首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Andaman Forearc Basin(AFB) is asymmetric in configuration and filled with a ~6 kmthick pile of Neogene to Recent sediments(~4 s in two-way travel time:TWT) with distinct zonation.It shows gradual thinning up to ~3 km(0.8 s in TWT) towards the eastern end with a seabed gradient of 1:30.Thick deformed sediments ~2 s(TWT) of the Outerarc are associated with intense faulting and occasional folding caused by recent tectonics.Development of a series of faults within the upwarped sedimentary column of Oligocene top to Recent is observed with a rotated fault block.These features are manifestations of Recent igneous intrusion,and reveal the presence of a mild N–S compressional regime.Its effect on the AFB resulted in further uplift of sediments,which can now be seen as the Invisible Bank.Forward gravity modelling supporting our seismic interpretation reveals that it is associated with igneous intrusion from the Moho(~9 km depth),and also suggests that continental crust underlies the AFB.Strong Bottom Simulating Reflector(BSR)-like features in the Miocene sediments of Outerarc and Forearc basin at a depth of 0.6 s below the seabed suggest the inferred probable occurrence of gas hydrates in the AFB.  相似文献   

2.
Biotic forcing on river meandering is a highly debated topic in sedimentology. Vegetation is assumed to hold a vital role on channel stability and sinuosity, for example through bank stabilization and pedogenic production of cohesive clays. However, statistically solid and causal relationships between vegetation density and river sinuosity remain largely untested in natural systems. This study investigates physical and biotic forcings on channel sinuosity in the Bonneville Basin of Utah (USA), an endorheic depression flanked by active fluvial networks (‘washes’) that display diverse vegetation density and channel‐planform style. By means of remote sensing and ground‐data collection, 58 washes are considered, 0·1 to 90 km2 in surface area and drained by trunk channels <45 m wide and <1·2 m deep. Each wash is composed of a catchment basin connected downstream to an aggradational and distributive channel network. Statistically solid regressions highlight the primary roles played by base level and catchment size on fluvial morphogenesis. In contrast, no correlation is found between vegetation density and other parameters such as trunk‐channel width or surface area of the largest meander in a wash. Similarly, no statistical correlation exists between vegetation density and meander size or sinuosity index. Rather, larger and more sinuous meanders are invariably associated with lower vegetation density. These results are corroborated by field evidence showing that sparse vegetation promotes flow disturbance, channel branching and bar braiding instead of stabilizing sediment surfaces. Thus, river meandering is attributed to cohesion offered by mud retention within the endorheic basin, as well as discharge and stream‐power modulation along bifurcating and low‐gradient channel reaches. Hence, this work demonstrates how meandering‐channel patterns may arise from entirely physical forcings in the absence of vegetation.  相似文献   

3.
利用高分辨率三维地震资料,对西非尼日利亚海上OML130地区近海底深水沉积进行了研究.剖析了深水水道体系各沉积单元地震反射特征,详细论述了水道与堤岸单元的外形几何特征及内部充填特征,即单一水道在剖面上为V字型,下部地震反射为强反射、低连续,代表相对粗颗粒碎屑沉积,顶部为中强振幅、连续性强、水平层状地震反射特征,反映了水道发育晩期废弃充填的特点,平面形态为高弯度条带状.在分析水道下切侵蚀与充填特征的基础之上,总结了水道体系内水道之间的3种叠置样式,研究表明平面上类似曲流河沉积体系的水道体系内,后期单一水道的发生不一定是在前期水道基础之上直接侧向迁移与顺流演化,而可能是另一个新的沉积过程,因而在不同位置展现不同的水道叠置样式.通过分析水道体系形成演化的主要影响因素,结合研究区浅层与深层资料,提出了被动大陆边缘深水水道体系的沉积模式.研究认为,在陆坡上某一区域,在物源供给及海平面变化,尤其是流域地形(构造或沉积所致)影响下,使得水道体系、朵叶体系既可以同时出现,也可以在顺流方向交替出现.借助近海底的高分辨率三维地震资料对深水沉积进行研究,可以揭示沉积单元特征,从而建立研究区内适性强的沉积演化模式,为深水油气勘探与开发提供更为成功的服务.  相似文献   

4.
The northern Gioia Basin of the south‐east Tyrrhenian Sea is a slope basin, ~ 20 km wide and ~ 50 km long, with a bathymetry of ≤ 1300 m, bounded by the Calabro‐Sicilian landmass and the Aeolian Island Arc. Coarse sediment is supplied from the Calabrian margin, where the shelf is very narrow to non‐existent, whereas the wider shelf on the Sicilian margin prevents supply by storing river‐fed sediments. The basin is dominated by the Gioia–Mesima canyon/channel system paralleled by a tongue‐shaped depositional lobe. Multibeam bathymetric surveys, sea floor reflectivity data and airgun seismic profiles reveal the recent evolution of the submarine system. Slope canyons and basin‐floor levéed channels formed where major rivers built deltas at the shelfless Calabrian margin and strong hyperpycnal flows predominated. The channels are a few hundred metres wide and a few tens of metres deep, with a downslope change from a straight to meandering pattern where the slope gradient decreases from 3·2% to 1·7%. The Mesima Channel has its lower segment abandoned because of avulsion and crevasse‐splay formation at an upslope bend. The adjacent Gioia Channel has had its upper segment straightened and lower segment entrenched because of erosional deepening of the Stromboli Valley into which it debouches and which acts as the local base level. Overbank features include levées, coalescent splays and ‘yazoo’ channels; their nature and surface characteristics depend upon the magnitude and sediment grain‐size of spill‐over flows. On an adjoining narrow shelf sliver of the Calabrian margin, in contrast, the coalescing plumes of sediment suspension supplied by an array of smaller coastal streams were apparently spilling over the shelf edge, scouring a funnel‐shaped bypass depression with chutes and forming an elongate, non‐channellized depositional lobe at the slope base. The study demonstrates the impact of sediment source type, shelf width, basin‐floor gradient and base‐level change on the style of deep‐water sedimentation.  相似文献   

5.
Detailed studies of petrology, palaeocurrent direction, paiaeogeomorphology and palaeohydrody-namics have been conducted for the Permian-Triassic Cangfanggou Group in the foredeep of the Bogda Mountains in the southeastern Junggar Basin, Xinjiang. Sedimentary environments and fades of alluvial fans and pebbly braided rivers, sandy braided rivers, meandering rivers, low-sinuosity rivers, swamps and fresh-water lakes are recognized in the group. Climate and tectonics of source areas strongly controlled the evolution of the sedimentary environments and facies in the foredeep. The block faulting in the Bogda Mountains increased the ground slope, which led to a drastic increase in the grain size of the sediments. Humid climate, being beneficial to plant growth, would provide protection of channel banks and at the same time weaken chemical weathering in the source area, thus large amounts of clay materials are available for the formation of clay plugs. As a result, stable banks and meandering river belts are  相似文献   

6.
The large tsunami, which was generated by an earthquake on 26 December 2004, affected most of the countries around the Indian Ocean. A total of 48 tsunamigenic surface sediments and nine core samples have been collected from various coastal geomorphological features such as beaches, estuaries/creeks and mangrove areas in the Andaman Islands. These samples were analysed for textural analysis and geochemical studies to evaluate effects of the tsunami on sediment contamination. The studied sediments, deposited by the 26 December 2004 tsunami in Andaman group of islands, belong to poorly sorted, coarse to medium sands. Generally the concentration of heavy metals in the tsunamigenic surface sediments is mainly in the order of Cu > Mn > Fe > Zn > Pb during the post-tsunami (2005) and Cu > Fe > Mn > Zn > Pb during the post-monsoon (2008). The analysed core samples show that tsunami sediments have been preserved at certain depths from the sampling locations and indicate that they were derived from shallow littoral to neritic depths. The approximate width of deposits deposited by the 26 December 2004 Tsunami in Diglipur and Mayabandar areas (North Andaman) is ~10 cm, in Rangat and Baratang (Middle Andaman) the thickness of the deposits is ~15 cm. In Chidiyatapu, Junglighat, Rutland Islands and Havelock Island (South Andaman) the thickness of the deposits is ~30, ~8, ~25 and ~5 cm, respectively, and in Hut Bay (Little Andaman) the thickness of the deposits is about ~15 cm.  相似文献   

7.
Strain reversal of structural/stratigraphic profiles at different scales in the western Lachlan Orogen provides a perspective on original crustal thickness estimates, the former depositional basin width of the proto-western Lachlan Orogen, the original sedimentary-fan thickness, and the possible length extent of lower crust lost by subduction. Retrodeformation using strain-reversal techniques allows basin reconstruction giving an original width of the western Lachlan Orogen basin receptor of between 800 km (minimum) and ~1150 km (maximum), depending on the amount of stratal duplication allowed in the turbidites. Crude area balancing of the regional cross-section, adding in sectional volume lost by erosion and assuming strain compatibility between the upper and lower crust, suggests that the predeformation crustal thickness ranges between 15 km and ~21 km, with a lower crustal thickness (oceanic lithosphere) of ~9 km and a turbidite fan thickness of ~6 km (minimum) and ~12 km (maximum allowable), respectively. Disparity between the calculated fan thickness and that derived from measured stratigraphic sections adjusted for strain (~6 km) indicates that some form of crustal stacking must be important in structural thickening of the turbidite crustal component. By varying shortening due to fault stacking, mass balance dictates the mismatch of the upper crustal (uc) and lower crustal (lc) retrodeformed lengths, and therefore provides an estimate of lower crustal loss by subduction. End members range from: (i) a 12 km-thick fan without fault duplication, a basin width of ~800 km where uc = lc giving no lower crustal loss by subduction; to (ii) a ~6 km fan, requiring duplication by faulting, a basin of ~1150 km where uc > lc, and ~360 km of lower crust length (~30%) lost by subduction. This suggests that the total thickness of underplated igneous material in the western Lachlan Orogen is low, probably < ~2 km.  相似文献   

8.
高弯度曲流河砂体规模定量表征研究   总被引:2,自引:0,他引:2  
曲流河砂体储层是重要的陆相碎屑岩储层类型,采用“将今论古”的思路,以一系列现代高弯度曲流河的基础数据分级构建定量知识库,实现对地下砂体规模的定量表征。从曲流河成因和形态方面对定量表征开展可行性分析,在相对平坦的地形条件下,当河流通过增加河道弯度和加长流路来减小河道坡降比以趋于输沙平衡且做功最少,同时堤岸主要由细粒物质组成时,河型向曲流河转化,河道平面几何形态呈正弦派生曲线,在演化过程中河道形态和砂体规模保持良好的规律性;结合储层构型理论的分级表征思路,基于砂体规模的不确定性,通过现代沉积数据选取恰当的置信水平,分级构建多组经验公式,形成高弯度曲流河定量知识库;压实减孔量是沉积物埋藏后体积减小的主要因素,通过去压实校正,建立现代沉积与地下砂体的定量联系,对地下曲流河砂体规模进行原始沉积状态下的定量表征。经实际资料验证,结果客观准确。  相似文献   

9.
准噶尔盆地中部下侏罗统三工河组二段广泛发育三角洲相。二段下部在研究区东北部以大型辫状河三角洲前缘沉积夹滑动浊流沉积为特征,西部以扇三角洲沉积为特征,在中部两者交汇叠加。二段上部在东北部和西部都为曲流河三角洲前缘亚相沉积,在区中部交汇叠加。三工河组二段砂岩发育大量原生孔隙和次生孔隙,为有利储层。沉积微相类型控制砂体储集性能,成岩作用对砂岩储集性的改造并不强烈。二段下部的辫状河三角洲前缘河道微相及扇三角洲前缘河道微相具有大孔中渗的特点,为Ⅰ、Ⅱ类储层;上部的曲流河三角洲前缘分支河道及前缘席状砂微相,具中孔中、低渗的特点,为Ⅱ和Ⅲ类储层。  相似文献   

10.
The east coast of Tamil Nadu, particularly Chennai–Nagapattinam was worstly affected by the 2004 tsunami. Run-up shows remarkable variation of 2–8 m with maximum at Cuddalore port and minimum at Marina beach. Factors like width of dislocation, source distance, orientation of the coastline, and bathymetry guide tsunami surge. While most of the parameters are similar in characteristics for the entire coast, it is presumed that variation in bathymetry have played an imperative role in guiding run-up. Based on gradient bathymetry, up to 50 km off the coast was classified into five classes, viz shallow, moderate, and steep continental slope and continental shelf. Statistical analysis was performed between offshore bathymetry and run-up. The results clearly indicate that moderate slopes have guided tsunami to attain maximum height. While steeper slope have acted as barriers and gentle slopes have shoaled tsunami surge resulting in reduced run-up height. The study offers early but potentially meaningful guidance on the role of bathymetry on run-up.  相似文献   

11.
安哥拉深水水道地质知识库建立及应用   总被引:1,自引:0,他引:1  
利用浅层(上新统)三维高频地震资料的剖面、切片和属性信息,对安哥拉陆坡区深水水道特征和定量关系进行研究,在复合水道和单一水道两个层次上建立了安哥拉地区浊积水道定量化地质知识库.研究结果表明:研究区单一水道活动方式类似于曲流河点坝模式,即单一水道仅沿侧向(垂直于古流向)整体迁移,不存在整体“下游扫动”分量,且在平面上其侧积复合体呈“同心半环状”,单一水道的砂体以垂向加积方式充填在轴部,厚度向边部减薄;单一水道的宽度与深度、弯曲弧长与弯曲度之间存在较好的正相关性;复合水道样式按照内部单一水道的活动方式分为(Ⅰ)侧向迁移、(Ⅱ)斜列迁移和(Ⅲ)摆动迁移三类模式,且(Ⅰ)类主要发育在高弯曲段(弯曲度>1.3),Ⅱ类和Ⅲ类主要发育在低弯曲段(1<弯曲度≤1.3);该地质知识库成功应用到实际三维地质建模中,具有推广价值.本文研究不仅可以完善深水水道定量分布模式,而且可以有效降低此类油田开发风险,具有理论和实际意义.  相似文献   

12.
In this study, the distribution of channel‐bed sediment facies in the lowermost Mississippi River is analysed using multibeam data, complemented by sidescan sonar and compressed high‐intensity radar pulse seismic data, as well as grab and core samples of bed material. The channel bed is composed of a discontinuous layer of alluvial sediment and a relict substratum that is exposed on the channel bed and sidewalls. The consolidated substratum is made up of latest Pleistocene and Early Holocene fluvio‐deltaic deposits and is preferentially exposed in the deepest thalweg segments and on channel sidewalls in river bends. The exposed substratum commonly displays a suite of erosional features, including flutes that are quantitatively similar in form to those produced under known laboratory conditions. A total of five bed facies are mapped, three of which include modern alluvial deposits and two facies that are associated with the relict substratum. A radius of curvature analysis applied to the Mississippi River centreline demonstrates that the reach‐scale distribution of channel‐bed facies is related to river planform. From a broader perspective, the distribution of channel‐bed facies is related to channel sinuosity — higher sinuosity promotes greater substratum exposure at the expense of alluvial sediment. For example, the ratio of alluvial cover to substratum is ca 1·5:1 for a 45 km segment of the river that has a sinuosity of 1·76 and this ratio increases to ca 3:1 for a 120 km segment of the river that has a sinuosity of 1·21. The exposed substratum is interpreted as bedrock and, given the relative coverage of alluvial sediment in the channel, the lowermost Mississippi River can be classified as a mixed bedrock‐alluvial channel. The analyses demonstrate that a mixed bedrock‐alluvial channel boundary can be associated with low‐gradient and sand‐bed rivers near their marine outlet.  相似文献   

13.
Abstract: Deep-water turbidite channels have attracted much attention as a focused issue in petroleum exploration and development. Extensive studies have been performed on the architecture of turbidite channels, and most researches have focused on their geometric shapes, sedimentary processes and controlling factors. However, little attention has been paid to the distribution patterns, distribution laws and quantitative studies of composite sand bodies of turbidite channels. Taken one slope area of the Niger Delta Basin as an example, this study conducted a semi-quantitative to quantitative analysis on architecture of composite sand bodies of turbidite channels based on cores, well logging and seismic surveys. It is shown that turbidite channel systems can be classified as confined and unconfined channel systems. For confined channel systems, the vertical evolution process involves four stages. The sinuosity of a channel system is controlled by slope, with a negative power function relationship between them. When slope gradient reaches four degrees, the channel system is nearly straight. Based on the migration direction and migration amount of single channels within channel complexes, channel composite patterns can be divided into four classes (the lateral composite, en-echelon composite, swing composite and vertical composite) and several subclasses. Various channel composite patterns show specific distribution laws spatially. For meandering channel complexes at the middle-late evolution stage of confined channel systems, the lateral migration amongst single channels shows the features of integrity and succession. The sinuosity of single channels in the late period is greater than that in the early period, and cut-offs may occur locally when the sinuosity is larger than five degrees. This study provides a better understanding for the geological theory of deep-water sedimentary, and also improves exploitation benefits of this type of reservoirs.  相似文献   

14.
选取受构造活动影响较弱的Rio Muni盆地近现代深水水道为研究样本,分段测量各水道的底床坡度和曲率,并进行相关性分析。研究认为:深水水道底床坡度与曲率呈幂函数关系,水道曲率随着坡度的增大而减小;但不同坡度条件下曲率变化速率表现出明显的差异——一般随坡度的减小,单位坡度变化范围内,曲率的增幅加大。坡度对水道曲率的控制作用主要体现在水道切谷底形和内部充填结构2个方面,其中对后者的影响作用最为显著。但实质上,坡度是通过对水道内部沉积物能量的控制,进而影响了其侵蚀及充填能力,最终使水道平面形态和内部充填结构发生变化。  相似文献   

15.
库车坳陷中生界三种类型三角洲的比较研究   总被引:34,自引:3,他引:31  
库车坳陷中生代呈北陡南缓的箕状,其内连续沉积了一套厚度巨大的冲积-湖泊碎屑沉积体。湖缘扇三角洲、辫状河三角洲及曲流河三角洲非常发育,它们的特征清楚、区别明显:(1) 扇三角洲为突发的、瞬时的灾变事件产生的重力流沉积与间灾变期正常牵引流沉积交替进行,并以重力流沉积占主导地位:其平原亚相类似于冲积扇沉积,河道砂体呈透镜状,厚度小、变化大。(2) 辫状河三角洲为正常的河流牵引流沉积,通常受到湍急洪水控制,为季节性沉积作用产物;平原亚相类似于辫状河沉积;河道沉积发育,砂体总体呈层状,内部由若干个下粗上细的河道砂岩透镜体相互叠置而成,交错层发育,尤以侧积交错层异常发育为特征,岩性以颗粒支撑的砂砾岩为主。(3) 曲流河三角洲为正常的河流牵引流沉积,沉积物输入量为相对连续的终年河流的产物,平原亚相类似于曲流河沉积:河道砂体呈层状,交错层发育,类型丰富。当然,这三种类型三角洲之间亦存在着密不可分的内在联系,不仅同一时期内可以并存,而且随着地质历史的演化可相互转化。  相似文献   

16.
断陷湖盆缓坡河流成因砂体是重要的油气储集单元。根据岩心观察、钻井岩/电特征并结合地震沉积学方法,分析断陷湖盆缓坡河流沉积体系和砂体时空分布特征,能为油气精细勘探提供可靠的依据。研究表明,霸县凹陷文安斜坡中部东营组三段周期性地发育4条呈NE-SW辫-曲复合型河流沉积,由河道沉积、砂坝沉积和泛滥平原沉积3种亚相以及辫状河道、曲流河道、砂质河道砂坝、泥质河道砂坝、决口扇和泛滥平原泥6种微相构成。河流展布方向与正北夹角(α)为40°~65°,河道视宽度(l)为1.47~2.64 km,主河道的视宽度(w)为0.03~0.58 km,河道带测量厚度(H)为16.0~52.0 m,主河道测量厚度(D)为8.0~23.0 m,主河道钻井解释厚度(d)为1~16.5 m,平均厚度6.5 m。断陷盆地断-坳转换期缓坡河流相沉积受控于盆地构造、气候、物源、沉积物压实及流速等多因素。边界断层差异性活动导致的盆地不均衡沉降是缓坡带河流相类型及砂体空间分布的主控因素。气候周期性变化通过流量控制了河型,调整和改造早期河道沉积物,决定了微相和砂体组合。斜坡中外带是粗粒沉积物主要卸载区,河道及河道砂坝等优势储集砂体呈条带状连片分布,斜坡内带形成的厚层泥岩限制油气垂向运移和侧向充注。斜坡中外带被油源断层切割,在油气运移路径上受晚期断层切割的厚层河道及河道砂坝是岩性-构造油气藏勘探的潜力区域。  相似文献   

17.
ABSTRACT

The North Palawan Canyon is a large, previously undescribed submarine canyon that incises the continental shelf and slope of the southern South China Sea. Using multibeam bathymetric data and two-dimensional seismic reflection data, we have characterized current canyon morphology and documented lower-canyon migration in cross-section since the middle Miocene. We have also explored possible causes for the ancient migrations. The 175 km modern canyon is flanked by sediment waves outside its northern bank, and depositional lobes fan out from the canyon mouth. Over the past 15 million years, at least 20 cycles of significant canyon incising and infilling have occurred, along with significant canyon migration. This migration, as recorded in the sedimentary (seismic) record near a leftward bend in the canyon’s lower reach, can be divided into three stages: southward migration during the middle Miocene (averaging 1.24 km/m.y.), northward migration during the late Miocene (1.34 km/m.y.), and stationarity since the Pliocene. The overall zigzagging pattern of the canyon thalweg (as seen in cross-section through time) results from lateral and downstream migration in an aggradational environment. The early (middle to late Miocene) rapid zigzagging migration of the lower main channel, first southward and then northward, was probably associated with the strong collision of the North Palawan Block with the Philippine Mobile Belt, which would have triggered submarine instabilities and deformed the seafloor. The more recent (Pliocene and later) slowing or cessation of canyon migration is likely the result of the now quieter tectonic setting and long-term climatic cooling and drying.  相似文献   

18.
The north Egyptian continental margin has undergone passive margin subsidence since the opening of Tethys, but its post-Mesozoic history has been interrupted by tectonic events that include a phase of extensional faulting in the Late Miocene. This study characterizes the geometry and distribution of Late Miocene normal faulting beneath the northern Nile Delta and addresses the relationship of this faulting to the north–northwestwards propagation of Red Sea–Gulf of Suez rifting at this time. Structural interpretation of a 2D grid of seismic reflection data has defined a Tortonian–Messinian syn-rift megasequence, when tied to well data. Normal fault correlations between seismic lines are constrained by the mapping of fault-related folds. Faults are evenly distributed across the study area and are found to strike predominantly NW–SE to NNW–SSE, with some N–S faults in the north. Faults are interpreted to be <10 km in length, typically in the range 3–6 km. This suggests that rifting in the northern Nile Delta did not proceed beyond a continental rift initiation phase, with distributed, relatively small-scale faults. This contrasts with the Gulf of Suez Rift, where faulting continued to a more evolved fault localization phase, with block-bounding faults >25 km in length. Results suggest that future studies could quantify fault evolution from rift initiation to fault linkage to displacement localization, by studying the spatial variation in faulting from the northern Nile Delta, south–southeastwards to the Gulf of Suez Rift.  相似文献   

19.
Deep‐water sediments in the Molasse Basin, Austria, were deposited in a narrow foreland basin dominated by a large channel belt located between the steep Alpine fold and thrust belt to the south and the gentler northern slope off the Bohemian Massif. Several gas fields occur outside the channel belt, along the outer bend of a large meander. Accumulation of these overbank sediments reflects a complicated interplay between slope accommodation and debris‐flow and turbidity‐flow interaction within the channel. The tectonically oversteepened northern slope of the basin (ca 2 to 3°) developed a regionally important erosional surface, the Northern Slope Unconformity, which can be traced seismically for >100 km in an east–west direction and >20 km from the channel to the north. The slope preserves numerous gullies sourced from the north that eroded into the channel belt. These gullies were ca 20 km long, <1 km wide and ca 200 m deep. As the channel aggraded, largely inactive and empty gullies served as entry points into the overbank area for turbidity currents within the axial channel. Subsequently, debris‐flow mounds, 7 km wide and >15 km long, plugged and forced the main channel to step abruptly ca 7 km to the south. This resulted in development of an abrupt turn in the channel pathway that propagated to the east and probably played a role in forming a sinuous channel later. As debris‐flow topography was healed, flows spread out onto narrow area between the main channel and northern slope forming a broad fine‐grained apron that serves as the main gas reservoir in this area. This model of the overbank splay formation and the resulting stratigraphic architecture within the confined basin could be applied in modern and ancient systems or for subsurface hydrocarbon reservoirs where three‐dimensional seismic‐reflection data is limited. This study elucidates the geomorphology of the oversteepened slope of the under‐riding plate and its effects on the sedimentation.  相似文献   

20.
A detailed deep 3D geological model is an important basis for many types of exploration and resource modelling. Renewed interest in the structure of the Sydney Basin, driven primarily by sequestration studies, geothermal studies and coal seam gas exploration, has highlighted the need for a model of deep basin geology, structure and thermal state. Here, we combine gravity modelling, seismic reflection surveys, borehole drilling results and other relevant information to develop a deep 3D geological model of the Sydney Basin. The structure of the Sydney Basin is characteristic of a typical intracontinental rift basin, with a deep north–south orientated channel in the Lachlan Fold Belt basement, filled with up to 4 km of rift volcanics, and overlain with Permo-Triassic sediments up to 4 km thick. The deep regional architecture presented in this study will form the framework for more detailed geological, hydrological and geothermal models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号