首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
《Sedimentology》2018,65(6):1918-1946
In southern Patagonia, outcrops of the Upper Cretaceous Cerro Toro Formation preserve a >150 km long deep‐water axial channel belt in the Magallanes–Austral Basin, providing a unique opportunity to investigate longitudinal variations in the depositional characteristics of a deep‐water channel system. This study documents sedimentological, stratigraphical and geochronological data from the Cerro Toro Formation in the Argentine sector of the basin. New results are integrated with previous work from the Chilean basin sector to conduct a basin‐scale comparison of the timing of deposition, provenance and lithofacies proportions. The Cerro Toro channel belt includes a nearly 1000 m thick section characterized by high‐density turbidites and mass‐wasting deposits. Two ash beds from the base of the section yield U–Pb zircon ages of 90·4 ± 2 Ma and 88·0 ± 3 Ma, indicating similar initiation ages as documented in the Chilean sector. The U–Pb detrital zircon age spectra from samples in the study area reveal similar provenance trends to samples from the Chilean basin sector, with peak age populations at 310 to 260 Ma, 160 to 135 Ma and 110 to 82 Ma. The maximum depositional age of the channel belt in the Argentine sector is 87·8 ± 1·5 Ma and all new geochronology data corroborate an 86 to 80 Ma depositional age for the main Cerro Toro channel belt. Statistical analyses of 7370 beds from nearly 8000 m of new and previously published stratigraphic sections along the entire outcrop belt suggest progressive variations in the down‐system proportion of lithofacies. In the up‐slope region, lithofacies representing mass wasting processes (for example, debris‐flow and mass‐transport deposits) account for ca 29% of the stratigraphic thickness, as opposed to 5% in the down‐slope region of the channel belt, where turbidity current deposits are more prevalent. The proportion of beds >1 m thick also decreases systematically down slope, particularly for conglomeratic turbidite deposits. This work highlights that: (i) the proportion of thick beds and distribution of lithofacies are key down‐system changes in the stratigraphic fill of this deep‐water channel belt; (ii) detrital zircon trends suggest a relatively well‐mixed longitudinal depositional system; and (iii) geochronology of the main Cerro Toro outcrop belt supports but does not necessitate the model of a single, roughly age‐equivalent, channel system. This study has implications for understanding the downslope variability in depositional processes, stratigraphic architecture and reservoir quality of submarine channel systems.  相似文献   

2.
Sea‐floor topography of deep‐water folds is widely considered to have a major impact on turbidity currents and their depositional systems, but understanding the flow response to such features was limited mainly to conceptual notions inspired by small‐scale laboratory experiments. High‐resolution three‐dimensional numerical experiments can compensate for the lack of natural‐scale flow observations. The present study combines numerical modelling of thrusts with fault‐propagation folds by Trishear3D software with computational fluid dynamics simulations of a natural‐scale unconfined turbidity current by MassFlow‐3D? software. The study reveals the hydraulic and depositional responses of a turbidity current (ca 50 m thick) to typical topographic features that it might encounter in an orthogonal incidence on a sea‐floor deep‐water fold and thrust belt. The supercritical current (ca 10 m sec?1) decelerated and thickened due to the hydraulic jump on the fold backlimb counter‐slope, where a reverse overflow formed through current self‐reflection and a reverse underflow was issued by backward squeezing of a dense near‐bed sediment load. The reverse flows were re‐feeding sediment to the parental current, reducing its waning rate and extending its runout. The low‐efficiency current, carrying sand and silt, outran a downslope distance of >17 km with only modest deposition (<0·2 m) beyond the fold. Most of the flow volume diverted sideways along the backlimb to surround the fold and spread further downslope, with some overspill across the fold and another hydraulic jump at the forelimb toe. In the case of a segmented fold, a large part of the flow went downslope through the segment boundary. Preferential deposition (0·2 to 1·8 m) occurred on the fold backlimb and directly upslope, and on the forelimb slope in the case of a smaller fold. The spatial patterns of sand entrapment revealed by the study may serve as guidelines for assessing the influence of substrate folds on turbiditic sedimentation in a basin.  相似文献   

3.
Contourite drift systems form a significant component of the marine clastic sedimentary record. Although contourites form in all tectonic settings, few studies have described their development along convergent margins; such characterization is needed to underpin oceanographic and palaeoenvironmental studies in active settings. This study is the first to document contourite drift development along the Hikurangi subduction margin of New Zealand. Integration of bathymetric, seismic and well data enables five classes of drift to be recognized around the subduction wedge, occurring in three principal associations: (i) an upper slope drift association of giant elongate mounded (ca 150 km long, 50 km wide and up to 1100 m thick) and plastered drifts (ca 300 km long, 8 km wide and <600 m thick), which occurs upon and inboard of a major intrabasinal thrust‐cored high, whose long axis parallels the coast; shallow bottom currents disperse sub‐parallel to this axis; (ii) a spatiotemporally discontinuous association of confined and mounded hybrid drifts (ca 500 m long, <2 km wide and up to 500 m thick) that occurs along the mid‐to‐outer slope domain of the wedge, recording the interaction of along‐slope and downslope currents within trench‐slope basins; and (iii) a trench fill assemblage that implies the passage of abyssal bottom currents across a 40 km reach of the trench‐axial Hikurangi Channel‐levée, with associated modification of the channel form and of overbank sediment waves. The fundamental presence of contourites along this margin appears to depend on the orientation and strength of oceanographic bottom currents. However, drift type and evolution vary depending on the slope gradient and the presence of irregular seafloor topography created by tectonic structures. The documented drifts are generally smaller, less continuous, and develop more intermittently than similar styles of drifts documented on passive margins; this mode of occurrence may be characteristic of contourite development on convergent margins.  相似文献   

4.
Coarse‐grained deep‐water strata of the Cerro Toro Formation in the Cordillera Manuel Señoret, southern Chile, represent the deposits of a major channel belt (4 to 8 km wide by >100 km long) that occupied the foredeep of the Magallanes basin during the Late Cretaceous. Channel belt deposits comprise a ca 400 m thick conglomeratic interval (informally named the ‘Lago Sofia Member’) encased in bathyal fine‐grained units. Facies of the Lago Sofia Member include sandy matrix conglomerate (that show evidence of traction‐dominated deposition and sedimentation from turbulent gravity flows), muddy matrix conglomerate (graded units interpreted as coarse‐grained slurry‐flow deposits) and massive sandstone beds (high‐density turbidity current deposits). Interbedded sandstone and mudstone intervals are present locally, interpreted as inner levée deposits. The channel belt was characterized by a low sinuousity planform architecture, as inferred from outcrop mapping and extensive palaeocurrent measurements. Laterally adjacent to the Lago Sofia Member are interbedded mudstone and sandstone facies derived from gravity flows that spilled over the channel belt margin. A levée interpretation for these fine‐grained units is based on several observations, which include: (i) palaeocurrent measurements that indicate flows diverged (50° to 100°) once they spilled over the confining channel margin; (ii) sandstone beds progressively thin, away from the channel belt margin; (iii) evidence that the eroded channel base was not very well indurated, including a stepped margin and injection of coarse‐grained channel material into surrounding fine‐grained units; and (iv) the presence of sedimentary features common to levées, including slumped units inferring depositional slopes dipping away from the channel margin, lenticular sandstone beds thinning distally from the channel margin, soft sediment deformation and climbing ripples. The tectonic setting and foredeep architecture influenced deposition in the axial channel belt. A significant downstream constriction of the channel belt is reflected by a transition from more tabular units to an internal architecture dominated by lenticular beds associated with a substantially increased degree of scour. Differential propagation of the fold‐thrust belt from the west is speculated to have had a major control on basin, and subsequently channel, width. The confining influence of the basin slopes that paralleled the channel belt, as well as the likelihood that numerous conduits fed into the basin along the length of the active fold‐thrust belt to the west, suggest that proximal–distal relationships observed from large channels in passive margin settings are not necessarily applicable to axial channels in elongate basins.  相似文献   

5.
Submarine turbidity currents are one of the most important processes for moving sediment across our planet; they are hazardous to offshore infrastructure, deposit petroleum reservoirs worldwide, and may record tsunamigenic landslides. However, there are few studies that have monitored these submarine flows in action, and even fewer studies that have combined direct monitoring with longer‐term records from core and seismic data of deposits. This article provides one of the most complete studies yet of a turbidity current system. The aim here is to understand what controls changes in flow frequency and character along the turbidite system. The study area is a 12 km long delta‐fed fjord (Howe Sound) in British Columbia, Canada. Over 100 often powerful (up to 2 to 3 m sec?1) events occur each year in the highly‐active proximal channels, which extend for 1 to 2 km from the delta lip. About half of these events reach the lobes at the channel mouths. However, flow frequency decreases rapidly once these initially sand‐rich flows become unconfined, and only one to five flows run out across the mid‐slope each year. Many of these sand‐rich, channelized, delta‐sourced flows therefore dissipated over a few hundred metres, once unconfined, rather than eroding and igniting. Upflow migrating bedforms indicate that supercritical flow dominated in the proximal channels and lobes, and also across the unconfined mid‐slope. These supercritical flows deposited thick sand beds in proximal channels and lobes, but thinner and finer beds on the unconfined mid‐slope. The distal flat basin records far larger volume and more hazardous events that have a recurrence interval of ca 100 years. This study shows how sand‐rich delta‐fed flows dissipate rapidly once they become unconfined, that supercritical flows dominate in both confined and unconfined settings, and how a second type of more hazardous, and much less frequent event is linked to a different scale of margin failure.  相似文献   

6.
This paper documents a subsurface trace fossil and ichnofabric study of the proximal parts of a structurally confined and channelized sand‐rich, lower slope and proximal basin‐floor deep‐marine system in the Middle Eocene Ainsa basin, Spanish Pyrenees. Five depositional environments are recognized based on sedimentary facies associations, depositional architecture and stratigraphic context (channel axis, channel off‐axis, channel margin, leveé‐overbank and interfan), as well as a channel abandonment phase. Each environment is characterized by distinct and recurring ichnofabrics. Ichnological measurements and observations were recorded from six cores recovered from six wells drilled at a spacing of between 400 m and 500 m at outcrop, and totalling 1213 m in length. From channel axis to levée‐overbank environments, there is a trend of increasing bioturbation intensity and ichnodiversity. Ichnofabrics in channel axis and channel off‐axis environments are characterized by low bioturbation intensity and low ichnodiversity. Thalassinoides‐dominated firmground ichnofabrics associated with erosive sediment gravity flows are common in these environments. In contrast, channel margin and levée‐overbank environments are characterized by ichnofabrics associated with high bioturbation intensity and ichnodiversity. Sediments of the interfan are characterized by the highest bioturbation intensity, associated with burrow mottling and an absence of primary sedimentary structures. This paper demonstrates that in core‐based studies, ichnofabric analysis is an important and valuable tool in discriminating between different environments in channelized deep‐marine siliciclastic systems. The results of this study should find wide applicability in reservoir characterization studies in the petroleum industry, in field‐based analogue ichnofabric studies and other core‐based studies in deep‐water siliciclastic systems worldwide such as the Integrated Ocean Drilling Program.  相似文献   

7.
DONALD R. LOWE 《Sedimentology》2012,59(7):2042-2070
Deposits of submarine debris flows can build up substantial topography on the sea floor. The resulting sea floor morphology can strongly influence the pathways of and deposition from subsequent turbidity currents. Map views of sea floor morphology are available for parts of the modern sea floor and from high‐resolution seismic‐reflection data. However, these data sets usually lack lithological information. In contrast, outcrops provide cross‐sectional and lateral stratigraphic details of deep‐water strata with superb lithological control but provide little information on sea floor morphology. Here, a methodology is presented that extracts fundamental lithological information from sediment core and well logs with a novel calibration between core, well‐logs and seismic attributes within a large submarine axial channel belt in the Tertiary Molasse foreland basin, Austria. This channel belt was the course of multiple debris‐flow and turbidity current events, and the fill consists of interbedded layers deposited by both of these processes. Using the core‐well‐seismic calibration, three‐dimensional lithofacies proportion volumes were created. These volumes enable the interpretation of the three‐dimensional distribution of the important lithofacies and thus the investigation of sea floor morphology produced by debris‐flow events and its impact on succeeding turbidite deposition. These results show that the distribution of debris‐flow deposits follows a relatively regular pattern of levées and lobes. When subsequent high‐density turbidity currents encountered this mounded debris‐flow topography, they slowed and deposited a portion of their sandy high‐density loads just upstream of morphological highs. Understanding the depositional patterns of debris flows is key to understanding and predicting the location and character of associated sandstone accumulations. This detailed model of the filling style and the resulting stratigraphic architecture of a debris‐flow dominated deep‐marine depositional system can be used as an analogue for similar modern and ancient systems.  相似文献   

8.
The Ischigualasto Formation in northwestern Argentina contains abundant fluvial channel sandstones, overbank mudstones, and paleosols that were deposited in a northwest-trending continental-rift basin during Late Triassic time. In the study area the formation progressively thins from ~700 m in the west to ~400 m in the east, over a distance of 7 km. This thinning is accompanied by a relative decrease in the abundance of fluvial channel sandstones and an increase in mud-rich overbank deposits and paleosols. While preserved channel deposits in the formation are highly variable in terms of their size and stratigraphic distribution, four general channel forms can be recognized based on their overall cross sectional geometry and internal sedimentary structures. Of these, the dominant channel-body types are interpreted as the deposits of sandy multi-channel fluvial systems. The internal stratigraphic architecture of the Ischigualasto Formation indicates that during deposition, the central part of the basin was the location of a long-lived, north flowing, fluvial channel belt that received relatively continuous channel and proximal overbank deposition. To the east, however, channel-related deposition was more infrequent, resulting in enhanced pedogenic modification of alluvial deposits. The overall thickness and facies trends observed in the Ischigualasto Formation most likely correspond to variations in fault-related accommodation development within the basin during the time of deposition.  相似文献   

9.
Shelf‐edge deltas record the potential magnitude of sediment delivery from shallow water shelf into deep water slope and basin floor and, if un‐incised, represent the main increment of shelf‐margin growth into the basin, for that period. The three‐dimensional complexity of shelf‐edge delta systems and along‐strike variability at the shelf edge in particular, remains understudied. The Permian–Triassic Kookfontein Formation of the Tanqua Karoo Basin, South Africa, offers extensive three‐dimensional exposure (>100 km2) and therefore a unique opportunity to evaluate shelf‐edge strata from an outcrop perspective. Analysis of stratal geometry and facies distribution from 52 measured and correlated stratigraphic sections show the following: (i) In outer‐shelf areas, parasequences are characterized by undeformed, river‐dominated, storm‐wave influenced delta mouth‐bar sandstones interbedded with packages showing evidence of syn‐depositional deformation. The amount and intensity of soft‐sediment deformation increases significantly towards the shelf edge where slump units and debris flows sourced from collapsed mouth‐bar packages transport material down slope. (ii) On the upper slope, mouth‐bar and delta‐front sandstones pinch out within 2 km of the shelf break and most slump and debris flow units pinch out within 4 km of the shelf break. (iii) Further down the slope, parasequences consist of finer‐grained turbidites, characterized by interbedded, thin tabular siltstones and sandstones. The results highlight that river‐dominated, shelf‐edge deltas transport large volumes of sand to the upper slope, even when major shelf‐edge incisions are absent. In this case, transport to the upper slope through slumping, debris flows and un‐channellized low density turbidites is distributed evenly along strike.  相似文献   

10.
The study of new seismic data permits the identification of sediment gravity flows in terms of internal architecture and the distribution on shelf and abyssal setting in the Qiongdongnan Basin (QDNB). Six gravity flow types are recognized: (1) turbidite channels with a truncational basal and concordant overburden relationship along the shelf edge and slope, comprising laterally-shifting and vertically-aggrading channel complexes; (2) slides with a spoon-shaped morphology slip steps on the shelf-break and generated from the deformation of poorly-consolidated and high water content sediments; (3) slumps are limited on the shelf slope, triggered either by an anomalous slope gradient or by fault activity; (4) turbidite sheet complexes (TSC) were ascribed to the basin-floor fan and slope fan origin, occasionally feeding the deep marine deposits by turbidity currents; (5) sediment waves occurring in the lower slope-basin floor, and covering an area of approximately 400?km2, were generated beneath currents flowing across the sea bed; and (6) the central canyon in the deep water area represents an exceptive type of gravity flow composed of an association of debris flow, turbidite channels, and TSC. It presents planar multisegment and vertical multiphase characteristics. Turbidite associated with good petrophysical property in the canyon could be treated as a potential exploration target in the QDNB.  相似文献   

11.
12.
对西秦岭南部白龙江隆起南北两侧的中三叠统上部光盖山组岩相进行了研究,按照沉积作用方式识别划分出碎屑流、颗粒流、浊流、牵引流、平坦床砂静水5种沉积作用及岩相类型,并区分各种亚相类型.位于隆起北侧迭部飞仙剖面的岩相可识别出9个相序旋回,单个相序基本结构为砾质碎屑流相-鲍玛序列组合相,反映构造和沉积作用的旋回性和阶段性.总结发现,隆起南北两侧岩相的共同点是斜坡碎屑流和浊流型重力流较为发育,滑塌型重力作用少见,物源区较近且以灰岩为主;差别是不同剖面岩相结构、相序旋回有所不同,被侵蚀的物源地层时代不一样.进一步研究表明,光盖山组属于较缓的边坡沉积,是大陆碰撞阶段残留海盆大陆一侧的边缘相,盆地的形成与构造挠曲作用产生的沉降有关.鉴于洮河盆地晚古生代和早-中三叠世存在深海和残留洋盆,若尔盖盆地与之共用一个基底,因此,推测这2个盆地的中-上三叠统复理石之下可能没有台地相上古生界和中-下三叠统,不利于在该区开展油气勘探.   相似文献   

13.
Much of our understanding of submarine sediment‐laden density flows that transport very large volumes (ca 1 to 100 km3) of sediment into the deep ocean comes from careful analysis of their deposits. Direct monitoring of these destructive and relatively inaccessible and infrequent flows is problematic. In order to understand how submarine sediment‐laden density flows evolve in space and time, lateral changes within individual flow deposits need to be documented. The geometry of beds and lithofacies intervals can be used to test existing depositional models and to assess the validity of experimental and numerical modelling of submarine flow events. This study of the Miocene Marnoso Arenacea Formation (Italy) provides the most extensive correlation of individual turbidity current and submarine debris flow deposits yet achieved in any ancient sequence. One hundred and nine sections were logged through a ca 30 m thick interval of time‐equivalent strata, between the Contessa Mega Bed and an overlying ‘columbine’ marker bed. Correlations extend for 120 km along the axis of the foreland basin, in a direction parallel to flow, and for 30 km across the foredeep outcrop. As a result of post‐depositional thrust faulting and shortening, this represents an across‐flow distance of over 60 km at the time of deposition. The correlation of beds containing thick (> 40 cm) sandstone intervals are documented. Almost all thick beds extend across the entire outcrop area, most becoming thinly bedded (< 40 cm) in distal sections. Palaeocurrent directions for flow deposits are sub‐parallel and indicate confinement by the lateral margins of the elongate foredeep. Flows were able to traverse the basin in opposing directions, suggesting a basin plain with a very low gradient. Small fractional changes in stratal thickness define several depocentres on either side of the Verghereto (high) area. The extensive bed continuity and limited evidence for flow defection suggest that intrabasinal bathymetric relief was subtle, substantially less than the thickness of flows. Thick beds contain two distinct types of sandstone. Ungraded mud‐rich sandstone intervals record evidence of en masse (debrite) deposition. Graded mud‐poor sandstone intervals are inferred to result from progressive grain‐by‐grain (turbidite) deposition. Clast‐rich muddy sandstone intervals pinch‐out abruptly in downflow and crossflow directions, in a fashion consistent with en masse (debrite) deposition. The tapered shape of mud‐poor sandstone intervals is consistent with an origin through progressive grain‐by‐grain (turbidite) deposition. Most correlated beds comprise both turbidite and debrite sandstone intervals. Intrabed transitions from exclusive turbidite sandstone, to turbidite sandstone overlain by debrite sandstone, are common in the downflow and crossflow directions. This spatial arrangement suggests either: (i) bypass of an initial debris flow past proximal sections, (ii) localized input of debris flows away from available sections, or (iii) generation of debris flows by transformation of turbidity currents on the basin plain because of seafloor erosion and/or abrupt flow deceleration. A single submarine flow event can comprise multiple flow phases and deposit a bed with complex lateral changes between mud‐rich and mud‐poor sandstone.  相似文献   

14.
A. Guy Plint 《Sedimentology》2014,61(3):609-647
Determining sediment transport direction in ancient mudrocks is difficult. In order to determine both process and direction of mud transport, a portion of a well‐mapped Cretaceous delta system was studied. Oriented samples from outcrop represent prodelta environments from ca 10 to 120 km offshore. Oriented thin sections of mudstone, cut in three planes, allowed bed microstructure and palaeoflow directions to be determined. Clay mineral platelets are packaged in equant, face‐face aggregates 2 to 5 μm in diameter that have a random orientation; these aggregates may have formed through flocculation in fluid mud. Cohesive mud was eroded by storms to make intraclastic aggregates 5 to 20 μm in diameter. Mudstone beds are millimetre‐scale, and four microfacies are recognized: Well‐sorted siltstone forms millimetre‐scale combined‐flow ripples overlying scoured surfaces; deposition was from turbulent combined flow. Silt‐streaked claystone comprises parallel, sub‐millimetre laminae of siliceous silt and clay aggregates sorted by shear in the boundary layer beneath a wave‐supported gravity flow of fluid mud. Silty claystone comprises fine siliceous silt grains floating in a matrix of clay and was deposited by vertical settling as fluid mud gelled under minimal current shear. Homogeneous clay‐rich mudstone has little silt and may represent late‐stage settling of fluid mud, or settling from wave‐dissipated fluid mud. It is difficult or impossible to correlate millimetre‐scale beds between thin sections from the same sample, spaced only ca 20 mm apart, due to lateral facies change and localized scour and fill. Combined‐flow ripples in siltstone show strong preferred migration directly down the regional prodelta slope, estimated at ca 1 : 1000. Ripple migration was effected by drag exerted by an overlying layer of downslope‐flowing, wave‐supported fluid mud. In the upper part of the studied section, centimetre‐scale interbeds of very fine to fine‐grained sandstone show wave ripple crests trending shore normal, whereas combined‐flow ripples migrated obliquely alongshore and offshore. Storm winds blowing from the north‐east drove shore‐oblique geostrophic sand transport whereas simultaneously, wave‐supported flows of fluid mud travelled downslope under the influence of gravity. Effective wave base for sand, estimated at ca 40 m, intersected the prodelta surface ca 80 km offshore whereas wave base for mud was at ca 70 m and lay ca 120 km offshore. Small‐scale bioturbation of mud beds co‐occurs with interbedded sandstone but stratigraphically lower, sand‐free mudstone has few or no signs of benthic fauna. It is likely that a combination of soupground substrate, frequent storm emplacement of fluid mud, low nutrient availability and possibly reduced bottom‐water oxygen content collectively inhibited benthic fauna in the distal prodelta.  相似文献   

15.
The Cervarola Sandstones Formation, Aquitanian–Burdigalian in age, was deposited in an elongate, north‐west stretched foredeep basin formed in front of the growing northern Apennines orogenic wedge. As other Apennine foredeep deposits, such as the Marnoso‐arenacea Formation, the stratigraphic succession of the Cervarola Sandstones Formation records the progressive closure of the basin due to the propagation of thrust fronts towards the north‐east, i.e. towards the outer and shallower foreland ramp. This process produces a complex foredeep that is characterized by syn‐sedimentary structural highs and depocentres that strongly influence lateral and vertical turbidite facies distribution. This work describes and discusses this influence, providing a high‐resolution physical stratigraphy with ‘bed by bed’ correlations of an interval ca 1000 m thick, parallel and perpendicular to the palaeocurrents and to the main structural alignments, on an area of ca 30 km that covers the proximal portion of the Cervarola basin in the northern Apennines. The main aim is to show, for the first time ever, a detailed facies analysis of the Cervarola Sandstones Formation, based on a series of bed types that have proven fundamental to understand the morphology of the basin. The knowledge of the vertical and lateral distribution of these bed types, such as contained‐reflected and slurry (i.e. hybrid) beds, together with other important sedimentary structures, i.e. cross‐bedded bypass facies and delamination structures, is the basis for better understanding of facies processes, as well as for proposing an evolutionary model of the foredeep in relation to the syn‐sedimentary growth of the main tectonic structures. This makes the Cervarola Sandstones, like the Marnoso‐arenacea Formation, a typical example of foredeep evolution.  相似文献   

16.
Bioclastic flow deposits offshore from the Soufrière Hills volcano on Montserrat in the Lesser Antilles were deposited by the largest volume sediment flows near this active volcano in the last 26 kyr. The volume of these deposits exceeds that of the largest historic volcanic dome collapse in the world, which occurred on Montserrat in 2003. These flows were most probably generated by a large submarine slope failure of the carbonate shelf comprising the south‐west flank of Antigua or the east flank of Redonda; adjacent islands that are not volcanically active. The bioclastic flow deposits are relatively coarse‐grained and either ungraded or poorly graded, and were deposited by non‐cohesive debris flow and high density turbidity currents. The bioclastic deposit often comprises multiple sub‐units that cannot be correlated between core sites; some located just 2 km apart. Multiple sub‐units in the bioclastic deposit result from either flow reflection, stacking of multiple debris flow lobes, and/or multi‐stage collapse of the initial landslide. This study provides unusually precise constraints on the age of this mass flow event that occurred at ca 14 ka. Few large submarine landslides have been well dated, but the slope failures that have been dated are commonly associated with periods of rapid sea‐level change.  相似文献   

17.
The Quaternary deposits of tectonically stable areas are a powerful tool to investigate high‐frequency climate variations (<10 ka) and to distinguish allogenic and autogenic factors controlling deposition. Therefore, an Upper Pleistocene–Holocene coastal apron‐fan system in north–western Sardinia (Porto Palmas, Italy) was studied to investigate the relations between climate changes, sea‐level fluctuations and sediment source‐supply that controlled its development. The sedimentary sequence records the strong influence of local (wet/dry) and worldwide (sea‐level) environmental variations in the sedimentation and preservation of the deposits. A multi‐disciplinary approach allowed subdivision of the succession into four major, unconformity‐bounded stratigraphic units: U1 U2, U3 and U4. Unit U1, tentatively dated to the warm and humid Marine Isotopic Stage (MIS) 5, consists of sandy, gravelly coastal/beach deposits developed during high sea‐level in low‐lying areas. Unit U2 consists of debris‐flow dominated fan‐deposits (ca 74 ka; MIS 4), preserved as partial fills of small valleys and coves. Unit U2 is mainly composed of reddish silty conglomerate to pebbly siltstones sourced from the Palaeozoic metamorphic inland hills (bedrock), superficially disintegrated during the preceding warm, vegetation‐rich MIS 5. The cold and semi‐arid climate strongly reduced vegetation cover along the valley flanks. Therefore, sediment gravity‐flow processes, possibly activated by rainstorms, led to deposition of debris‐flow dominated fans. Unit U3 consists of water‐flow dominated alluvial‐fan deposits (ca 47 to 23 ka; MIS 3), developed on a slightly inclined coastal plain. Unit U3 is composed of sandstone and sandy conglomerate fed from two main sediment sources: metamorphic inland bedrock and Quaternary bioclastic‐rich shelf‐derived sands. During this cold phase, sea‐level dropped sufficiently to expose bioclastic sands accumulated on the shelf. Frequent climate fluctuations favoured inland aeolian transport of sand during dry phases, followed by reworking of the aeolian bodies by flash floods during wet phases. Bedrock‐derived fragments mixed with water‐reworked, wind‐blown sands led to the development of water‐flow dominated fans. The Dansgaard–Oeschger events possibly associated with sand landward deflation and main fan formations are Dansgaard–Oeschger 13 (ca 47 ka), Dansgaard–Oeschger 8 (ca 39 ka) and Dansgaard–Oeschger 2 (ca 23 ka). No record of sedimentation during MIS 2 was observed. Finally, bioclastic‐rich aeolianites (Unit U4, ca 10 to 5 ka; MIS 1), preserved on a coastal slope, were developed during the Holocene transgression (ca 10 to 5 ka; MIS 1). The studied sequence shows strong similarities with those of other Mediterranean sites; it is, however, one of the few where the main MIS 4 and MIS 3 climatic fluctuations are registered in the sedimentary record.  相似文献   

18.
通过对柴北缘地区的野外地质调查及室内实验分析,根据地质剖面中发育的岩石组合类型、沉积构造等特征,对研究区早奥陶世台地斜坡盆地相沉积体系进行了详细研究。认为研究区早古生代持续的海平面上升、柴北缘洋陆俯冲及陆弧碰撞是控制该时期盆山格局及沉积充填演化的重要因素。柴北缘早奥陶世台地边缘颗粒滩相发育在多泉山组中下部,岩性以生物碎屑灰岩、鲕粒灰岩以及泥晶灰岩为特征。而研究区斜坡相深水物质主要是由重力流搬运的碳酸盐岩再沉积物组成,共识别出包括细粒沉降微晶泥、滑塌角砾岩、颗粒流、瘤状灰岩、碎屑流以及浊积岩等不同类型的斜坡异地沉积物。研究区盆地相处于碳酸盐岩沉积体系岛弧碎屑岩沉积体系两大沉积体系的转换位置。受到柴北缘洋陆俯冲及陆弧碰撞等影响,隆升的陆壳基底及大陆岛弧物质向盆地提供大量碎屑物质,因此在靠近岛弧边缘地区发育了砂质碎屑流、浊流等重力流沉积体系下的弧后盆地沉积产物。  相似文献   

19.
The Bolla Bollana Formation is an exceptionally thick (ca 1500 m), rift‐related sedimentary succession cropping out in the northern Flinders Ranges, South Australia, which was deposited during the Sturtian (mid Cryogenian) glaciation. Lithofacies analysis reveals three distinct facies associations which chart changing depositional styles on an ice‐sourced subaqueous fan system. The diamictite facies association is dominant, and comprises both massive and stratified varieties with a range of clast compositions and textures, arranged into thick beds (1 to 20 m), representing stacked, ice‐proximal glaciogenic debris‐flow deposits. A channel belt facies association, most commonly consisting of normally graded conglomerates and sandstones, displays scour and fill structure of ca 10 m width and 1 to 3 m depth: these strata are interpreted as channelized turbidites. Rare mud‐filled channels in this facies association bear glacially striated lonestones. Finally, a sheet heterolithics facies association contains a range of conglomerates through sandstones to silty shales arranged into clear, normally graded cycles from the lamina to bed scale. These record a variety of non‐channelized turbidites, probably occupying distal and/or inter‐channel locations on the subaqueous fan. Coarsening and thickening‐up cycles, capped by dolomicrites or mudstones, are indicative of lobe build out and abandonment, potentially as a result of ice lobe advance and stagnation. Dropstones, recognized by downwarped and punctured laminae beneath pebbles to boulders in shale, or in delicate climbing ripple cross‐laminated siltstones, are clearly indicative of ice rafting. The co‐occurrence of ice‐rafted debris and striated lonestones strongly supports a glaciogenic sediment source for the diamictites. Comparison to Pleistocene analogues enables an interpretation as a trough mouth fan, most probably deposited leeward of a palaeo‐ice stream. Beyond emphasizing the highly dynamic nature of Sturtian ice sheets, these interpretations testify to the oldest trough mouth fan recorded to date.  相似文献   

20.
Regional mapping of Middle Albian, shallow‐marine clastic strata over ca 100 000 km2 of the Western Canada Foreland Basin was undertaken to investigate the relationship between large‐scale stratal architecture and lithology. Results suggest that, over ca 5 Myr, stratal geometry and facies were dynamically linked to tectonic activity in the adjacent Cordillera. Higher frequency modulation of accommodation is most reasonably ascribed to eustasy. The Harmon and Cadotte alloformations were deposited at the southern end of an embayment of the Arctic Ocean. The Harmon alloformation, forming the lower part of the succession, constitutes a wedge of marine mudstone that thickens westward over 400 km from <5 m near the forebulge to >150 m in the foredeep. Constituent allomembers are also wedge‐shaped but lack distinct clinothems, a rollover point or downlapping geometry. Ubiquitous wave ripples indicate that the sea floor lay above storm wave base. Deposition took place on an extremely low‐gradient ramp, where accommodation was limited by effective wave base. Lobate, river‐dominated deltas fringed the southern margin of the basin. The largest deltas are stacked in the same area, suggesting protracted stability of the feeder river. A buried palaeo‐valley on the underlying sub‐Cretaceous unconformity may have influenced compaction and controlled river location for ca 3 Myr. Adjacent to the western Cordillera, a predominantly mudstone succession is interbedded with abundant storm beds of very fine‐grained sandstone and siltstone that reflect supply from the adjacent orogen. Bioturbation indices in the Harmon alloformation range from zero to six which reflects the influence of stressors related to river‐mouth proximity. Harmon alloformation mudstone grades abruptly upward into marine sandstone and conglomerate of the overlying Cadotte alloformation. The Cadotte is composed of three allomembers ‘CA’ to ‘CC’, that represent the deposits of prograding strandplains 200 × 300 km in extent. Allomembers ‘CA’ and ‘CB’ are strongly sandstone‐dominated, whereas allomember ‘CC’ contains abundant conglomerate in the west. The dominantly aggradational wedge of Harmon alloformation mudstone records flexural subsidence driven by active thickening in the adjacent orogen: the high accommodation rate trapped coarser clastic detritus close to the basin margin. In contrast, the tabular, highly progradational sandstone and conglomerate bodies of the Cadotte alloformation record a low subsidence rate, implying tectonic quiescence in the adjacent orogen. Erosional unloading of the orogen through Cadotte time steepened rivers to the extent that they delivered gravel to the shore. These observations support an ‘anti‐tectonic’ model of gravel supply proposed previously for the United States portion of the Cretaceous foreland basin. Because Cadotte allomembers do not thicken appreciably into the foredeep, accommodation changes that controlled these transgressive–regressive successions were probably of eustatic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号