首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
用一元回归和R/S方法,分析了漯河市气温变化趋势,结果表明 近49年来,漯河市冬、春、秋季气温升高,夏季则下降, 夏季降温幅度比冬、春、秋季升温幅度小一个量级,全年气温整体趋势变暖. 城市化"热岛"效应对冬、春、秋季及全年的影响较气候系统自身演变显著,对夏季影响不显著. 冬、夏、秋季及全年气温序列具有持续性,未来冬、秋季及全年变暖持续,夏季则变冷持续;春季气温变暖趋势减缓,或者更接近于随机变化,即未来变暖变冷不能确定.  相似文献   

2.
利用1958~2000年气温资料,对河南省四季和全年的平均气温进行滑动t检验,研究近40年来全省气温的突变情况.结果表明,夏季气温有下降的趋势,而冬、春、秋季和全年气温则稳定上升.  相似文献   

3.
河南省近40年气温突变分析   总被引:1,自引:0,他引:1  
利用1958~2000年气温资料,对河南省四季和全年的平均气温进行滑动t检验,研究近40年来全省气温的突变情况。结果表明,夏季气温有下降的趋势,而冬、春、秋季和全年气温则稳定上升。  相似文献   

4.
毕节气温与降水变化特征及趋势预报   总被引:1,自引:0,他引:1  
罗文芳 《贵州气象》1995,19(3):7-11
本文通过对我市1951~1990年共40年气温、降水资料的分析得出:近40年来我市年平均气温呈波动式微变冷的趋势,其中春季变冷明显,夏、秋、冬三季则呈波动式略变暖的趋势。年降水量显著减少,丰水期主要出现在50年代,枯水期主要出现在80年代。春、秋两季降水量的变化以60年代末期为分水岭,50~60年代末期呈增多趋势,60年代末期至今则呈明显减少趋势。夏季降水量40年来呈明显减少的趋势,主要丰水期和枯水期与年降水量分布一致。冬季降水量则有大约20年一个波动的周期。  相似文献   

5.
四川盆地气温的时空分布变化分析   总被引:5,自引:1,他引:5  
潘建华 《四川气象》2006,26(2):19-21
本文利用正交分解(EOF)方法,对四川盆地气温的时空分布进行研究分析,识别出了盆地气温的主要空间型和时间演变特征。在春夏秋冬不同季节,四川盆地气温场呈一致性的正值,反映四川盆地气温大范围位相一致的变化,表现为全盆地性冷(暖),并且气温场在不同的季节,其分布特征具有较大的相似性和稳定性。从第一特征向量场对应时间系数演变过程来看,冬、夏两季的波动范围较春、秋两季的波动范围小;从第一时间系数年际变化分析,除盆地夏季平均气温没有明显变化外,冬、春、秋季的气温从20世纪90年代后期均持续表现为上升趋势,出现明显的气候变暖突变。冬季与秋季的气温分布及春季与秋季的气温分布具有较为显著的正相关关系。  相似文献   

6.
本文利用正交分解(EOF)方法,对四川盆地气温的时空分布进行研究分析,识别出了盆地气温的主要空间型和时间演变特征.在春夏秋冬不同季节,四川盆地气温场呈一致性的正值,反映四川盆地气温大范围位相一致的变化,表现为全盆地性冷(暖),并且气温场在不同的季节,其分布特征具有较大的相似性和稳定性.从第一特征向量场对应时间系数演变过程来看,冬、夏两季的波动范围较春、秋两季的波动范围小;从第一时间系数年际变化分析,除盆地夏季平均气温没有明显变化外,冬、春、秋季的气温从20世纪90年代后期均持续表现为上升趋势,出现明显的气候变暖突变.冬季与秋季的气温分布及春季与秋季的气温分布具有较为显著的正相关关系.  相似文献   

7.
日喀则近53年气候变化特征分析   总被引:5,自引:1,他引:4  
利用线性趋势函数及Mann-Kendall突变检测分析法,分析了西藏藏南河谷日喀则气象站气温及降水近53年的气候变化特征。结果表明,年平均气温与极端气温均呈上升趋势,而最高气温的上升趋势尤为明显,年降水量波动上升。冬春季增温趋势较秋、夏季更为明显,春夏季降水呈增加趋势,而秋季降水略有减少。Mann-Kendall突变检测表明,近53年日喀则地区气温有明显的增暖趋势,但20世纪60—70年代变冷趋势亦十分显著,在2001年温度发生一次突变。年降水量在1958年发生了由少向多的突变,但这一突变仅维持到20世纪60年代中期。  相似文献   

8.
基于1921—2016年天津地区降水、气温观测数据,对全球降水气候中心降水(GPCC-P)、东英吉利大学气候研究中心气温(CRU-T)进行适用性评估后发现GPCC-P和CRU-T均能较好地反映天津地区降水和气温的变化。在此基础上,进一步利用GPCC-P、CRU-T计算的标准化降水蒸散指数(SPEI)分析天津地区近百年干旱时空演变特征并判断其未来变化趋势。结果表明:(1)天津干旱主要发生于1940年代初期、1990年代末和2000年代初期,四季均以轻旱和中旱为主,干旱高频季节由秋、冬季逐渐转为春、夏季。(2)天津全区SPEI气候趋势在6个时期除秋季整体呈"升、降、升"分布特征外,春、夏、冬季均表现为"升、降"的分布特征,且夏季下降趋势最为显著,1961—2010年宁河每10 a下降0.30。(3)1921—1970、1931—1980、1941—1990年天津春、冬季湿润化趋势由降水主导,而夏、秋季则由气温和降水协同影响;1951—2000、1961—2010、1971—2016年春季干旱趋势主要受气温影响,夏、冬季则为气温和降水协同影响,随着全球变暖,气温升高对干旱的影响逐渐增强。(4)1921—2016年天津地区四季SPEI与PDO呈负相关关系,春、夏季相关性从西北向东南递减,而秋、冬季相关性则由东南向西北递减。(5)未来夏季天津全区、冬季天津西南部呈干旱化趋势,春季干旱化趋势、秋季湿润化趋势不明显。  相似文献   

9.
我国近四十年气温变化时空差异研究   总被引:4,自引:5,他引:4  
文章通过对我国近40年不同区域气温变化的分析发现,在我国东部地区大体以中亚热带为界,中亚热带以北地区具有冬季气温变暖,夏季气温变凉的趋势,中亚热带以南地区具有夏季气温变暖,冬、春季变冷的趋势;而深居大陆内侧的西部干旱地区和云南高原地区与同纬度其他地区相比,也各具特点。  相似文献   

10.
利用华中区域(河南、湖北、湖南3省)42站1960~2005年逐月平均最高、最低气温资料,计算并详细分析了该区域年(季、月)平均最高、最低气温和气温日较差的线性变化趋势、突变性及周期性特征。结果发现:1)华中区域年平均最高、最低气温均呈现上升趋势,年平均气温日较差呈减小趋势,其中年平均最低气温变化最显著。2)平均最高气温在春、秋、冬均呈上升趋势;平均最低气温四季均呈上升趋势,其中春、冬季变化显著;平均气温日较差在夏、冬季下降趋势较为明显,其中以冬季降幅最大。3)全年有4个月平均最高气温呈下降趋势,其中8月最为显著;平均最低气温在冬、春季为明显上升趋势,其他月变化趋势不显著;平均气温日较差在冬、夏季呈明显下降趋势,其中1月最为显著。4)年平均最高、最低气温在20世纪90年代经历了一次由冷变暖的明显突变;四季中,平均最高气温春、冬季突变显著,平均最低气温春、夏季突变显著。5)年平均最高、最低气温存在显著的2~4a周期变化。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

17.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

18.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

19.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号