首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The ability to use radar to discriminate Arctic Sea ice types has been investigated using surface-based and helicopter-borne scatterometer systems. The surface-based FM/CW radar operated at 1.5 GHz and at multiple frequencies in the 8-18-GHz region. Measurements were made at angles of10degto70degfrom nadir. The helicopter-based radar operated at the 8-18-GHz frequencies with incidence angles of0degto60deg. Extensive surface-truth measurements were made at or near the time of backscattar measurement to describe the physical and electrical properties of the polar scene. Measurements in the 8-18-GHz region verify the ability to discriminate multiyear, thick first-year, thin first-year, and pressure-ridged sea ice and lake ice. The lowest frequency, 9 GHz, was found to provide the greatest contrast between these ice categories, with significant levels of separation existing between angles from15degto70deg. The radar cross sections for like antenna polarizations, VV and HH, were very similar in absolute level and angular response. Cross-polarization, VH and HV, provided the greatest contrast between ice types, The 1.5-GHz measurements showed that thick first-year, thin first-year, and multiyear sea ice cannot be distinguished at10degto60degincidence angles with like polarization, VV, by backscatter alone; but that undeformed sea ice can be discriminated from pressure-ridged ice and lake ice. The effect of snow cover on the backscatter from thick first-year ice was also investigated. It contributes on the order of 0 to 4 dB, depending on frequency and incidence angle; the contribution of the snow layer increased with increasing frequency. Snow cover on smooth lake ice was found to be a major backscatter mechanism. Summer measurements demonstrate the inability to extend the knowledge of the backscatter from sea ice under spring conditions to all seasons.  相似文献   

2.
We consider the influence of the sea surface state on the backscattered radar cross section and the accuracy of the wind speed retrieval from the scatterometer data. We used a joint set of radars and buoys to determine the type of sea waves. Three types of sea waves were distinguished: developing wind waves, fully developed wind waves, and mixed sea. It is shown that the retrieval error of the near surface wind speed using a one-parameter algorithm is minimal in the case of fully developed wind waves. We compared these data with the results of radio-altimeter data analysis and showed that in both cases underestimation of the retrieval wind speed exists for developing wind waves and overestimation occurs for mixed sea. A variety of swell parameters (length of the dominating wave, swell height, swell age) significantly influence the backscattered radar cross section, leading to a growth in the mean square error of the retrieved wind speed during vertical sounding (radio-altimeter data), and only slightly influence the mean square error of the scatterometer data (medium incidence angles). It is necessary to include the information about the parameters of sea waves in the algorithms and take into account the regional wave properties to increase the accuracy of wind speed retrieval.  相似文献   

3.
The ideal scatterometer, operating from either an aircraft or a satellite platform, should be capable of making rapid, accurate estimates of the sea backscatter cross sectionsigmaover as wide a range of grazing anglespsias possible. Efficient operation over a large range of grazing angles is desirable because 1)sigmabehavior for90deg geq psi geq 70degyields rms gravity wave slope information and is an indicator of sea state and 2)sigmabehavior for70deg geq psi geq 0degyields data on surface wind magnitude and direction as well as information about the power spectrum of the sea. A "hybrid" estimation procedure has been developed for pulse compression radars which uses both frequency and spatially decorrelated samples ofsigmato provide an unbiased estimate ofsigmahaving minimum variance over the entire range of grazing angles for which radar reception is not noise-limited.  相似文献   

4.
Radar backscatter measurements from the ocean were made at 13.9 GHz from Skylab. The radar signal increased rapidly with wind speed over the entire range of winds encountered, and for angles of incidence of30degand larger. Signals observed were normalized to a nominal incidence angle (from values withinpm2degof the nominal) and to a nominal upwind observation direction, using a theoretical model that has been verified as approximately true with aircraft experiments. The wind speed was regressed against the resulting scattering coefficientssigma^{0}and the values ofbetain windpropto sigma^{0beta}were obtained for incident angles of1deg , 17deg , 32deg , 43deg,and50deg, and for vertical, horizontal, and cross polarizations. For the three larger angles,betavaries from 0.3 to 0.6. Observations during the summer and winter Skylab missions were treated separately because of possible differences caused by an accident to the antenna between the two sets of observations. The results are in general agreement with the theory [26] in all cases, with the winter and cross-polarized agreement somewhat better than that for summer like-polarized data. The "objective analysis" method used for determining "surface-truth" winds in the Skylab experiment was tested by comparing results obtained at weather ships (using all other ship reports to produce the analysis) with the observations made by the weather ships themselves. In most cases, the variance about the regression line between objective analysis and weather-ship data actually exceeded that about the regression line between objective analysis and backscattcr data!  相似文献   

5.
Data describing simultaneous bistatic (BRCS) and monostatic (MRCS) radar cross sections of freighters atXband near grazing incidence are presented. Details of the measurement system, calibration procedures, and target-radar geometry are discussed. Measured values of BRCS were typically less than the MRCS and decreased with increasing bistatic angle.  相似文献   

6.
An algorithm is developed for the inversion of bistatic high-frequency (HF) radar sea echo to give the nondirectional wave spectrum. The bistatic HF radar second-order cross section of patch scattering, consisting of a combination of four Fredholm-type integral equations, contains a nonlinear product of ocean wave directional spectrum factors. The energy inside the first-order cross section is used to normalize this integrand. The unknown ocean wave spectrum is represented by a truncated Fourier series. The integral equation is then converted to a matrix equation and a singular value decomposition (SVD) method is invoked to pseudoinvert the kernel matrix. The new algorithm is verified with simulated radar Doppler spectrum for varying water depths, wind velocities, and radar operating frequencies. To make the simulation more realistic, zero-mean Gaussian noise from external sources is also taken into account  相似文献   

7.
自从Longuet-Higgins(1963)根据非线性作用导出较正态分布为准确的波面高度分布以来,高阶矩在军事、高科技等很多方面得到了应用。Huang等(1980)曾检验了高阶非线性分布,他们发现当波高概率分布中包含直至四阶项时与观测结果相符,但如果考虑更高阶不但效果不好,反而更差。尽管非线性随机过程在海浪理论中获得了广泛的应用,但对海面雷达散射研究仅讨论到三阶矩的影响(Fung et al.,1991;Chen et al.,1992)。电磁随机表面散射理论有适应大尺度随机起伏的粗糙面的Kirchhoff散射模式、轻度粗糙表面的微扰散射模式、大小尺度独立叠加的双尺度散射模式、全波散射模式(Bahar,1987)和积分方程散射模式(Chen et al.,1992)等。对随机粗糙Kirchhoff表面电磁波散射问题,尽管几十年来许多科学家已经进行了大量研究(Fung et al.,1991; Ulaby et al.,1982;Wu et al.,1988),Eom等(1983)曾对Gaussian面和非 Gaussian面的散射特性进行了比较研究,Fung等(1991)将Kirchhoff散射模式推广应用到三阶粗糙随机表面,然而更高阶矩对散射截面的影响还未见报道。本文在Fung等(1991)的基础上将Kirchhoff散射模式推广应用到四阶项,并对模式的应用进行了分析和讨论。  相似文献   

8.
Microwave scattering signatures of the ocean have been measured over a range of surface wind speeds from 3 m/s to 23.6 m/s using the AAFE RADSCAT scatterometer in an aircraft. Normalized scattering coefficients are presented for vertical and horizontal polarizations as a function of incidence angle (nadir to55deg) and radar azimuth angle (0degto360deg) relative to surface wind direction. For a given radar polarization, incidence angle, and azimuth angle relative to the wind direction, these scattering data exhibit a power law dependence on surface wind speed. The relation of the scattering coefficient to azimuth angle obtained during aircraft circles (antenna conical scans) is anisotropic and suggests that microwave scatterometers can be used to infer both wind speed and direction. These results have been used for the design of the Seasat-A Satellite Scatterometer (SASS) to be flown in 1978 on this first NASA oceanographic satellite.  相似文献   

9.
A semi-empirical sea-spectrum model for scattering coefficient estimation   总被引:2,自引:0,他引:2  
A semi-empirical sea-spectrum model is proposed to be used in a two-scale radar sea scatter model to obtain estimates of radar backscatter over the frequency bandsLtoKu, the incidence angular range20deg-65deg, the azimuth angular range0deg-180degfrom the wind direction and wind speed range 3.5-30 m/s at 19.5 m above the mean sea level. It is shown that the theoretical estimates obtained are consistent with the existing measurements.  相似文献   

10.
Second-order features in HF radar Doppler spectral data are compared with a theoretical model of the radar spectrum. The model is the corner reflector double-scatter model which employs a more realistic directional sea spectrum model than those used in earlier works. It includes a frequency-dependent angular spreading function and assumes the existence of spectral energy over a full360degarising from an apparent second-order wave-wave interaction. Comparison is made with ground wave data collected at the NRL/NOAA/ITS San Clemente Island HF radar.  相似文献   

11.
根据海面微波散射的多尺度模型以及波流相互作用理论,对一维弱流场调制下的海面微波散射截面进行了数值模拟。结果表明,利用数值方法直接求解波作用量方程获得的海浪调制谱并结合多尺度模型可以较好地模拟弱流场引起的雷达散射截面的变化。内波等海洋现象调制了海浪谱,使得雷达散射截面反映出这些海洋特征,整个调制过程的模拟对于分析这些海洋现象并更好地利用其雷达数据具有重要意义。  相似文献   

12.
In this paper, the lowest order small-slope approximation (SSA) scattering cross section for Biot theory is derived. Numerical results are obtained for both backscattering and bistatic scattering using a modified power law spectrum, and these results are compared with those of lowest order perturbation theory (PT). Frequencies ranging from 100 Hz to 3 kHz are used for surfaces with RMS heights h of 0.1 and 1 m and a correlation length l of 10 m. The angle of incidence for the bistatic results is limited to 45/spl deg/. It is found that for the smaller surface height roughness (h = 0.1 m), the SSA and PT give the same results for frequencies up to almost 1 kHz for both backscattering and bistatic scattering. For h = 1 m, the SSA and PT backscatter results are in good agreement at all frequencies for incident grazing angles up to approximately 45/spl deg/. For the bistatic results, the SSA and PT results agree only at low grazing angles of scatter. In the specular region, the results differ significantly.  相似文献   

13.
Gaofen-3(GF-3), a Chinese civil synthetic aperture radar(SAR) at C-band, has operated since August 2016.Remarkably, several typhoons have been captured by GF-3 around the China Seas over its last two-year mission.In this study, six images acquired in Global Observation(GLO) and Wide ScanSAR(WSC) modes at verticalvertical(VV) polarization channel are discussed. This work focuses on investigating the observation of rainfall using GF-3 SAR. These images were collocated with winds from the European Centre for Medium-Range Weather Forecasts(ECMWF), significant wave height simulated from the WAVEWATCH-III(WW3) model, sea surface currents from climate forecast system version 2(CFSv2) of the National Centers for Environmental Prediction(NCEP) and rain rate data from the Tropical Rainfall Measuring Mission(TRMM) satellite. Sea surface roughness,was compared with the normalized radar cross section(NRCS) from SAR observations, and indicated a 0.8 correlation(COR). We analyzed the dependences of the difference between model-simulated NRCS and SARmeasured NRCS on the TRMM rain rate and WW3-simulated significant wave height. It was found that the effects of rain on SAR damps the radar signal at incidence angles ranging from 15° to 30°, while it enhances the radar signal at incidence angles ranging from 30° to 45° and incidence angles smaller than 10°. This behavior is consistent with previous studies and an algorithm for rain rate retrieval is anticipated for GF-3 SAR.  相似文献   

14.
本文提出了一种白冠海面的小入射角星载雷达后向散射模型,模型包括海面非波浪破碎部分和波浪破碎部分的后向散射.在风的作用下,海浪破碎形成白冠,对星载雷达的后向散射信号造成影响.文中利用热带降雨测绘任务卫星搭载的降雨雷达(TRMM PR)和欧洲中期天气预报中心(ECMWF)的时空匹配数据集,拟合得出小入射角下星载雷达海面波浪...  相似文献   

15.
Radar backscatter measurements made as part of Project MARSEN in 1979 from the Noordwijk tower off the Dutch coast are used to calculate apparent ripple (capillary and short-gravity wave) spectra by inverting the small-perturbation scattering theory. The measurements were made at 10 and 15 GHz for angles of incidence ranging from20degto70deg; this means that the range of Bragg-resonant spatial wavenumbers covered is from 1.43 to 5.90 cm-1. Results of coincidentC- andX-band experiments by the Institute Francais du Petrole (IFP) andX-band experiments by a group of Dutch researchers (TNO) are compared with our results and good general agreement is found. Our initial results show a steeper falloff of the spectra with increasing wavenumber than reported previously, particularly at low windspeeds. When the spectra are modified to account for the difference between previous aircraft and tower measurements [1], the observed spectra agree well with the appropriate part of Pierson's wave spectrum as modified by Fung and Lee [2].  相似文献   

16.
About 10 years ago, the advanced application flight experiment radiometer scatterometer (AAFE RADSCAT) made its first successful measurements of ocean radar scattering cross section from a NASA C-130 aircraft. This instrument was developed as a research tool to evaluate the use of microwave frequency remote sensors (particularly radars) to provide wind-speed information at the ocean's surface. The AAFE RADSCAT flight missions and analyses helped establish the feasibility of the satellite scatterometer for measuring both wind speed and direction. Probably the most important function of the AAFE RADSCAT was to provide a data base of ocean normalized radar cross-section (NRCS) measurements as a function of the surface wind vector at 13.9 GHz. NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions from 1973 to 1977. Presented herein are analyses of data from the 26 RADSCAT flights during which the quality of the sensor and the surface wind measurements were felt to be understood. Subsets of this data base were used to model the relationship between theKu-band radar signature and the ocean-surface wind vector. The models developed partly from portions of this data base, supplemented with data from the Seasat (JASIN Report), were used for inversion of the Seasat-A Satellite Scatterometer (SASS) radar measurements to vector winds. This paper summarizes results from a comprehensive analysis of the RADSCAT/ocean wind signature deduced from this complete data set.  相似文献   

17.
Backscattering of centimeter electromagnetic waves during nadir probing of the sea surface is considered in an approximation of the Kirchoff method and a two-scale model of the scattering surface. A model of the effective reflection coefficient is developed under the assumption of the specified roughness spectrum model, and the coefficients for Ku (0.021 m), C (0.055 m), and S (0.09 m) bands are calculated. The dependence of the backscattering cross section on the wind speed, wind fetch, and the height of the swell are numerically investigated. The proximity of the numerical estimates and the experimental data is demonstrated. The dependence of the difference of two cross sections on the wind speed or on one of the backscattering cross sections is analyzed in dual-frequency measurements. It is shown that the numerical model made it possible to describe the nonmonotonic behavior of the difference cross section for the Ku-C and Ku-S pairs for the first time. The developed effective reflection coefficient model made it possible to predict in the numerical experiment the behavior of the difference cross section of a new frequency pair (C and S) for which in situ measurements have not yet been performed.  相似文献   

18.
In this paper, the radar cross section of flat plates on ocean surfaces is statistically investigated. A combining method of physical optics and geometric optics is applied to establish an effective backscattering analysis procedure. This method is a high-frequency analysis method originally derived from a simplified Stratton-Chu integral equation, assuming that the radar is far away from the target so that Kirchhoff approximation is valid. A Monte-Carlo simulation method is adopted to statistically analyze the effects of undulated ocean surfaces. The ocean surfaces are randomly generated by Pierson-Moskowitz ocean wave spectrum and a directional distribution function. Numerical investigations are carried out for flat plates, with the same height and width but with different inclined angles, on ocean surfaces of various significant wave heights.  相似文献   

19.
This paper proposes the retrieval method of ocean wave spectrum for airborne radar observations at small incidence angles, which is slightly modified from the method developed by Hauser. Firstly, it makes use of integration method to estimate total mean square slope instead of fitting method, which aims to reduce the affects of fluctuations superposed on normalized radar cross-section by integration. Secondly, for eliminating the noise spectrum contained in signal spectrum, the method considers the signal spectrum in certain look direction without any long wave components as the assumed noise spectrum, which would be subtracted from signal spectrum in any look direction for linear wave spectrum retrieval. Estimated ν from the integration method are lower than the one from fitting method and have a standard deviation of 0.004 between them approximately. The assumed noise spectrum energy almost has no big variations along with the wave number and is slightly lower to the high wave number part of signal spectrum in any look direction, which follows that the assumption makes sense. The retrieved directional spectra are compared with the buoy records in terms of peak wavelength, peak direction and the significant wave height. Comparisons show that the retrieved peak wavelength and significant wave height are slightly higher than the buoy records but don’t differs significantly (error less than 10%). For peak direction, the swell waves in first case basically propagate in the wind direction 6 hours ago and the wind-generated waves in second case also propagate in the wind direction, but the 180? ambiguity remains. Results show that the modified method can carry out the retrieval of directional wave spectrum.  相似文献   

20.
The effect of variations in ocean surface roughness characteristics with upwind/downwind direction, reported by other investigators, is used to compute radar cross section (sigmadeg) and to assess the errors which may arise in present and planned altimeter sensors. Based on an analysis of the rough surface impulse response, the uncertainty between attitude angle andsigmadegasymmetry is found to cause height errors as large as 12 cm, depending on off-nadir angles and sea state. Additionally, the previously reported data in conjunction with computed facet backscatter are found to producesigmadegcharacteristics at large off-nadir angles which are in better agreement with experimental results than those predicted by physical optics Gaussian theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号