in the increment or decrement in the Vs anisotropy. The Vs of kaolinite in all three orthogonal directions increased as the NaCl concentration increased; however, the Vs anisotropy decreased. PEO and chitosan increased the Vs of kaolinite, while xanthan gum exhibited counter-effects. Vs anisotropy (Vs?hh/Vs?vh and Vs?hv/Vs?vh) of polymer amended kaolinite was found to decrease. In addition, both salt- and polymer-modified kaolinite did not show Vs cross-anisotropy.

  相似文献   

19.
There have been instances of premonitory variations in tilts, displacements, strains, telluric current, seismomagnetic effects, seismic velocities ( Vp, Vs) and their ratio (Vp/Vs), b-values, radon emission, etc. preceding large and moderate earthquakes, especially in areas near epicentres and along faults and other weak zones. Intensity and duration (T) of these premonitory quantities are very much dependent on magnitude (M) of the seismic event. Hence, these quantities may be utilised for prediction of an incoming seismic event well in advance of the actual earthquake. In the recent past, tilts, strain in deep underground rock and crustal displacements have been observed in the Koyna earthquake region over a decade covering pre- and postearthquake periods; and these observations confirm their reliability for qualitative as well as quantitative premonitory indices. Tilt began to change significantly one to two years before the Koyna earthquake of December 10, 1967, of magnitude 7.0. Sudden changes in ground tilt measured in a watertube tiltmeter accompanied an earthquake of magnitude 5.2 on October 17, 1973 and in other smaller earthquakes in the Koyna region, though premonitory changes in tilt preceding smaller earthquakes were not so much in evidence. However, changes in strains in deep underground rock were observed in smaller earthquakes of magnitude 4.0 and above. Furthermore, as a very large number of earthquakes (M = 1–7.0) were recorded in the extensive seismic net in the Koyna earthquake region during 1963–1975, precise b-value variations as computed from the above data, could reveal indirectly the state of crustal (tectonic) strain variations in the earthquake focal region and consequently act as a powerful premonitory index, especially for the significant Koyna earthquakes of December 10, 1967 (M = 7.0) and October 17, 1973 (M = 5.2). The widespread geodetic and magnetic levelling observations covering the pre- and postearthquake periods indicate significant vertical and horizontal crustal displacements, possibly accompanied by large-scale migration of underground magma during the large seismic event of December 10, 1967 in the Koyna region (M = 7.0). Duration (T) of premonitory changes in tilt, strains, etc., is generally governed by the equation of the type logT = A + BM (A and B are statistically determined coefficients). Similar other instances of premonitory evidences are also observed in micro-earthquakes (M = − 1 to 2) due to activation of a fault caused by nearby reservoir water-level fluctuations.  相似文献   

20.
The crustal structure along a 312 km transect, stretching from the axial mountains of the North Atlantic Knipovich Ridge to the continental shelf of Svalbard, has been obtained using seismic reflection data and wide angle OBS data. The resulting seismic Vp and Vs models are further constrained by a 2-D-gravity model. The principal objective of this study is to describe and resolve the physical and compositional properties of the crust in order to understand the processes and creation of oceanic crust in this extremely slow-spreading counterpart of the North Atlantic Ridge Systems. Vp is estimated to be 3.50–6.05 km/s for the upper oceanic crust (oceanic layer 2), with a marked increase away from the ridge. The measured Vp of 6.55–6.95 km/s for oceanic layer 3A and 7.10–7.25 km/s for layer 3B, both with a Vp/Vs ratio of 1.81, except for slightly higher values at the ridge axis, does not allow a clear distinction between gabbro and mantle-derived peridotite (10–40% serpentized). The thickness of the oceanic crust varies a lot along the transect from the minimum of 5.6 km to a maximum of 8.1 km. The mean thickness of 6.7 km for the oceanic crust is well above the average thickness for slow-spreading ridges (<10 mm/year half-spreading rate). The areas of increased thickness could be explained by large magma production-rates found in the zones of axial highs at the ridge axis, which also have generated the off-axial highs adjacent the ridge. We suggest that these axial and off-axial highs along the ridge control the lithological composition of the oceanic crust. This approach suggests normal gabbroic oceanic crust to be found in the areas bound by the active magma segments (the axial and off-axial highs) and mantle-derived peridotite outside these zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号