首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
《水文科学杂志》2012,57(1):57-70
ABSTRACT

Leading patterns of observed seasonal extreme and mean streamflow on the Korean peninsula were estimated using an empirical orthogonal teleconnection (EOT) technique. In addition, statistical correlations on a seasonal basis were calculated using correlation and regression analyses between the leading streamflow patterns and various climate indices based on atmospheric–ocean circulation. The spatio-temporal patterns of the leading EOT modes for extreme and mean streamflow indicate an upstream mode for the Han River, with increasing trends in summer, and a downstream mode for the Nakdong River, with oscillations mainly on inter-decadal time scales in winter. The tropical ENSO (El Niño Southern Oscillation) forcing for both extreme and mean streamflow is coherently associated with summer to winter streamflow patterns. The western North Pacific monsoon has a negative correlation with winter streamflow variability, and tropical cyclone indices also exhibit significant positive correlation with autumn streamflow. Leading patterns of autumn and winter streamflow time series show predictability up to two seasons in advance from the Pacific sea-surface temperatures.  相似文献   

2.
南半球环流异常与长江中下游夏季旱涝的关系   总被引:51,自引:7,他引:44       下载免费PDF全文
范可 《地球物理学报》2006,49(3):672-679
本文对长江中下游夏季旱涝年前期(3、4、5月的季节平均)和同期(6、7、8月的季节平均)的南半球环流作对比分析,探讨南半球环流异常与长江中下游夏季旱涝的关系. 结果表明前期和同期南半球环流均有显著差异,春季南极涛动对长江中下游旱涝的影响较夏季显著,南半球副热带高压在春、夏两季中有很好季节持续性. 因此,春季南半球环流异常可以作为长江中下游夏季旱涝主要短期气候预测因子. 南、北半球中高纬环流相互作用是长江中下游夏季降水的一个重要因素,其可能的联系机制是从南半球高纬到北半球东亚沿岸经向分布的正压遥相关. 研究中还发现在长江中下游的涝年,整个对流层中南半球春、夏两季有持续增温,这说明了南北半球的温度梯度减弱也是东亚夏季风减弱的原因之一.  相似文献   

3.
Skillful streamflow forecasts at seasonal lead times may be useful to water managers seeking to provide reliable water supplies and maximize hydrosystem benefits. In this study, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river–reservoir systems. In a case study of the Lower Colorado River system in central Texas, a number of potential predictors are evaluated for forecasting seasonal streamflow, including large-scale climate indices related to the El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and others. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas.  相似文献   

4.
We here report our recent research results on the climatic features of Tibetan thermodynamic functions and their impacts on the regional climates of the Northern Hemisphere. The results show that the thermodynamic processes over the Tibetan Plateau not only strongly influence the Asian monsoon and precipitation, but also modulate the atmospheric circulation and climate over North America and Europe through stimulating the large-scale teleconnections such as the Asian-Pacific oscillation and affect the atmospheric circulation over the southern Indian Ocean. The Tibetan climate may be affected by sea surface temperatures over the tropical Pacific. On the other hand, the Tibetan climate also affects the atmosphere-ocean interactions in the tropics and mid-latitudes of the Pacific by the atmospheric circulation over the North Pacific. In spring and summer, the thermodynamic anomalies on the plateau affect the subtropical high pressure, the Hadley circulation, and the intertropical convergence zone over the Pacific, and then modulate the development of the El Niño/Southern Oscillation (ENSO). It is necessary to study the forecasting methods for the development of ENSO from the Tibetan climate anomaly. This result also embodies the essence of interactions among land, atmosphere, and ocean over the Northern Hemisphere. Since the previous studies focused on impacts of the plateau on climates in the Asian monsoon regions, it is essential to pay more attention to studying the roles of the plateau in the Northern Hemispheric and even global climates.  相似文献   

5.
It is well recognized that the time series of hydrologic variables, such as rainfall and streamflow are significantly influenced by various large‐scale atmospheric circulation patterns. The influence of El Niño‐southern oscillation (ENSO) on hydrologic variables, through hydroclimatic teleconnection, is recognized throughout the world. Indian summer monsoon rainfall (ISMR) has been proved to be significantly influenced by ENSO. Recently, it was established that the relationship between ISMR and ENSO is modulated by the influence of atmospheric circulation patterns over the Indian Ocean region. The influences of Indian Ocean dipole (IOD) mode and equatorial Indian Ocean oscillation (EQUINOO) on ISMR have been established in recent research. Thus, for the Indian subcontinent, hydrologic time series are significantly influenced by ENSO along with EQUINOO. Though the influence of these large‐scale atmospheric circulations on large‐scale rainfall patterns was investigated, their influence on basin‐scale stream‐flow is yet to be investigated. In this paper, information of ENSO from the tropical Pacific Ocean and EQUINOO from the tropical Indian Ocean is used in terms of their corresponding indices for stream‐flow forecasting of the Mahanadi River in the state of Orissa, India. To model the complex non‐linear relationship between basin‐scale stream‐flow and such large‐scale atmospheric circulation information, artificial neural network (ANN) methodology has been opted for the present study. Efficient optimization of ANN architecture is obtained by using an evolutionary optimizer based on a genetic algorithm. This study proves that use of such large‐scale atmospheric circulation information potentially improves the performance of monthly basin‐scale stream‐flow prediction which, in turn, helps in better management of water resources. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Book Review     
The objective of the work discussed in this paper was to seek possible links between surface hydrology in Southwestern (SW) Poland and El Ni?o/Southern Oscillation (ENSO). Although the impact of ENSO on hydrology in Europe has been investigated by many researchers, no clear picture demonstrating spatial variability of such a teleconnection has yet been unequivocally reported. In particular, there is no comprehensive study on ENSO–streamflow links for Polish rivers. Herein, discharge time series from 15 sites located at lowland and mountain rivers in SW Poland and different ENSO indices are examined. They include atmospheric time series (axial component of atmospheric angular momentum, Southern Oscillation Index), oceanic indices (Ni?o 3.4 Index, Global SST Index), geodetic data (length-of-day), and the combined index (Multivariate ENSO Index). The data span the period from November 1971 to October 2006. On the basis of cross-correlation and wavelet analyses it was found that there is a weak but significant link between ENSO and surface hydrology in SW Poland. It is inferred that ENSO episodes may be among a few factors affecting winter and early spring discharges of rivers in SW Poland and may have a (probably limited) impact on snow-melt flood generation.  相似文献   

7.
The objective of the work discussed in this paper was to seek possible links between surface hydrology in Southwestern (SW) Poland and El Niño/Southern Oscillation (ENSO). Although the impact of ENSO on hydrology in Europe has been investigated by many researchers, no clear picture demonstrating spatial variability of such a teleconnection has yet been unequivocally reported. In particular, there is no comprehensive study on ENSO–streamflow links for Polish rivers. Herein, discharge time series from 15 sites located at lowland and mountain rivers in SW Poland and different ENSO indices are examined. They include atmospheric time series (axial component of atmospheric angular momentum, Southern Oscillation Index), oceanic indices (Niño 3.4 Index, Global SST Index), geodetic data (length-of-day), and the combined index (Multivariate ENSO Index). The data span the period from November 1971 to October 2006. On the basis of cross-correlation and wavelet analyses it was found that there is a weak but significant link between ENSO and surface hydrology in SW Poland. It is inferred that ENSO episodes may be among a few factors affecting winter and early spring discharges of rivers in SW Poland and may have a (probably limited) impact on snow-melt flood generation.  相似文献   

8.
1998年夏季全球大气环流异常的预测研究   总被引:4,自引:4,他引:4       下载免费PDF全文
应用日本东京大学气候系统研究中心(CCSR)发展起来的一个全球大气环流谱模式(T42L200版本),对l998年夏季气候异常和大气环流的预测问题进行了研究,定量地检查了该模式对夏季降水和大气环流异常的预测准确度.说明该模式对1998年的预测水平是比较高的;并证实大气环流在春季的初始异常对北半球夏季大气环流和降水异常起了很重要的作用,而对南半球的作用则小得多.就中国长江流域1998年的降水异常而言,初始环流的作用约占50%.  相似文献   

9.
River flow constitutes an important element of the terrestrial branch of the hydrological cycle, yet knowledge regarding the extent to which its variability, at a range of timescales, is linked to a number of modes of atmospheric circulation is meagre. This is especially so in the Southern Hemisphere where strong candidates, such as El Niño Southern Oscillation and the Southern Annular Mode (SAM), for influencing climate and thus river flow variability can be found. This paper presents the results of an analysis of the impact of the SAM on winter and summer river flow variability across New Zealand, purposefully controlling for the influence of El Niño Southern Oscillation and the tendency for the SAM to adopt a positive phase over the last 10–20 years. Study results, based on identifying hydrological regions and applying circulation‐to‐environment and environment‐to‐circulation approaches commonly used in synoptic climatology, reveal a seasonal asymmetry of the response of river flow variability to the SAM; winter flows demonstrate a higher degree of statistical association with the SAM compared to summer flows. Further, because of the complex orography of New Zealand and its general disposition normal to zonal flows of moisture bearing winds, there are intraseasonal spatial variations in river flow SAM associations with clear rain shadow effects playing out in resultant river flow volumes. The complexity of SAM river flow associations found in this study warns against using indices of large scale modes of atmospheric circulation as blunt tools for hydroclimatological prediction at scales beyond hydroclimatological regions or areas with internal hydrological consistency.  相似文献   

10.
Droughts are natural phenomena that severely affect socio economic and ecological systems. In Chile, population and economic activities are highly concentrated in its central region (i.e. between latitudes 29°S and 40°S), which periodically suffers from severe droughts affecting agriculture, hydropower, and mining. Understanding the dynamics of droughts and large-scale atmospheric processes that influence the occurrence of dry spells is essential for forecasting and efficient early detection of drought events. Central Chile's climate is marked by a significant El Niño Southern Oscillation (ENSO) influence that might help to better characterize droughts as well as to identify the effects of ENSO on the spatial and temporal characteristics of meteorological and hydrological droughts in the region. We analysed the behaviour of the Standardized Precipitation Evapotranspiration Index (SPEI) and Standardized Streamflow Index (SSI) time series for 6-month accumulation periods over the austral winter and summer seasons. Multiple linear regression (MLR) and Generalized Linear Models (GLM) showed a significant ENSO influence on dry events for SPEI-6 and SSI-6 during winter and summer. We found that the magnitude of correlation between ENSO and SPEI-6 has changed over the last decades becoming weaker in winter periods and increasing in spring summer periods. Increasing trends in meteorological and hydrological drought events were also identified, along all latitudes, with significant trends during winter in the southern latitudes, and during summer in the semi-arid and Mediterranean zones. These results indicate that drought mitigation actions and policies are necessary to overcome their adverse effects. Given the monthly persistence of ENSO and its relationship to drought indices, there are opportunities for drought monitoring and seasonal forecasting that could become part of national drought management systems.  相似文献   

11.
In a water‐stressed region, such as the western United States, it is essential to have long lead times for streamflow forecasts used in reservoir operations and water resources management. Current water supply forecasts provide a 3‐month to 6‐month lead time, depending on the time of year. However, there is a growing demand from stakeholders to have forecasts that run lead times of 1 year or more. In this study, a data‐driven model, the support vector machine (SVM) based on the statistical learning theory, was used to predict annual streamflow volume with a 1‐year lead time. Annual average oceanic–atmospheric indices consisting of the Pacific decadal oscillation, North Atlantic oscillation (NAO), Atlantic multidecadal oscillation, El Niño southern oscillation (ENSO), and a new sea surface temperature (SST) data set for the ‘Hondo’ region for the period of 1906–2006 were used to generate annual streamflow volumes for multiple sites in the Gunnison River Basin and San Juan River Basin, both located in the Upper Colorado River Basin. Based on the performance measures, the model showed very good forecasts, and the forecasts were in good agreement with measured streamflow volumes. Inclusion of SST information from the Hondo region improved the model's forecasting ability; in addition, the combination of NAO and Hondo region SST data resulted in the best streamflow forecasts for a 1‐year lead time. The results of the SVM model were found to be better than the feed‐forward, back propagation artificial neural network and multiple linear regression. The results from this study have the potential of providing useful information for the planning and management of water resources within these basins. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

It is known that the El Niño Southern Oscillation (ENSO) phenomenon induces marked climate variability across many parts of the world. However, in seeking useful relationships between ENSO and climate, several indices are available. In addition to the choice of index, previous studies assessing ENSO effects have employed a range of different methods to classify periods as El Niño, La Niña or Neutral. It is therefore clear that significant subjectivity exists in the adoption of ENSO classification schemes. In this study, several ENSO classification methods are applied to a range of ENSO indices. Each method-index combination is investigated to determine which provides the strongest relationship with rainfall and runoff in the Williams River catchment, New South Wales, Australia. The results demonstrate substantial differences between the methods and indices. The Multivariate ENSO Index (or MEI) is found to provide the best classification irrespective of method. The potential for forecasting ENSO-related effects on rainfall, runoff and river abstractions is then investigated. A “rise rule” to account for dynamic ENSO trends is also assessed. Strong relationships were found to exist with runoff (rainfall) up to nine (eight) months in advance of the Summer/autumn period. Implications for improved forecasting of potential river abstractions are apparent.  相似文献   

13.
Drought is a slow‐onset, creeping natural hazard which is an inevitable part of normal climate fluctuation especially in arid and semiarid regions, and its variability can be explained in terms of large‐scale atmospheric circulation patterns. Standardized streamflow index (SSFI) was utilized to characterize hydrological drought in the west of Iran for the hydrological years of 1969–1970 to 2008–2009. The linkage of atmospheric circulation patterns (ENSO, NAO) to hydrological drought was also used to reveal relations of climate variability affecting hydrological drought. River discharges exhibited negative anomalies during the warm phase of ENSO (El Niño) which caused the extreme and severe droughts in the study area, being strongest during the hydrological years of 2007–2008 and 2008–2009. The analysis also indicated the teleconnection impact of ENSO on the hydrological drought severity in the first half of the hydrological year especially between November and March. Moreover, the concurrent and lag correlations revealed a weak relationship between the SSFI drought severity and the NAO index. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, the regional tree‐ring chronology of Picea crassifolia was used to estimate annual (September to August) streamflow of the Shiyang River for the period from AD 1765 to 2010. The linear regression model was stable and could explain 41.5% of the variance for the calibration period of 1955–2005. According to the streamflow reconstruction, dry periods with below average streamflow occurred in AD 1775–1804, 1814–1823, 1831–1856, 1862–1867, 1877–1885, 1905–1910, 1926–1932, 1948–1951, 1960–1963 and 1989–2002. Periods of relatively wet years are identified for AD 1765–1774, 1805–1813, 1824–1830, 1857–1861, 1868–1876, 1886–1904, 1911–1925, 1933–1947, 1952–1959, 1964–1988 and 2003–2010. Comparisons with the precipitation reconstructions from surrounding areas supplied a high degree of confidence in our reconstruction. Our reconstructed streamflow is significantly correlated with sea surface temperature in the eastern equatorial Pacific Ocean and the North Atlantic Ocean. The Multitaper spectral and correlation analyses also suggested that the reconstructed streamflow variation in the Shiyang River could be associated with large‐scale atmospheric‐oceanic variability, such as El Niño‐Southern Oscillation (ENSO). The linkages among the streamflow reconstruction, NAO and ENSO suggest the connection of regional streamflow variations to the Asian monsoon and westerlies circulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The Georgia Basin–Puget Sound Lowland region of British Columbia (Canada) and Washington State (USA) presents a crucial test in environmental management due to its combination of abundant salmonid habitat, rapid population growth and urbanization, and multiple national jurisdictions. It is also hydrologically complex and heterogeneous, containing at least three streamflow regimes: pluvial (rainfall-driven winter freshet), nival (melt-driven summer freshet), and hybrid (both winter and summer freshets), reflecting differing elevation ranges within various watersheds. We performed bootstrapped composite analyses of river discharge, air temperature, and precipitation data to assess El Niño–Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) impacts upon annual hydrometeorological cycles across the study area. Canadian and American data were employed from a total of 21 hydrometric and four meteorological stations. The surface meteorological anomalies showed strong regional coherence. In contrast, the seasonal impacts of coherent modes of Pacific circulation variability were found to be fundamentally different between streamflow regimes. Thus, ENSO and PDO effects can vary from one stream to the next within this region, albeit in a systematic way. Furthermore, watershed glacial cover appeared to complicate such relationships locally; and an additional annual streamflow regime was identified that exhibits climatically driven non-linear phase transitions. The spatial heterogeneity of seasonal flow responses to climatic variability may have substantial implications to catchment-specific management and planning of water resources and hydroelectric power generation, and it may also have ecological consequences due to the matching or phase-locking of lotic and riparian biological activity and life cycles to the seasonal cycle. The results add to a growing body of literature suggesting that assessments of the streamflow impacts of ocean–atmosphere circulation modes must accommodate local hydrological characteristics and dynamics. Copyright © 2007 John Wiley & Sons, Ltd. The copyright in Paul H. Whitfield's contribution belongs to the Crown in right of Canada and such copyright material is reproduced with the permission of Environment Canada.  相似文献   

16.
This paper aims to provide a comprehensive review of previous studies and concepts concerning the North Atlantic Oscillation. The North Atlantic Oscillation (NAO) and its recent homologue, the Arctic Oscillation/Northern Hemisphere annular mode (AO/NAM), are the most prominent modes of variability in the Northern Hemisphere winter climate. The NAO teleconnection is characterised by a meridional displacement of atmospheric mass over the North Atlantic area. Its state is usually expressed by the standardised air pressure difference between the Azores High and the Iceland Low. ThisNAO index is a measure of the strength of the westerly flow (positive with strong westerlies, and vice versa). Together with the El Niño/Southern Oscillation (ENSO) phenomenon, the NAO is a major source of seasonal to interdecadal variability in the global atmosphere. On interannual and shorter time scales, the NAO dynamics can be explained as a purely internal mode of variability of the atmospheric circulation. Interdecadal variability maybe influenced, however, by ocean and sea-ice processes.  相似文献   

17.
Eight data-driven models and five data pre-processing methods were summarized; the multiple linear regression (MLR), artificial neural network (ANN) and wavelet decomposition (WD) models were then used in short-term streamflow forecasting at four stations in the East River basin, China. The wavelet–artificial neural network (W-ANN) method was used to predict 1-month-ahead monthly streamflow at Longchuan station (LS). The results indicate better performance of MLR and wavelet–multiple linear regression (W-MLR) in analysing the stationary trained dataset. Four models showed similar performance in 1-day-ahead streamflow forecasting, while W-MLR and W-ANN performed better in 5-day-ahead forecasting. Three reservoirs were shown to have more influence on downstream than upstream streamflow and models had the worst performance at Boluo station. Furthermore, the W-ANN model performed well for 1-month-ahead streamflow forecasting at LS with consideration of a deterministic component.  相似文献   

18.
Building statistical downscaling models often faces a large number of potential predictors from atmospheric circulation fields. The least absolute shrinkage and selection operator (LASSO) has been used to downscale monthly rainfall in summer over the Yangtze River Valley. Based on the shrinkage of coefficients of the model, LASSO can provide sparse models with many coefficients being zero. Geopotential height at 500-hPa was used as the predictor set. The results show that LASSO can reproduce the spatial pattern of anomalies of rainfall in most years. Furthermore, LASSO can reproduce the shift of the rainfall over the Yangtze River Valley in the late 1970s. The performance of the elastic net was also tested, and its grouping effect should be noted. It was also found that LASSO performs better than principal component regression.  相似文献   

19.
In this study, the nature of basin‐scale hydroclimatic association for Indian subcontinent is investigated. It is found that, the large‐scale circulation information from Indian Ocean is also equally important in addition to the El Niño‐Southern Oscillation (ENSO), owing to the geographical location of Indian subcontinent. The hydroclimatic association of the variation of monsoon inflow into the Hirakud reservoir in India is investigated using ENSO and EQUatorial INdian Ocean Oscillation (EQUINOO, the atmospheric part of Indian Ocean Dipole mode) as the large‐scale circulation information from tropical Pacific Ocean and Indian Ocean regions respectively. Individual associations of ENSO & EQUINOO indices with inflow into Hirakud reservoir are also assessed and found to be weak. However, the association of inflows into Hirakud reservoir with the composite index (CI) of ENSO and EQUINOO is quite strong. Thus, the large‐scale circulation information from Indian Ocean is also important apart form the ENSO. The potential of the combined information of ENSO and EQUINOO for predicting the inflows during monsoon is also investigated with promising results. The results of this study will be helpful to water resources managers due to fact that the nature of monsoon inflow is becoming available as an early prediction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
This study investigated spatial and temporal patterns of trends of the precipitation maxima (defined as the annual/seasonal maximum precipitation) in the Yangtze River basin for 1960–2005 using Mann–Kendall trend test, and explored association of changing patterns of the precipitation maxima with large-scale circulation using NCEP/NCAR reanalysis data. The research results indicate changes of precipitation maxima from relative stable patterns to the significant increasing/decreasing trend in the middle 1970s. With respect to annual variability, the rainy days are decreasing and precipitation intensity is increasing, and significant increasing trend of precipitation intensity was detected in the middle and lower Yangtze River basin. Number of rain days with daily precipitation exceeding 95th and 99th percentiles and related precipitation intensities are in increasing tendency in summer. Large-scale atmospheric circulation analysis indicates decreasing strength of East Asian summer monsoon during 1975–2005 as compared to that during 1961–1974 and increasing geopotential height in the north China, South China Sea and west Pacific regions, all of which combine to negatively impact the northward propagation of the vapor flux. This circulation pattern will be beneficial for the longer stay of the Meiyu front in the Yangtze River basin, leading to more precipitation in the middle and lower Yangtze River basin in summer months. The significant increasing summer precipitation intensity and changing frequency in the rain/no-rain days in the middle and lower Yangtze River basin have potential to result in higher occurrence probability of flood and drought hazards in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号