首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 292 毫秒
1.
Impacts of Coastal SST Variability on the East Asian Summer Monsoon   总被引:4,自引:0,他引:4  
The impacts of the seasonal and interannual SST variability in the East Asia coastal regions (EACRSST) on the East Asian summer monsoon (EASM) have been examined using a regional climate model (PδRCM9) in this paper. The simulation results show that the correlation between the EACRSST and the EASM is strengthened after the mid-1970s and also the variability of the EACRSST forcing becomes much more important to the EASM interannual variability after the mid-1970s. The impacts of the EACRSST on the summer precipitation over each sub-region in the EASM region become weak gradually from south to north, and the temporal evolution features of the summer precipitation differences over North and Northeast China agree well with those of the index of EASM (IEASM) differences.
The mechanism analyses show that different EACRSST forcings result in the differences of sensible and latent heat flux exchanges at the air-sea interface, which alter the heating rate of the atmosphere. The heating rate differences induce low level air temperature differences over East Asia, resulting in the differences of the land-sea thermal contrast (LSTC) which lead to 850 hPa geopotential height changes. When the 850 hPa geopotential height increases over the East Asian continent and decreases over the coast of East China and the adjacent oceans during the weakening period of weakens consequently. On the contrary, the EASM enhances during the strengthening period of the LSTC.  相似文献   

2.
In the present study the links between spring Arctic Oscillation (AO) and East Asian summer monsoon (EASM) was investigated with focus on the importance of the North Pacific atmospheric circulation and sea surface temperature (SST). To reduce the statistical uncertainty, we analyzed high-pass filtered data with the inter-annual time scales, and excluded the El Ni?o/Southern Oscillation signals in the climate fields using a linear fitting method. The significant relationship between spring AO and EASM are supported by the changes of multi-monsoon components, including monsoon indices, precipitation, and three-dimensional atmospheric circulations. Following a stronger positive spring AO, an anomalous cyclonic circulation at 850?hPa appears in southeastern Asia and the western North Pacific in summer, with the easterly anomalies spanning from the Pacific to Asian continent along 25°N?C30°N and the westerly anomalies south of 15°N. At the same time, the summer western North Pacific subtropical high becomes weaker. Consistently, the positive precipitation anomalies are developed over a broad region south of 30°N stretching from southern China to the western Pacific and the negative precipitation anomalies appear in the lower valley of the Yangtze River and southern Japan. The anomalous cyclone in the western North Pacific persisting from spring to summer plays a key role in modulating EASM and monsoon precipitation by a positive air-sea feedback mechanism. During spring the AO-associated atmospheric circulation change produces warmer SSTs between 150°E?C180° near the equator. The anomalous sensible and latent heating, in turn, intensifies the cyclone through a Gill-type response of the atmosphere. Through this positive feedback, the tropical atmosphere and SST patterns sustain their strength from spring to summer, that consequently modifies the monsoon trough and the western North Pacific subtropical high and eventually the EASM precipitation. Moreover, the SST response to AO-circulation is supported by the numerical simulations of an ocean model, and the anomalous atmospheric circulation over the western North Pacific is also reproduced by the dedicated numerical simulations using the coupled atmosphere?Cocean model. The observation evidence and numerical simulations suggest the spring AO can impact the EASM via triggering tropical air-sea feedback over the western North Pacific.  相似文献   

3.
In this study, the anomalous characteristics of observed large-scale synoptic fields in the extreme East Asian summer monsoon (EASM) years are analyzed, and the impact of the local sea surface temperature (SST) anomaly over the western North Pacific (WNP) on the extreme EASM is investigated through sensitivity experiments of 28?years EASM simulations to the local SST over the WNP. The observation analysis reveals that the extreme EASM is influenced more by anomalous large-scale atmospheric features such as monsoon circulations and the western North Pacific subtropical high than the local SST anomaly over the WNP. However, the results of the sensitivity experiments show that the local SST anomaly has an implicit impact on the extreme EASM. The patterns of differences in precipitation between the experiment forced by observed SST in each year and the experiment forced by climatological SST over the WNP are opposite to anomaly patterns of observed precipitation in the extreme EASM years. This is because the SST anomaly over the WNP plays a role in reducing precipitation anomaly by changing surface latent heat flux and monsoon circulations. In particular, the local SST anomaly over the WNP decreases anomalies of large-scale circulations, i.e., the local Hadley and the Walker circulations. Thus, the local SST anomaly over the WNP plays a role in decreasing the interannual variability of the EASM.  相似文献   

4.
In this work, the authors investigate changes in the interannual relationship between the East Asian summer monsoon (EASM) and the tropical Indian Ocean (IO) in the late 1970s. By contrasting the correlations of the EASM index (EASMI) with the summer IO sea surface temperature anomaly (SSTA) between 1953–1975 and 1978–2000, a pronounced different correlation pattern is found in the tropical IO. The SSTA pattern similar to the positive Indian Ocean Dipole (IOD) shows a strongly positive correlation with the EASMI in 1953–1975. But in 1978–2000, significant negative correlation appears in the northern IO and the IOD-like correlation pattern disappears. It is indicated that the summer strong IOD events in 1953–1975 can cause a weaker-than-normal western North Pacific (WNP) subtropical high, which tends to favor a strong EASM. In 1978–2000, the connection between the summer IOD and the WNP circulation is disrupted by the climate shift. Instead, the northern IO shows a close connection with the WNP circulation in 1978–2000. The warming over the northern IO is associated with the significant enhanced 500 hPa geopotential height and an anomalous anticyclone over the WNP. The change in the IO–EASM relationship is attributed to the interdecadal change of the background state of the ocean–atmosphere system and the interaction between the ENSO and IO. In recent decades, the tropical IO and tropical Pacific have a warmer mean SST, which has likely strengthened (weakened) the influence of the northern IO (IOD) on the EASM. In addition, due to the increase in the ENSO variability along with the higher mean equatorial eastern Pacific SST in 1978–2000, the influence of ENSO on the East Asian summer circulation experiences a significant strengthening after the late 1970s. Because the warming over the northern IO is associated with the significant warming in the equatorial eastern Pacific, the strengthened ENSO–EASM relationship has likely also contributed to the strengthened relationship between the northern IO and the EASM in 1978–2000.  相似文献   

5.
Located in a monsoon domain,East Asia suffers devastating natural hazards induced by anomalous monsoon behaviors.East Asian monsoon(EAM)research has traditionally been a high priority for the Chinese climate community and is particularly challenging in a changing climate where the global mean temperature has been rising.Recent advances in studies of the variabilities and mechanisms of the EAM are reviewed in this paper,focusing on the interannual to interdecadal time scales.Some new results have been achieved in understanding the behaviors of the EAM,such as the evolution of the East Asian summer monsoon(EASM),including both its onset and withdrawal over the South China Sea,the changes in the northern boundary activity of the EASM,or the transitional climate zone in East Asia,and the cycle of the EASM and the East Asian winter monsoon and their linkages.In addition,understanding of the mechanism of the EAM variability has improved in several aspects,including the impacts of different types of ENSO on the EAM,the impacts from the Indian Ocean and Atlantic Ocean,and the roles of mid-to high-latitude processes.Finally,some scientific issues regarding our understanding of the EAM are proposed for future investigation.  相似文献   

6.
Observational analysis and purposely designed coupled atmosphere–ocean (AOGCM) and atmosphere-only (AGCM) model simulations are used together to investigate a new mechanism describing how spring Arctic sea ice impacts the East Asian summer monsoon (EASM). Consistent with previous studies, analysis of observational data from 1979 to 2009 show that spring Arctic sea ice is significantly linked to the EASM on inter-annual timescales. Results of a multivariate Empirical Orthogonal Function analysis reveal that sea surface temperature (SST) changes in the North Pacific play a mediating role for the inter-seasonal connection between spring Arctic sea ice and the EASM. Large-scale atmospheric circulation and precipitation changes are consistent with the SST changes. The mechanism found in the observational data is confirmed by the numerical experiments and can be described as follows: spring Arctic sea ice anomalies cause atmospheric circulation anomalies, which, in turn, cause SST anomalies in the North Pacific. The SST anomalies can persist into summer and then impact the summer monsoon circulation and precipitation over East Asia. The mediating role of SST changes is highlighted by the result that only the AOGCM, but not the AGCM, reproduces the observed sea ice-EASM linkage.  相似文献   

7.
20世纪90年代初东亚夏季风的年代际转型   总被引:3,自引:1,他引:2       下载免费PDF全文
利用1979—2009年JRA-25和NCEP/NCAR再分析资料,通过复矢量经验正交方法揭示了东亚地区夏季850 hPa风场变率的优势模态。结果表明:两套再分析资料所揭示的东亚夏季风在20世纪90年代初均发生了年代际转型,与我国夏季降水的年代际转型时间一致。伴随着东亚夏季风的年代际转型,我国北方大部分地区夏季降水减少,尤其是我国东北北部和长江、黄河之间105°E附近区域显著减少,而华南地区和淮河流域降水显著增加。从动力上解释我国夏季降水年代际转型特征,夏季500 hPa高度场两个时段 (1993—2009年和1979—1992年) 的差值分布显示为欧亚大陆北部准纬向遥相关波列,夏季850 hPa风场差值分布表现为贝加尔湖东南侧和日本以南地区存在两个异常反气旋式环流,而我国南方地区和鄂霍次克海附近均为异常气旋式环流。夏季西北太平洋、北印度洋以及部分中高纬度海洋的海温和春季欧亚大陆积雪在20世纪90年代初出现显著变化,春季北极海冰的年代际转型发生在20世纪90年代初,都可能成为东亚夏季风年代际转型的原因。  相似文献   

8.
The Maritime Continent (MC) is under influences of both the tropical Pacific and the Indian Ocean. Anomalous convective activities over the MC have significant impacts on the East Asian summer monsoon (EASM) and climate in China. In the present study, the variation in convective activity over the MC in boreal summer and its relationship to EASM anomalies are investigated based on regression analysis of NCEP–NCAR reanalysis and CMAP [Climate Prediction Center (CPC) Merged Analysis of Precipitation] data, with a focus on the impacts of ENSO and the Indian Ocean Dipole (IOD). The most significant interannual variability of convective activity is found over 10°S–10°N, 95°–145°E, which can be roughly defined as the key area of the MC (hereafter, KMC). Outgoing longwave radiation anomaly (OLRA) exhibits 3- to 7-yr periodicities over the KMC, and around 70% of the OLRA variance can be explained by the ENSO signal. However, distinct convection and precipitation anomalies still exist over this region after the ENSO and IOD signals are removed. Abnormally low precipitation always corresponds to positive OLRA over the KMC when negative diabatic heating anomalies and anomalous cooling of the atmospheric column lead to abnormal descending motion over this region. Correspondingly, abnormal divergence occurs in the lower troposphere while convergence occurs in the upper troposphere, triggering an East Asia–Pacific/Pacific–Japan (EAP/PJ)-like anomalous wave train that propagates northeastward and leads to a significant positive precipitation anomaly from the Yangtze River valley in China to the islands of Japan. This EAP/PJ-like wave pattern becomes even clearer after the removal of the ENSO signal and the combined effects of ENSO and IOD, suggesting that convective anomalies over the KMC have an important impact on EASM anomalies. The above results provide important clues for the prediction of EASM anomalies and associated summer precipitation anomalies in China.  相似文献   

9.
A strong (weak) East Asian summer monsoon (EASM) is usually concurrent with the tripole pattern of North Atlantic SST anomalies on the interannual timescale during summer, which has positive (negative) SST anomalies in the northwestern North Atlantic and negative (positive) SST anomalies in the subpolar and tropical ocean. The mechanisms responsible for this linkage are diagnosed in the present study. It is shown that a barotropic wave-train pattern occurring over the Atlantic-Eurasia region likely acts as a link between the EASM and the SST tripole during summer. This wave-train pattern is concurrent with geopotential height anomalies over the Ural Mountains, which has a substantial effect on the EASM. Diagnosis based on observations and linear dynamical model results reveals that the mechanism for maintaining the wave-train pattern involves both the anomalous diabatic heating and synoptic eddy-vorticity forcing. Since the North Atlantic SST tripole is closely coupled with the North Atlantic Oscillation (NAO), the relationships between these two factors and the EASM are also examined. It is found that the connection of the EASM with the summer SST tripole is sensitive to the meridional location of the tripole, which is characterized by large seasonal variations due to the north-south movement of the activity centers of the NAO. The SST tripole that has a strong relationship with the EASM appears to be closely coupled with the NAO in the previous spring rather than in the simultaneous summer.  相似文献   

10.
The state-of-the-art WRF model is used to investigate the impact of the antecedent soil moisture on subsequent summer precipitation during the East Asian summer monsoon (EASM) period. The control experiment with realistic soil moisture condition can well reproduce the seasonal pattern from low- to high- atmosphere, as well as the spatial distribution of precipitation belt in East China. Compared with the control experiment, the sensitivity experiment in which the initial soil moisture is reduced generates more precipitation along the East China Sea, and less rainfall over both Central and South China. This suggests that the effect of initial soil moisture on monsoonal precipitation in East China is regionally dependent. The influence on precipitation is mostly attributed to the change in precipitation from mid July to late August. The initial soil moisture condition plays a role in changing the seasonal pattern and atmospheric circulation due to the weak heating and geopotential gradient, leading to a reduction in southeasterly flow and moisture flux from South China Sea. The changes between DRY and CTL runs result in reduced southerly wind over the ocean (south of ˜25 °N) and enhanced northerly wind over the land (north of ∼25 °N). The temperature and associated circulation changes due to drier initial soil moisture anomaly result in reduced southerly winds over East China, and therefore a weakened EASM system. The averaged moisture flux decreases significantly over Central China but increases along the East China Sea. In addition, the drier soil moisture perturbation exerts an effect on suppressing (enhancing) vertical velocity over Central China (along the East China Sea), thus leading to more (less) cloud water and rain water. Therefore, the influence of soil moisture exerts an opposite impact on surface precipitation between these two regions, with more and less accumulation rainfall in Central China and along the East China Sea, respectively.  相似文献   

11.
基于1979~2013年多种再分析资料,合成分析了El Ni?o发展年和La Ni?a年东亚夏季风的季节内变化。结果表明,东亚夏季风在两种情况下呈现出不同的季节内变化特征。在El Ni?o发展年,初夏期间高纬度地区出现偏北风异常,造成东亚地区位势高度场偏低,西太平洋副热带高压偏东,但均不显著。盛夏期间,El Ni?o强迫造成中太平洋对流增强,副热带西太平洋出现气旋异常,位势高度显著降低,副热带高压明显偏东。与此不同的是,La Ni?a年春季暖池海温偏高,造成夏季对流偏强,西太平洋地区位势高度场偏低,副热带高压减弱东退。此外,La Ni?a年东亚夏季风的季节内变化较为复杂,6月异常较弱,7月达到最强,8月又开始减弱。因此,虽然El Ni?o发展年和La Ni?a年夏季平均副高异常有一定的相似性,但季节内变化则有很大差异,其成因也完全不同。  相似文献   

12.
With the twentieth century analysis data (1901–2002) for atmospheric circulation, precipitation, Palmer drought severity index, and sea surface temperature (SST), we show that the Asian-Pacific Oscillation (APO) during boreal summer is a major mode of the earth climate variation linking to global atmospheric circulation and hydroclimate anomalies, especially the Northern Hemisphere (NH) summer land monsoon. Associated with a positive APO phase are the warm troposphere over the Eurasian land and the relatively cool troposphere over the North Pacific, the North Atlantic, and the Indian Ocean. Such an amplified land–ocean thermal contrast between the Eurasian land and its adjacent oceans signifies a stronger than normal NH summer monsoon, with the strengthened southerly or southwesterly monsoon prevailing over tropical Africa, South Asia, and East Asia. A positive APO implies an enhanced summer monsoon rainfall over all major NH land monsoon regions: West Africa, South Asia, East Asia, and Mexico. Thus, APO is a sensible measure of the NH land monsoon rainfall intensity. Meanwhile, reduced precipitation appears over the arid and semiarid regions of northern Africa, the Middle East, and West Asia, manifesting the monsoon-desert coupling. On the other hand, surrounded by the cool troposphere over the North Pacific and North Atlantic, the extratropical North America has weakened low-level continental low and upper-level ridge, hence a deficient summer rainfall. Corresponding to a high APO index, the African and South Asian monsoon regions are wet and cool, the East Asian monsoon region is wet and hot, and the extratropical North America is dry and hot. Wet and dry climates correspond to wet and dry soil conditions, respectively. The APO is also associated with significant variations of SST in the entire Pacific and the extratropical North Atlantic during boreal summer, which resembles the Interdecadal Pacific Oscillation in SST. Of note is that the Pacific SST anomalies are not present throughout the year, rather, mainly occur in late spring, peak at late summer, and are nearly absent during boreal winter. The season-dependent APO–SST relationship and the origin of the APO remain elusive.  相似文献   

13.
韩荣青  李维京  董敏 《气象学报》2006,64(2):149-163
用时空滤波和Morlet小波方法,分析了1958—2000年夏季东亚(20°—45°N,110°—135°E)不同纬带(由南到北分为4个区域)的降水分别与太平洋同一纬带上大气30—60 d振荡(ISO)沿纬圈传播的关系及其成因机制。发现太平洋上经向风ISO向西传播的强或弱,是东亚夏季风区降水偏多或偏少的必要条件。对逐年夏季的分析表明,无论当年东亚夏季风强与否,在所划分的几个东亚季风区所有涝的年份里,太平洋同一纬带上大气ISO向西传播都明显较强,而在这些区域绝大多数旱的年份里,相应的ISO向西传播明显较弱。进一步分析发现,经向风ISO的纬向传播对应着大气经向型环流系统的移动,向西传影响东亚夏季风区降水的ISO有来自低纬中东太平洋东风流中的低频气旋(如副热带东风带中ISO的演变);也有来自中高纬度阿拉斯加湾及鄂霍次克海一带低频低压(如洋中槽)和高压(如阻塞高压和东北太平洋高压)的向南向西频散。因此东亚夏季旱涝不但与热带季风有关,而且与中东太平洋副热带东风系统中ISO的向西传播、中高纬度长波调整时低频扰动向西南经北太平洋副热带的传播密切相关。  相似文献   

14.
Extreme precipitation events in the upper Yangtze River Valley (YRV) have recently become an increasingly important focus in China because they often cause droughts and floods. Unfortunately, little is known about the climate processes responsible for these events. This paper investigates factors favorable to frequent extreme precipitation events in the upper YRV. Our results reveal that a weakened South China Sea summer monsoon trough, intensified Eurasian-Pacific blocking highs, an intensified South Asian High, a southward subtropical westerly jet and an intensified Western North Pacific Subtropical High (WNPSH) increase atmospheric instability and enhance the convergence of moisture over the upper YRV, which result in more extreme precipitation events. The snow depth over the eastern Tibetan Plateau (TP) in winter and sea surface temperature anomalies (SSTAs) over three key regions in summer are important external forcing factors in the atmospheric circulation anomalies. Deep snow on the Tibetan Plateau in winter can weaken the subsequent East Asian summer monsoon circulation above by increasing the soil moisture content in summer and weakening the land–sea thermal contrast over East Asia. The positive SSTA in the western North Pacific may affect southwestward extension of the WNPSH and the blocking high over northeastern Asia by arousing the East Asian-Pacific pattern. The positive SSTA in the North Atlantic can affect extreme precipitation event frequency in the upper YRV via a wave train pattern along the westerly jet between the North Atlantic and East Asia. A tripolar pattern from west to east over the Indian Ocean can strengthen moisture transport by enhancing Somali cross-equatorial flow.  相似文献   

15.
北方雨季中国东部降水异常模态的环流特征及成因分析   总被引:2,自引:2,他引:0  
郭恒  张庆云 《大气科学》2016,40(5):946-964
根据1958~2011年中国东部(105°E以东)316站逐日降水资料及NCEP/NCAR逐日再分析资料,利用统计分析、物理量诊断等方法,探讨北方雨季(7月11日至8月31日)中国东部降水异常模态及同期、前期的大气环流特征。分析发现,北方雨季中国东部降水异常表现为三个相互独立的降水模态:第一模态为偏西型,当其时间系数为正(负)时,河套地区降水偏多(少),江淮流域上游降水偏少(多),南方大部降水偏多(少);第二模态为北方一致型,当其时间系数为正(负)时,北方降水一致偏多(少),长江流域降水偏少(多);第三模态为偏东型,当其时间系数为正(负)时,东北南部至长江中游降水偏多(少),华东沿海降水偏少(多)。研究发现,造成北方雨季三个降水异常模态的环流特征各不相同:偏西型降水主要受西亚高空副热带西风急流位置南北偏移影响;北方一致型降水主要由东亚-太平洋遥相关波列导致;偏东型降水主要与海陆气压异常对比造成的东亚夏季风变化有关。此外,三个模态与前期环流异常有密切联系。第一模态的正(负)异常由7月上旬200 hPa来自北大西洋的异常波列造成乌拉尔山位势高度负(正)异常和巴尔喀什湖以南位势高度正(负)异常引起。第二模态的正(负)异常与前期7月上旬200 hPa北大西洋上位势高度负(正)异常产生的沿中纬度(高纬度)路径向下游传播的波列有关。第三模态的正(负)异常由春季3月份低层蒙古上空异常的气旋(反气旋)持续至同期造成。  相似文献   

16.
The relationships between the precipitation over East Asia (20°-45°N,110°-135°E) and the 30-60-day intraseasonal oscillation (ISO) over the Pacific during the boreal summer are studied in the paper.The daily wind and height fields of NCEP/NCAR reanalysis data,the 24-h precipitation data of 687 stations in China during 1958-2000,and the pentad precipitation of CMAP/NOAA from 1979 to 2002 are all analyzed by the space-time filter method.The analysis results,from every drought and flood summer in four different regions of East Asia respectively during 1958-2000,have shown that the flood (drought) in the East Asian summer monsoon region is absolutely companied with the strongly (weakly) westward propagations of ISO from the central-east Pacific,and depends little on the intensity changes of the East Asian summer monsoon. And the westward ISO is usually the low-frequency cyclones and anticyclones from the Bay of Alaska in northeastern Pacific and the Okhotsk in the northwestern Pacific of mid-high latitudes,and the ISO evolving in subtropical easterlies.In mid-high latitudes the phenomena are related to the westward propagating mid- ocean trough and the retreat of blocking high.Therefore the westward propagating ISO from the central-east Pacific to East Asia is indispensable for more rainfall occurring in East Asia in summer,which results from the long-wave adjustment process in the mid-high latitudes and ISO evolving in tropical easterlies.  相似文献   

17.
This study investigates the relationship between the soil temperature in May and the East Asian summer monsoon (EASM) precipitation in June and July using station observed soil temperature data over Northwest China from 1971 to 2000.It is found that the memory of the soil temperature at 80-cm depth can persist for at least 2 months,and the soil temperature in May is closely linked to the EASM precipitation in June and July.When the soil temperature is warmer in May over Northwest China,less rainfall occurs over the Yangtze and Huaihe River valley but more rainfall occurs over South China in June and July.It is proposed that positive anomalous soil temperature in May over Northwest China corresponds to higher geopotential heights over the most parts of the mainland of East Asia,which tend to weaken the ensuing EASM.Moreover,in June and July,a cyclonic circulation anomaly occurs over Southeast China and Northwest Pacific and an anticyclonic anomaly appears in the Yangtze and Huaihe River valley at 850 hPa.All the above tend to suppress the precipitation in the Yangtze and Huaihe River valley.The results also indicate that the soil temperature in May over Northwest China is closely related to the East Asia/Pacific (EAP) teleconnection pattern,and it may be employed as a useful predictor for the East Asian summer monsoon rainfall.  相似文献   

18.
The boreal summer season could be divided into two periods in terms of the variability of western North Pacific subtropical high (WNPSH) based on the El Ni?o influence. The correlation analysis indicates that the WNPSH in the period of pentad 32?C37 (June 5 to July 4, first period) is not affected by El Ni?o, while that in the period of pentad 40?C45 (July 15 to August 13, second period) is strongly affected by sea surface temperature in the equatorial eastern Pacific in the previous winter. The different response of low-level circulation over the western North Pacific (WNP) to the El Ni?o forcing between two periods seems to be due to the difference of mean climatological fields over the WNP and the East Asian regions. The WNPSH in the first period is closely connected to the variability of North Pacific subtropical High. In the second period, on the other hand, the WNPSH variability is dominantly controlled by the convective activity over the WNPSH region and it is related with the El Ni?o forcing. The composite analysis on the relationship between the WNPSH and the East Asian summer monsoon exhibits distinct contrasts between two periods. In the first period, the East Asian stationary front exists all the time regardless of the strength of the WNPSH. On the other hand, in the second period the East Asian stationary front appears only when the WNPSH is strong, while there is no obvious East Asian frontal zone when it is weak.  相似文献   

19.
Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has improved in many aspects:the basic characteristics of horizontal and vertical structures, the annual cycle of the East Asian summer monsoon (EASM) system and the East Asian winter monsoon (EAWM) system, the characteristics of the spatio-temporal variabilities of the EASM system and the EAWM system, and especially the multiple modes of the EAM system and their spatio-temporal variabilities. Some new results have also been achieved in understanding the atmosphere-ocean interaction and atmosphere-land interaction processes that affect the variability of the EAM system. Based on recent studies, the EAM system can be seen as more than a circulation system, it can be viewed as an atmosphere-ocean-land coupled system, namely, the EAM climate system. In addition, further progress has been made in diagnosing the internal physical mechanisms of EAM climate system variability, especially regarding the characteristics and properties of the East Asia-Pacific (EAP) teleconnection over East Asia and the North Pacific, the "Silk Road" teleconnection along the westerly jet stream in the upper troposphere over the Asian continent, and the dynamical effects of quasi-stationary planetary wave activity on EAM system variability. At the end of the paper, some scientific problems regarding understanding the EAM system variability are proposed for further study.  相似文献   

20.
The strength of the East Asian summer monsoon and associated rainfall has been linked to the western North Pacific subtropical high (WNPSH) and the lower-tropospheric low pressure system over continental East Asia (EA). In contrast to the large number of studies devoted to the WNPSH, little is known about the variability of the East Asian continental low. The present study delineates the East Asian continental low using 850-hPa geopotential height. Since the low is centered over northern EA (NEA), we refer to it as the NEA low (NEAL). We show that the intensity of the NEAL has large interannual variation, with a dominant period of 2–4 years. An enhanced NEAL exhibits a barotropic structure throughout the whole troposphere, which accelerates the summer-mean upper-tropospheric westerly jet and lower-tropospheric monsoon westerly to its south. We carefully identify the anomalous NEAL-induced rainfall anomalies by removal of the tropical heating effects. An enhanced NEAL not only increases rainfall locally in northern Northeast China, but also shifts the East Asian subtropical front northward, causing above-normal rainfall extending eastward from the Huai River valley across central-northern Japan and below-normal rainfall in South China. The northward shift of the East Asian subtropical front is attributed to the following processes without change in the WNPSH: an enhanced NEAL increases meridional pressure gradients and the monsoon westerly along the East Asian subtropical front, which in turn induces a cyclonic shear vorticity anomaly to its northern side. The associated Ekman pumping induces moisture flux convergence that shifts the East Asian subtropical front northward. In addition, the frequent occurrence of synoptic cut-off lows is found to be associated with an enhanced NEAL. Wave activity analysis indicates that the interannual intensity change of the NEAL is significantly associated with the extratropical Polar Eurasian teleconnection, in addition to the forcing of the tropical WNP heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号