首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
利用常规观测资料和NCEP 1°×1°再分析资料,采用天气动力学诊断方法,对河北中南部春末一次回流暴雨的风场、水汽、热力条件进行了详细分析。结果表明:(1)此次大暴雨发生在地面冷锋后部、近地层超低空急流产生回流的稳定气团中,850—700 hPa低空西南急流和切变线是其主要影响系统。(2)随高空急流发展,急流中心右前方强辐合引起气流下沉,使低层高压加强、高压南部风速加大,导致山东、河北南部低空东北风加强而产生近地面层超低空东北风急流,与其上层偏南急流相遇在太行山东麓产生耦合形成回流,有利于在河北南部、山东等地形成暴雨中心。(3)强暴雨发生在西南水汽通道北侧边缘,暴雨区水汽主要为西南急流输送;强暴雨区位于水汽通量散度强辐合区与水汽通量散度强辐散区之间的水汽通量散度锋区中,低层风切变辐合对暴雨触发起到关键作用。  相似文献   

2.
2011年山东雨季首场暴雨过程诊断分析   总被引:2,自引:0,他引:2  
利用NCEP1°×1°再分析资料、卫星及常规观测资料,对2011年山东进入雨季后的首场暴雨天气过程的大尺度环流背景、物理量场的结构特征及暴雨的中小尺度系统进行了分析。结果表明:此次暴雨是高空低槽、低空切变线和地面中尺度辐合线共同影响造成的,西南低空急流为暴雨区提供了充沛的水汽和能量;水汽通量散度所揭示出的强水汽辐合中心与强降水中心具有很好的对应关系;暴雨落区与强上升运动中心在时间和空间上相关性较好;此次降水是位于低空切变线右侧,低空急流左侧的暖区里的暴雨。  相似文献   

3.
用逐日6小时一次的地面站点实况观测资料和1°×1°的NCEP分析资料,对4月4日至4月6日的这次暴雨降水过程进行降水实况和大型环流背景的分析.深入讨论了这次降水过程的水汽输送特征、大气不稳定特征和高低层的动力条件.结果表明,这次暴雨的有利天气背景为高空槽、切变线与深厚低空急流以及冷空气的相互配合.在暴雨期间,地面不稳定能量的累积和西南低空急流输送的充沛水汽,通过水汽通量分析,雨区存在深厚的水汽柱,低层正涡度中心和高层的辐散中心与地面的暴雨区相互对应,底层涡度中心和高层散度中心的增大和减小能较有效地指示降雨过程的开始和结束.  相似文献   

4.
选取2019年9月7-8日NCEP/NCAR(1°×1°)再分析资料,分析了降水实况、卫星云图、环流形势、物理量场。结果表明:此次暴雨过程主要受台风登陆后减弱的热带风暴影响,副热带高压的维持为水汽的输送与台风的北进起到了促进作用,台风外围水汽成为此次降水的主要水汽来源,高低空急流耦合加强了动力条件,暴雨落区与高空急流的右侧、低空急流的左侧、垂直运动强上升区及水汽通量散度辐合区有较高的吻合度。  相似文献   

5.
AREM模式对“04·08”豫中大暴雨的数值模拟和诊断分析   总被引:1,自引:0,他引:1  
利用中尺度有限区域数值模式AREM,对2004年8月4日豫中一次大暴雨过程进行数值模拟和诊断分析。模拟结果表明:暴雨中心位于河南省中南部,中心强度达200 mm;高空冷平流南下,地面冷空气入侵,中低层有较强的辐合气流。模拟的暴雨落区与实况相一致,但中心强度较实况151 mm略大;模拟的环流形势也与实况环流形势一致。对模拟物理量诊断分析结果表明,在有利的垂直速度、散度场和比湿条件下,暴雨区中低空存在明显的水汽辐合,且水汽辐合区位于700 hPa及以下,强水汽辐合区位于900 hPa附近,从低层到高层较强的水汽辐合,暴雨区的水汽充分辐合上升,是造成此次大暴雨天气的主要原因。  相似文献   

6.
韩桂荣  何金海  梅伟 《气象科学》2008,28(6):649-654
本文对2003年7月4日-5日江淮梅雨期间的一次特大暴雨过程进行了多尺度的详细分析.环流背景、中尺度对流云团和水汽条件分析表明,这次特大暴雨是在典型梅雨的有利环境背景形势下,由梅雨锋上的中尺度对流系统造成的,地面低压、低层切变线及西南低空急流与这次特大暴雨过程有着密切的关系.强降水中心与中尺度对流云团的关系十分密切,中β尺度云团的生成合并增强,和其中中γ降水系统的存在,导致了降水强度的局地性差异.江淮流域主要表现为经向水汽通量的辐合区,强水汽通量舌与低层高θse的舌区一致,暴雨过程中水汽的快速集中主要是通过风场散度项造成的,局地风场的辐合在水汽快速集中起主要作用.低层充沛的水汽则通过气旋性涡度柱中的强上升气流输送到对流层的中高层.  相似文献   

7.
针对郑州“7·20”特大暴雨过程,使用CMA-MESO区域模式对此次极端强降水过程中水汽与高低空急流的影响进行了数值试验分析。结果表明,此次暴雨过程较为成功地被中尺度模式模拟再现;暴雨过程中水汽来源主要为台风“烟花”北侧的东南急流携带的来自西太平洋与印度洋的水汽以及台风“查帕卡”北侧东南气流携带的来自南海的水汽;降水及水汽输送对水汽含量十分敏感,水汽含量微小的变化便会使郑州上空气流辐合区强度减弱,水汽累积减少,降水范围向河南北部缩小,降水强度大幅度减弱;低空急流对应的气流辐合区是郑州上空出现强垂直上升运动中心的主要机制,低空急流减弱后,水汽辐合减弱,降水减少,降水中心位置偏西南,高空急流对降水的影响与低空急流相比较小。  相似文献   

8.
“西马仑”与“海贝思”台风特大暴雨对比分析   总被引:1,自引:0,他引:1  
利用常规气象观测资料、NCEP再分析资料、卫星云图和雷达回波等资料,采用多种物理量诊断分析方法,对路径相似、在闽南地区产生特大暴雨的1308号台风"西马仑"和1407号台风"海贝思"的环流形势特征、云系结构特征及水汽、动力、热力条件进行了对比分析。结果表明:"西马仑"的过程特点是雨强大、降水时间集中,而"海贝思"的特点则是雨强小、降水时间长;"西马仑"云系结构紧密,属中尺度对流云团降水,而"海贝思"云系结构松散,其外围的螺旋云带产生的列车效应是产生特大暴雨的重要原因;两个台风都具有低空急流、风速辐合、低层辐合高层辐散流场等有利于产生特大暴雨的环流形势特征;两个台风都存在低空偏东风和偏南风急流,两支急流为暴雨区提供了充足的水汽条件,低空急流较强的时段与强降水时段相对应;台风中心附近强辐合辐散区的建立和维持是产生特大暴雨重要的动力条件,水汽辐合区的面积和强度与暴雨区范围和降水强度相吻合;垂直速度大值区的维持时间与强降水的维持时间相一致;垂直速度、假相当位温和水汽通量散度的增大和减小,可作为降水增大和减弱的重要依据之一;暴雨区主要落在700 h Pa螺旋度场大值区内,所以螺旋度分析可为台风暴雨落区预报提供参考依据。  相似文献   

9.
对照常规天气图实况资料,检验几种常用NWP产品对2008年7月5日山东一次强降水过程的形势场预报和降水预报,并对其物理量场进行诊断分析.结果表明,暴雨落区与诸多物理量场的配置紧密相关;暴雨区出现在低层水汽辐合中心移动路径上,位于与水汽通量散度强辐合中心和强上升运动中心接近处;暴雨区移动方向与水汽通量大值中心、△θse(500-850)负值中心长轴方向一致,水汽通量散度低层辐合、高层辐散两者均满足时有利于强降水发生;200 hPa高空辐散的抽吸作用远比仅有低层辐合更有利于上升运动发展;地面强降水区出现在200 hPa强辐散中心所在处.  相似文献   

10.
利用NCEP再分析资料和WRF模式,对2014年8月31日重庆市云阳县特大暴雨进行形势分析和数值模拟,针对重庆地区地形设计了三组地形敏感性试验,分析地形改变对暴雨过程热力条件和水汽条件的影响。结果表明:低纬地区不稳定能量大量积聚并向北传播,在地形和急流的垂直扰动触发下,对流强烈发展;850 h Pa低空急流将来自南海的水汽输送至重庆地区,水汽低层辐合、高层辐散形成的抽吸作用引发水汽的垂直输送。大巴山高度降低后,不稳定厚度减小导致对流强度明显降低;阻挡作用降低不利于水汽在暴雨区的汇聚;水汽辐合、辐散的强度降低导致水汽的垂直输送强度明显减弱。齐岳山高度降低后,低空急流所引起的垂直扰动位置偏南导致高能舌和对流活动位置偏南;水汽输送中心南压,水汽通道变宽导致暴雨区上空水汽输送减弱;低空急流位置偏南导致其所引起的水汽辐合时间偏晚。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

17.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

18.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

19.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号