首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 75 毫秒
1.
将C波段雷达资料用LAPS模式的云分析系统进行反演,并采用Nudging技术将反演得到的云微物理场引入GRAPES中尺度数值模式,结合1次强降水天气过程的模拟实验,研究了C波段雷达资料同化对GRAPES中尺度数值模式短临降水预报的影响。结果表明:①雷达资料同化能够改进中尺度模式的降水预报,模式前6 h的降水预报相关系数和不同等级降水TS评分都有提高,同时降水峰值提前了1 h,有助于缓解模式spin-up问题。②模式降水预报的改进效果主要由强降水贡献,最大改进效果集中在4~6 h。③同化雷达资料后25 mm以上强降水预报站数比更接近实况,落区偏差幅度更小,降水落区和强度向实况方向得到调整。④10 mm以下弱降水在吸收雷达资料后,站数比相较于控制预报,比实况增加更多,落区偏差幅度增大,存在预报过量的问题。弱降水预报过量主要集中在4~6 h,而前3 h对降水预报的改进有积极作用。  相似文献   

2.
基于乌鲁木齐区域数值预报业务系统,运用Ts和Bias评分方法,对2012年9月1日—2015年8月31日逐日2个起报时次的逐6 h累积降水量的年与季节预报性能进行检验,并从空间上分析了2015年全疆站点逐6 h累积降水量在4个预报时段的评分特征。结果表明:(1)2个起报时次的降水评分相差较小,00 UTC起报略优于12 UTC起报,2015年系统改进了白天大量级降水的空报现象。(2)系统对晴雨预报较为准确,Bias接近1,空报、漏报率很小;随着降水阈值的升高,Ts评分减小,Bias变幅增大,空、漏报率也随之增加。系统对强降水过程以漏报为主。(3)系统的降水预报能力存在季节差异,夏季Ts评分最高,秋季次之,冬季最小;随时间模式对四季降水预报能力均有提高,降低了冬季大量级降水的漏报率和夏季大量级降水的空报率。(4)在新疆地区,08—14 BT(Beijing Time)、14—20 BT、20—次日02 BT空报站点数多于漏报,14—20 BT空报率最高;在02—08 BT整体呈漏报。(5)各站点整体来看,白天Ts评分高于夜间,山区及邻近地区评分高于平原地区;西天山评分略优于东天山,夜间晴雨预报有天山北坡漏报、南坡空报的趋势。  相似文献   

3.
利用辽宁省291个国家气象观测站的降水资料,对2019年夏季(6-9月)8种模式降水预报及中央气象台格点降水预报进行了检验评估和比较,并采用消空方法进行晴雨预报技术研究。结果表明:2019年,EC模式具有最优的暴雨预报性能,而日本模式暴雨TS评分最高;中尺度模式对于局地性暴雨和短时强降水具有较好的预报潜力,性能较好的是GRAPES_MESO模式和睿图东北3 km模式;全球模式对24 h暴雨的预报频率比实况偏低30%,3 h强降水则偏低60%,中尺度模式对24 h暴雨的预报频率比实况偏高30%,3 h强降水则偏低20%。由于对小量级降水存在较多空报,各模式原始预报的晴雨预报大多呈现空报偏多的情况;使用小量级降水剔除的消空策略能够明显提高晴雨准确率,消空之后EC模式具有最优的晴雨预报性能。分别使用24 h和3 h累计降水量优化消空策略,发现分别取1.0 mm和0.8 mm的阈值进行消空可以使24 h晴雨准确率提高15.58%,3 h晴雨准确率提高10%-30%。  相似文献   

4.
《气象》2021,(5)
网格降水的预报准确率是精细化天气预报业务的核心问题。利用多家数值模式和国家气象中心逐3h网格降水预报指导产品,以格点降水实况分析资料为参照,在客观评估模式表现的基础上,提出多模式和网格降水预报产品融合的降水预报释用方法。研究表明:给定降水阈值,不同降水产品的预报性能有显著差异,存在预报表现好的降水产品漏报,而其他降水产品命中的情况;对确定性单模式来说,在降水检验阈值给定的条件下,预报降水量超出阈值越大,其空报的可能性越低。检验三种降水产品72 h时效内逐3 h降水量,晴雨预报的降水漏报次数明显低于空报次数,基于该特性,可以利用不同模式未预报降水的格点来消除空报。以检验为基础,选用前期表现好的降水预报为背景场,使用高阈值融合满足条件的其他强降水预报产品,使用低阈值消除弱降水空报。回算表明,相对背景场,该方法可以同时提高强降水的TS评分和晴雨预报准确率。  相似文献   

5.
基于华南区域中尺度分钟级快速更新同化的Grapes 1 km数值预报模式系统,应用时间滞后法(LAF),对发生在广东的一次飑线过程进行集合预报分析与检验。时间选取2017年5月3日21:00—4日03:00(UTC)阶段,其中前2 h即21:00—23:00的逐12 min起报的11组构成集合预报成员,进行均等权重计算,预报未来4 h的降水。结果表明:不是越接近降水发生时刻起报的结果越理想。模式对后期降水预报效果优于前期,而且模式预报后期离散度增大,也证实了预报效果有所改善,但是否与LAF法有关,仍需深入研究。集合概率预报凸显短时强降水集中区并与实况较为一致,为短临预警提供有力支撑。  相似文献   

6.
利用湿Q矢量对数值预报模式输出的风场、温度场、温度露点场进行动力释用,并考虑地形强迫作用,得到一个独立于数值模式直接预报输出降水场的释用预报降水场即湿Q矢量释用(Q~MVIP)技术。结合2010—2014年汛期(6—9月)登陆我国华东14个历史台风降水实况资料以及华东区域中尺度模式(基于WRF V3.1)(简称WRF模式)预报产品,统计检验分析了Q~MVIP技术对登陆台风降水的定量预报能力。结果表明,Q~MVIP技术较WRF模式明显改善了对25.0 mm·(24 h)~(-1)以上及50.0 mm·(24 h)~(-1)以上降水的定量预报能力。进一步结合"菲特"台风(2013)登陆前后所引发的24 h累积降水场进行比较分析发现,Q~MVIP技术对台风暴雨落区、强度的反映能力均优于WRF模式。这表明,湿Q矢量释用技术可以在一定程度上弥补现有数值预报模式对登陆台风定量降水预报(QPF)能力的不足。  相似文献   

7.
钟敏  肖安  许冠宇 《干旱气象》2022,(4):700-709
随着预报服务需求不断增长和预报内容日趋精细化,仅针对20 mm·h^(-1)以上的短时强降水预报已不能完全满足业务需要,开展不同雨强等级的短时强降水预报方法研究显得十分必要。利用2016—2019年6—8月中国南方9省1市的国家及区域气象站共51355站次短时强降水样本,将雨强R分为4个等级:20≤R<30 mm·h^(-1)、30≤R<50 mm·h^(-1)、50≤R<80 mm·h^(-1)及R≥80 mm·h^(-1)(分别对应I、Ⅱ、Ⅲ、IV级)。将各级样本与同时段CMA-MESO(China Meteorological Administration mesoscale model)数值预报模式初始场进行时空匹配,提取22个相关物理量建立数据集并进行百分位值统计;利用XG⁃Boost(extreme gradient boosting)机器学习方法对物理量进行重要性排序以确定权重系数;应用连续概率预报方法,选用升、降半岭函数作为隶属函数,建立不同等级短时强降水概率预报模型。运用该模型在2020年汛期进行实时业务预报,并对湖北省2020年6—8月15次大暴雨过程0~36 h预报时效的逐小时不同等级短时强降水概率预报产品进行检验,结果表明:I级概率预报产品60%阈值的TS评分(0.145)最好,对应命中率为55.7%;Ⅱ级概率预报产品65%阈值的TS评分(0.083)最好,对应命中率为39.1%;Ⅲ级概率预报产品70%阈值的TS评分(0.03)最好,对应命中率为21.7%;IV级概率预报产品80%阈值的TS评分(0.005)最好,对应命中率为5.8%。对不同等级雨强个例对比检验表明,各级概率预报产品对CMA-MESO模式在同时次不同等级短时强降水预报上均有较好的订正作用。对3次强降水过程逐小时预报检验表明,I级概率预报产品命中率为40%~80%,空报率为50%~90%,预报时效达36 h,普遍优于同时次CMA-MESO降水量预报。本研究对不同等级短时强降水分型建模并在实际预报中有较好的参考性,能够对CMA-MESO的降水预报起到订正作用。  相似文献   

8.
刘静  任川  赵梓淇  陈传雷  王瀛  才奎志 《气象》2022,(10):1292-1302
利用气象大数据云平台中逐小时降水资料,基于目标对象检验法和邻域法,评估2019—2020年辽宁主汛期降水过程中中国气象局上海数值预报模式系统(CMA-SH9)、中国气象局中尺度天气数值预报系统(CMA-MESO)、中国气象局睿图东北数值预报模式系统(CMA-DB)的预报性能。结果表明:千米尺度或接近千米尺度的上述三个模式,在36 h时效内,对于累积强降水(12 h降水量≥50 mm)落区形态预报与实况有相似性,落区质心预报偏差一般在20 km左右。然而,预报落区与实况重叠的面积一般都在10%以下,个别情形下(如CMA-MESO对于气旋型降水过程)累积强降水落区预报与实况重叠度能够接近20%;位置偏离的直接结果是导致漏报率高(一般在75%左右,CMA-MESO模式漏报率略低,为10%~20%),其中高压后部型降水过程中累积强降水的漏报率超过80%,位置偏离也造成较高空报率。对于短时强降水(1 h降水量≥20 mm)预报,在方圆40 km内不计偏差情况下,各模式预报命中率平均在10%以下(最大值为9.2%),空报率平均为58.7%;三种降水类型中,模式对台风型降水过程的短时强降水预报性能最...  相似文献   

9.
本文选取2014年6~9月西南区域模式产品的每日20 h (北京时)起报的00 h~24 h降水量、相关物理量及成都地区实况降水量。首先利用领域法建立高分辨率模式与稀疏站点对应关系,其次比较领域内的降水量分级传统技巧评分以及强降水(25mm以上)与模式物理量阈值进行概率分析,得出强降水物理量阈值,最后通过个例对模式物理量阈值进行检验。得出如下研究结论:降水量分级评分结果表明模式对成都地区有无降水预报总体效果较好;TS评分随着预报降水量级增大而减小,同时模式空报率高于漏报率;而暴雨及暴雨以上量级降水混合评分为11.6%,具有一定的参考性。强降水与模式物理量阈值概率分析表明模式对强降水有一定的预报能力,但量级、落区相对较差。两次降水个例物理量阈值均满足以暴雨、暴雨以上降水为主的条件。   相似文献   

10.
用山东WRF集合预报72h预报时效内逐6h概率预报产品对2014年7月24—26日台风“麦德姆”影响山东期间产生的强降水和大风进行了检验。结果表明:WRF集合对强降水和大风有较好的预报能力,总体预报效果较好。强降水和大风的概率都是初期预报概率偏小,后期预报概率较高,开始和结束时间比实况滞后6~18h ,前期漏报率高,后期空报率高,总体来说23日20时的预报优于08时的预报。台风低压中心强度和移动路径与实况基本一致,但移速偏慢,这是导致强降水和大风前期漏报后期空报的主要原因。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

17.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

18.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

19.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号