首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Small rivers draining high-rainfall basins and mountainous terrain west of the Cordilleras in South America have disproportionately high water discharge and sediment load. Fifteen rivers in western Colombia discharge a combined 254 km3 yr-1 or 8020 m3 s-1 of water into the Pacific. Sediment yield is strongly correlated with basin area (R2=0.97), and sediment load is correlated with water discharge (R2=0.73). Rio San Juan occupies a 16,465-km2 basin with a mean annual rainfall of 7277 mm. It has the highest water discharge (2550 m3 s-1), sediment load (16x106 t yr-1), and basin-wide sediment yield (1150 t km-2 yr-1) on the entire west coast of South America. Rio Patía drains a 23,700-km2 basin with a mean annual rainfall of 2821 mm. Its water discharge, sediment load, and basin-wide sediment yield are 1291 m3 s-1, 14 t yr-1, and 972 t km-2 yr-1, respectively. Rio San Juan and Rio Patía deliver 30x106 t of suspended sediment annually into the Pacific. Analysis of data for an additional 22 rivers in Colombia that drain into the Caribbean Sea indicates that the Pacific rivers have at least twice the sediment yield compared with the larger Rio Magdalena. Our results confirm that the Pacific rivers of Colombia need to be accounted for in global sediment budgets.  相似文献   

2.
有效流量是天然河流某一时段内悬移质输沙量最大所对应的流量,可反映中、短期造床作用。根据监利水文站1991—2016年逐月流量、输沙量及悬移质级配,分析三峡建库前后流量频率及不同粒径组悬移质泥沙输移特性;运用理论分析法与分组频率法计算下荆江分组悬移质输沙量对应有效流量的大小、重现期、历时。研究成果表明:受来水来沙、水流挟沙能力以及床沙补给等因素影响,有效流量随泥沙粒径增大而减小。建库后,因河床冲刷各粒径组间有效流量偏差增大,0. 062 mm0. 125 mm粒径组泥沙有效流量重现期减小;细颗粒泥沙含沙量严重不饱和河道输送粗颗粒泥沙的能力相对较大,悬移质级配粗化;累积50%的泥沙输移需43%~82%的累积流量以及62%~90%的累积历时,且累积流量和累积历时随着泥沙粒径的增大而减小和缩短。研究三峡建库前后有效流量变化对分析冲刷条件下下荆江河段河床演变具有重要意义。  相似文献   

3.
The Yellow, Yangtze and Pearl Rivers supply over 90% of the sediment flux from China to the western Pacific Ocean. Trends and abrupt changes in the water discharge and sediment load of the three rivers were examined and compared based on data updated to the year 2011 at the seasonal and annual scales. The total water discharge from the three rivers shows a statistically insignificant decreasing trend with a rate of 0.62 × 109 m3/a, and the total sediment load shows a statistically significant decreasing trend at a rate of 31.12 × 106 t/a from the 1950s to 2011. The water discharge of the entire Yellow River and the upstream portion of the Yangtze River shows significant decreasing trends, and that of the mid-lower stream of Yangtze River and the entire Pearl River shows insignificant trends. The sediment loads in the three river basins all show significant decreasing trends at the annual and seasonal scales, and a dramatic decrease in the 2000s resulted in a more obvious decreasing trend over the studied period. From the 1950s to the 2000s, the contribution of sediment flux from the Yellow River to the ocean decreased from 71.8% to 37.0%, and the contributions of the Yangtze and Pearl Rivers increased from 24.2% and 4.0% to 53.0% and 10.0%, respectively. Inter-annual variations in water discharge and sediment load were affected by climate oscillations, such as the El Niño/Southern Oscillation, and the long-term decreasing trend in sediment load was primarily caused by human activities. Dam constructions and soil conservation projects were the major causes of sediment reduction. From the 1970s to the 2000s, the decrease in total sediment load from the three rivers caused by climate change and human activities was 2.24 × 108 t/a (23.0%) and 7.5 × 108 t/a (77.0%), respectively. In the coming decades, the sediment flux from the three rivers into the sea will decrease further with intensifying human activities, resulting in many challenges for the management of river basins and river deltas.  相似文献   

4.
Long Island Sound (LIS), a large urban estuary in the northeastern USA, receives freshwater from many rivers along its northern shore. The size of these rivers varies widely in terms of basin area and discharge. The Regional Ocean Modeling System (ROMS) was applied with conservative passive tracers to identify the distribution, mixing, freshwater residence times, and storm response for all of LIS’s river systems during the summer of 2013. A watershed model was applied to overcome the lack of adequate river discharge observations for coastal watersheds. The Connecticut River was the largest contributor to riverine freshwater throughout the estuary despite its entry point near the mouth. The Connecticut River strengthened bulk stratification in the eastern LIS the most but acted to weaken stratification near the mouths of other rivers and in far western LIS by freshening waters at depth. The Housatonic and Hudson Rivers had the strongest influence on stratification in central and western LIS, respectively. Smaller coastal rivers were the most influential in strengthening stratification near the southwestern Connecticut shoreline. The influence of small coastal rivers was amplified after a major storm due to shorter storm response times relative to the larger rivers. Overall, river water was close to a well-mixed state throughout LIS, but more stratified near river mouths. Freshwater residence time estimates, meanwhile, indicated monthly to multi-seasonal time scales (43 to 180 days) and grew longer with greater distance from the LIS mouth.  相似文献   

5.
We discuss the present-day sediment transport by rivers, and hence the erosion rate in upstream basins, based on the example of Taiwan Rivers where large datasets are available. After data correction, the values of the suspended sediment load in the lower Kaoping River are nearly three times smaller than those from the literature. On the other hand, we add the bed load evaluated from numerical modelling, despite limitations from data and models. Whereas the contribution of the chemical denudation rate in Taiwan is minor, the bed load is significant and must be evaluated. We point out that biases in data collection may favour high values of suspended load data, and that large series of datasets are needed to reduce uncertainties and smooth the time variability effect. To cite this article: F.-C. Li et al., C. R. Geoscience 337 (2005).  相似文献   

6.
Presently, the water discharge rate to the Black Sea by Turkish rivers is approximately 41 km3/yr. The sediment discharge rate of Turkish rivers to the Black Sea is 28×106 t/yr. Before construction of the hydroelectric dams, the sediment discharge rate was approximately 70×106 t/yr. The sharp reduction in sediment load is largely a result of the dams near the mouths of the Yesil Irmak and Kizil Irmak rivers. Before the construction of dams, Turkish rivers contributed approximately one third of the total amount of sediment received by the Black Sea from all surrounding rivers. The life-span of the major reservoirs varies from approximately only one century (Yesil Irmak river reservoirs) to several thousand years (Sakarya river reservoirs). Life-span for the large Altinkaya Dam reservoir is estimated with approximately 500 yr.  相似文献   

7.
River systems of part of the Himalayan foreland, northern Bihar plains, India, are described in terms of their channel morphology, hydrology and suspended sediment characteristics. A simple classification of the river systems based mainly on the source area characteristics is proposed: (i) mountain-fed, (ii) foothills-fed, (iii) plains-fed and (iv) mixed-fed rivers. Distinct differences are noted between these classes of river systems. Most rivers show evidence of channel movement, mainly by avulsion, but cut-offs also occur locally. The mountain-fed rivers are characterized by very high discharge and low suspended sediment concentration and the plains-fed rivers have relatively low discharge and high suspended sediment concentration. The foothill-fed rivers have moderate values of discharge and suspended sediment concentration. The mountain-fed rivers have built megafans of large extent, whereas the foothills-fed and plains-fed rivers have formed muddy interfan areas. Semi-quantitative estimates of water and sediment flux suggest that about 99·9% of the mass transfer into the plains is water, with the remaining 0·1% being sediment, and that 10% of the latter (0·01% of the total) is retained in the basin, the remainder being transferred to the Bengal Fan.  相似文献   

8.
Interactions between catchment variables and sediment transport processes in rivers are complex, and sediment transport behaviour during high‐flow events is not well documented. This paper presents an investigation into sediment transport processes in a short‐duration, high‐discharge event in the Burdekin River, a large sand‐ and gravel‐bed river in the monsoon‐ and cyclone‐influenced, semi‐arid tropics of north Queensland. The Burdekin's discharge is highly variable and strongly seasonal, with a recorded maximum of 40 400 m3 s?1. Sediment was sampled systematically across an 800 m wide, 12 m deep and straight reach using Helley‐Smith bedload and US P‐61 suspended sediment samplers over 16 days of a 29‐day discharge event in February and March 2000 (peak 11 155 m3 s?1). About 3·7 × 106 tonnes of suspended sediment and 3 × 105 tonnes of bedload are estimated to have been transported past the sample site during the flow event. The sediment load was predominantly supply limited. Wash load included clay, silt and very fine sand. The concentration of suspended bed material (including very coarse sand) varied with bedload transport rate, discharge and height above the bed. Bedload transport rate and changes in channel shape were greatest several days after peak discharge. Comparison between these data and sparse published data from other events on this river shows that the control on sediment load varies between supply limited and hydraulically limited transport, and that antecedent weather is an important control on suspended sediment concentration. Neither the empirical relationships widely used to estimate suspended sediment concentrations and bedload (e.g. Ackers & White, 1973) nor observations of sediment transport characteristics in ephemeral streams (e.g. Reid & Frostick, 1987) are directly applicable to this river.  相似文献   

9.
受埋深和复杂盐构造影响,深水Wilcox沉积研究难度大,开展大尺度源汇体系分析对理解墨西哥湾Wilcox沉积格局具有实际意义。通过对古科罗拉多(简称C)水系与古格兰德河(简称RG)水系相关研究成果的系统梳理,结合地震、钻井、岩芯与岩矿等资料,分析了墨西哥湾西北部深水沉积格局的演变特征及其储层意义。C水系和RG水系形成两个不同的源汇系统,源汇系统构成要素之间既有联系,也存在明显差异,物源区和搬运区各要素的时空变化决定了两大水系沉积物供给能力和深水沉积格局的变迁。古新世Wilcox沉积期,C水系沉积物供给强,在浅水陆架和深水盆地形成大规模三角洲和富砂海底扇体系,墨西哥湾西部Perdido带主要受该物源控制。始新世Wilcox沉积期,C水系物源供给减弱,海底扇规模减小,扇体轴部向东迁移,而RG水系沉积物供给增强,在陆架区形成高砂地比的三角洲体系,砂质沉积物进一步越过陆架形成西部海底扇,Perdido带浊积砂岩主要受该物源控制。广泛发育的浊积砂岩储层表明墨西哥海域Perdido带始新世Wilcox组具有较大的勘探潜力。  相似文献   

10.
In this report the state of knowledge of sediment transport by rivers of the Amazon drainage basin is reviewed. On an annual basis the Amazon river transports about 1200×106 tons of sediment from the South American continent to the ocean, which puts it among the world's largest rivers in this respect. The main source of sediment is erosion in the Andes mountains and this material is progressively diluted with sediment poor runoff from lowland draining tributaries. Almost half of the Amazon river transport is attributable to one tributary, the Rio Madeira (488×106 t/y). The Rio Negro, which drains the N crystalline shield, has a comparable water discharge to the Rio Madeira, but only contributes 7×106 t/y. In general the sediments in transport are about 1% organic carbon by weight and this results in an annual particulate carbon to the oceans of 13×106 t/y. Total carbon transport, particulate plus dissolved, is about twice this amount.  相似文献   

11.
Maps of the distributions of the four major clay minerals (smectite, illite, kaolinite and chlorite) in and around the Mississippi River drainage basin and in the Northern Gulf of Mexico have been produced using newly acquired data from erodible/alluvial terrestrial sediments and marine surface sediments, as well as from previously published data. East of the Rockies, North America can be divided into four, large, clay-mineral provinces: (1) the north-western Mississippi River watershed (smectite rich), (2) the Great Lakes area and eastern Mississippi River watershed (illite and chlorite rich), (3) the south-eastern United States (kaolinite rich) and (4) the Brazos River and south-western Mississippi River watersheds (illite and kaolinite rich). The clay mineral distributions in surface sediments of the present-day Gulf of Mexico are strongly influenced by three main factors: (1) by relative fluvial contributions: the Mississippi River delivers the bulk of the clay input to the Northern Gulf of Mexico whereas the Apalachicola, Mobile, Brazos and Rio Grande rivers inputs have more local influences; (2) by differential settling of various clay mineral species, which is identified for the first time in Northern Gulf of Mexico sediments; and (3) by oceanic current transport: the Gulf of Mexico surface and subsurface circulation distributes the clay-rich sediments from river mouth sources throughout the Northern Gulf of Mexico.  相似文献   

12.
The Pliocene-early Pleistocene history of the ancestral Rio Grande and Quaternary history of the Rio Mimbres in the southern Rio Grande rift, New Mexico, illustrate how axial rivers may alternately spill into and subsequently abandon extensional basins. Three types of spillover basins are recognized, based on the angle at which the axial river enters the basin and whether it descends the hanging wall dip slope or footwall scarp to reach the basin floor. In the Mimbres basin type, the axial river enters and flows through the spillover basin nearly parallel to the footwall scarp, resulting in a narrow belt of basin-axis-parallel channel sand bodies located near the footwall scarp. In contrast, an axial river may enter a spillover basin at a high angle to its axis, either descending the hanging wall dip slope (Columbus basin type) or footwall scarp (Tularosa basin type), and construct a fluvial fan, consisting of radiating distributary channels orientated nearly perpendicular to the basin axis. Faulting exerts significant control on river spillover by creating the topographic gaps through which the axial river moves and by terminating spillover by subsequently uplifting or tilting the gap. Spillover may also be autocyclic in origin as a result of aggradation to the level of a pre-existing gap, headward erosion creating and/or intersecting a gap, or simple river avulsion upstream of a gap. Predicting facies architecture in the three types of spillover basins is critical to successful subsurface exploration for hydrocarbon reservoirs, groundwater aquifers or placer mineral deposits.  相似文献   

13.
冲积河流泥沙输移幂律函数关系与不平衡输沙理论是对河道不平衡输沙同一物理现象的不同描述,两者既有区别也有联系。比较研究发现:对于恒定均匀流不平衡输沙过程,当输沙位于近平衡态时两者含沙量导函数表达式具有一阶近似等价性,当输沙远离平衡态时前者含沙量导函数中隐含考虑有泥沙恢复饱和系数的变化。基于两者等价性,推导建立了幂律函数指数计算表达式,表明指数随泥沙沉速、单宽流量和沿程距离而变化,且随着输移距离的增大呈指数衰减。基于前者含沙量导函数表达式结构特点,分析建立了相应泥沙恢复饱和系数变化的计算表达式。综合以上成果,改进提出了一种变幂指数的泥沙输移幂律函数计算模型。对库里·阿雷克沉沙池沿程断面输沙指数及含沙量计算结果表明,不同距离过水断面输沙指数的变化规律是合理的,含沙量计算值与实测值变化趋势基本符合。  相似文献   

14.
The partitioning of the total sediment load of a river into suspended load and bedload is an important problem in fluvial geomorphology, sedimentation engineering and sedimentology. Bedload transport rates are notoriously hard to measure and, at many sites, only suspended load data are available. Often the bedload fraction is estimated with ‘rule of thumb’ methods such as Maddock’s Table, which are inadequately field‐tested. Here, the partitioning of sediment load for the Pitzbach is discussed, an Austrian mountain stream for which high temporal resolution data on both bedload and suspended load are available. The available data show large scatter on all scales. The fraction of the total load transported in suspension may vary between zero and one at the Pitzbach, while its average decreases with rising discharge (i.e. bedload transport is more important during floods). Existing data on short‐term and long‐term partitioning is reviewed and an empirical equation to estimate bedload transport rates from measured suspended load transport rates is suggested. The partitioning averaged over a flood can vary strongly from event to event. Similar variations may occur in the year‐to‐year averages. Using published simultaneous short‐term field measurements of bedload and suspended load transport rates, Maddock’s Table is reviewed and updated. Long‐term average partitioning could be a function of the catchment geology, the fraction of the catchment covered by glaciers and the extent of forest, but the available data are insufficient to draw final conclusions. At a given drainage area, scatter is large, but the data show a minimal fraction of sediment transported in suspended load, which increases with increasing drainage area and with decreasing rock strength for gravel‐bed rivers, whereby in large catchments the bedload fraction is insignificant at ca 1%. For sand‐bed rivers, the bedload fraction may be substantial (30% to 50%) even for large catchments. However, available data are scarce and of varying quality. Long‐term partitioning varies widely among catchments and the available data are currently not sufficient to discriminate control parameters effectively.  相似文献   

15.
Dispersal of river sediments in coastal seas: Six contrasting cases   总被引:2,自引:0,他引:2  
The fate of sediment seaward of river mouths involves at least four stages: supply via plumes; initial deposition; resuspension and transport by marine processes; and long-term net accumulation. The processes that operate at each stage, and relative roles of each stage in governing the long-term accumulation patterns, vary appreciably with river regime and coastal ocean environment. To illustrate the diversity and illuminate the process of dispersal, information is synthesized for six systems: Amazon, Changjiang, Mississippi, Columbia, Purari, and Huanghe. These systems differ markedly in terms of water discharge, sediment discharge, and coastal energy regime and much of the diversity of dispersal patterns is attributed to these differences as well as to the temporal sequencing of river discharge relative to oceanographic transport processes. Although the sediment: water ratio of the discharge of the Mississippi River is 70 times less than that of the Huanghe, both of these systems exhibit rapid deposition and accumulation of sediments near the river mouths. In contrast, sediments dispersed by, the other four systems are transported greater distances from the mouths by oceanographic processes, and are accumulating over relatively wide areas.  相似文献   

16.
台湾山溪性小河流碎屑重矿物组成及其示踪意义   总被引:2,自引:1,他引:1  
台湾山溪性小河流每年向边缘海输入巨量沉积物,对东海陆架的沉积过程产生了显著的影响。本文分析台湾两条典型河流(兰阳溪和浊水溪)沉积物的全粒级碎屑重矿物组成,共鉴定出20种重矿物,但重量百分含量较低,为0.004%~0.116%。兰阳溪的主要重矿物组合为:锆石-菱镁矿-赤褐铁矿-锐钛矿-黄铁矿,浊水溪为:锆石-石榴石-赤褐铁矿-钛铁矿-锐钛矿-白钛石。研究流域的碎屑重矿物组成存在明显的沿程不均一性,指示出多数沉积物主要受到近源影响,从上游至下游重矿物组成的继承性较差。因此,基岩性质是河流碎屑重矿物组成的主要控制因素:兰阳溪和浊水溪的下游地区主要受各自流域内第四纪碎屑沉积物的贡献,上游地区则主要受到中央山脉庐山组的贡献。基岩控制起主导作用也使得重矿物指数如ATi、GZi和ZTR等难以恰当地应用于台湾山溪性小河流中。并且,大陆东部典型入海河流的重矿物组成与台湾河流存在明显区别:大陆入海河流中主要重矿物为磁铁矿和绿帘石;与之不同的是,兰阳溪河口富集锆石、菱镁矿和黄铁矿,浊水溪河口富集锆石和石榴石。这种差异主要反映了流域内基岩性质的不同。  相似文献   

17.
Hypoxic conditions in the coastal waters off Texas (USA) were observed since the late 1970s, but little is known about the causes of stratification that contribute to hypoxia formation. Typically, this hypoxia is attributed to downcoast (southwestward) advection of waters from the Mississippi–Atchafalaya River system. Here, we present evidence for a hypoxic event on the inner shelf of Texas coincident with the presence of freshwater linked to high flow of the Brazos River in Texas. These conclusions are based on hydrographic observations and isotopic measurements of waters on the inner shelf near the Brazos River mouth. These data characterize the development, breakdown, and dispersal of a hypoxic event lasting from June through September 2007 off the Texas coast. Oxygen isotope compositions of shelf water indicate that (1) discharge from the Brazos River was the principal source of freshwater and water column stratification during the 2007 event, and (2) during low Brazos River discharge in 2008, freshwater on the Texas shelf was derived mainly from the Mississippi–Atchafalaya River System. Based on these findings, we conclude that the Mississippi–Atchafalaya River System is not the sole cause of hypoxia in the northern Gulf of Mexico; however, more data are needed to determine the relative influence of the Texas versus Mississippi rivers during normal and low flow conditions of Texas rivers.  相似文献   

18.
辽东湾北部浅海区泥沙输送及其沉积特征   总被引:16,自引:1,他引:16  
苗丰民  李淑媛 《沉积学报》1996,14(4):114-121
根据实测资料,本文定量分析了辽东湾北部泥沙输送及其分布,并对辽河三角洲沉积区划作了初步讨论。研究表明本区泥沙以纵向搬运为特征。双台子河以西来沙和辽河西水道入海泥沙是区域东部拦门沙体和浅滩发育的主导因素。汛季大潮期,泥沙自西向东运移落淤在河口及毗邻浅水域;小潮期,泥沙除向东扩散外,大部泥沙向海方搬运。调查区可划分六个现代沉积作用区,即潮坪沉积区、辽河水下三角洲细粒沉积区、河口沙洲沉积区、波浪潮流冲蚀沉积区、河口冲积沉积区以及潮汐水道沉积区。  相似文献   

19.
Stable isotope data for the Hueco Bolson aquifer (Texas, USA and Chihuahua, Mexico) distinguish four water types. Two types relate to recharge from the Rio Grande: pre-dam (pre-1916) river water with oxygen-18 and deuterium (δ18O, δD, ‰) from (?11.9, ?90) to (?10.1, ?82), contrasts with present-day river water (?8.5, ?74) to (?5.3, ?56). Pre-dam water is found beneath the Rio Grande floodplain and Ciudad Juárez, and is mixed with post-dam river water beneath the floodplain. Two other types relate to recharge of local precipitation; evidence of temporal change of precipitation isotopes is present in both types. Recharge from the Franklin and Organ Mountains plots between (?10.9, ?76) and (?8.5, ?60) on the global meteoric water line (GMWL), and is found along the western side of the Hueco Bolson, north of the Rio Grande. Recharge from the Diablo Plateau plots on an evaporation trend originating on the GMWL near (?8.5, ?58). This water is found in the southeastern Hueco Bolson, north of the river; evaporation may be related to slow recharge through fine-grained sediment. Pre-dam water, recognizable by isotope composition, provides information on groundwater residence times in this and other dammed river basins.  相似文献   

20.
The Alaknanda and Bhagirathi Rivers originate in the mountainous regions of the Himalayas (Garhwal) and result in high sediment yields causing flood hazards downstream of the Ganga River and high sediment flux to the Bay of Bengal. The rivers are perennial, since runoff in these rivers is controlled by both precipitation and glacial melt. In the present study, three locations in the upper reaches of the Ganga River were monitored for 1 yr (daily observations of, more than >1000 samples) for suspended sediment concentrations. In addition, more than one hundred samples were collected from various locations of the Alaknanda and Bhagirathi Rivers at different periods to observe spatial and temporal variations in river suspensions. Further, multi-annual data (up to 40 yrs) of water flow and sediment concentrations were used for inferring the variations in water flow and sediment loads on longer time scales. In most previous studies of Himalayan Rivers, there has been a general lack of long term water flow and sediment load data. In the present study, we carried out high frequency sampling, considered long term discharge data and based on these information, discussed the temporal and spatial variations in water discharge and sediment loads in the rivers in the Himalayan region. The results show that, >75% of annual sediment loads are transported during the monsoon season (June through September). The annual physical weathering rates in the Alaknanda and Bhagirathi River basins at Devprayag are estimated to be 863 tons km−2 yr−1 (3.25 mm yr−1) and 907 tons km−2 yr−1 (3.42 mm yr−1) respectively, which are far in excess of the global average of 156 tons km−2 yr−1 (0.58 mm yr−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号