首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
薛朝辉  李博 《遥感学报》2022,26(10):2014-2028
基于卷积神经网络的高光谱图像分类是当前的研究热点,先后发展了空洞卷积、可形变卷积等先进模型。然而,现有可形变卷积只在空间维偏移,忽略了高光谱图像光谱之间的差异信息。为此,本文将可形变卷积从空间维扩展到光谱维,设计了光谱可形变卷积,提出了光谱可形变卷积网络SDCNN(Spectral Deformable Convolutional Neural Network)。首先,利用全连接层学习光谱可形变卷积的偏移量,采用线性差值对图像光谱维进行特征校准;其次,采用多层1×1卷积进行光谱维特征聚合;最后,使用三维卷积层提取光谱?空间联合特征。不同于空间可形变卷积,光谱可形变卷积只在光谱维上进行偏移,可以为不同类别选择更合适的特征波段,提升模型的判别性。在国际通用测试数据Indian Pines、University of Pavia以及University of Houston上进行了实验,结果表明:本文提出的SDCNN方法优于其他深度学习方法,在相同样本条件下取得了更高的分类精度,总体精度达到了98.86%(Indian Pines,10%/类)、99.81%(University of Pavia,5%/类)以及97.41%(University of Houston,50个/类),验证了该方法的有效性。  相似文献   

2.
向量化的胶囊神经元和动态路由式的信息传递机制赋予了胶囊网络更强的特征表示能力。在遥感领域,基于胶囊网络的高光谱影像分类方法已经获得了较传统深度学习模型更为优异的分类结果。针对现有胶囊分类模型中存在的网络浅层、空谱联合信息利用不足等问题,本文利用卷积胶囊层、残差连接、三维卷积胶囊层构建了一种用于高光谱影像分类的新型深度胶囊网络。具体地,本文方法直接以高维数据立方体作为网络输入,并利用胶囊残差块逐层提取数据中的深层抽象特征。为了更加充分地利用影像中的空谱联合特征,在深层次的胶囊残差块中引入三维卷积胶囊层,以进一步提高分类精度。为了验证本文方法的有效性,选择University of Pavia、Indian Pines和Salinas等3个常用高光谱数据集和一个大规模机载高光谱数据集Chikusei进行实验。结果表明,与现有深度学习模型相比,本文方法能够获得更为优异的分类效果,在4个数据集上分别获得了99.43%、98.85%、97.14%和97.43%的总体分类精度。  相似文献   

3.
残差网络能够有效地解决卷积神经网络出现的梯度消失问题,应用于高光谱图像分类取得了良好的效果,但简单地堆积残差单元并不能很好地提高模型性能。通道注意力机制能够有区别地处理卷积层输出的特征图,更好地利用对分类有用的特征通道。为了充分利用残差网络及通道注意力机制的特征提取能力,设计适用于高光谱图像分类的残差通道注意力网络。在残差单元中结合卷积层和通道注意力机制,实现对特征通道的重新调整,并在模型中实现局部残差学习和全局残差学习,促进信息传递,增强模型稳定性。实验结果表明,该方法用于Indian Pines数据和University of Pavia数据能够分别取得98.78%和99.22%的分类精度,在有限数量训练样本的情况下,能够达到较高的分类精度。  相似文献   

4.
针对高光谱影像分类问题,提出了基于深度卷积循环神经网络的高光谱影像空谱特征分类方法.首先将高光谱数据立方体看作一组特征序列;然后利用深度卷积循环神经网络构建特征序列的依赖关系,并采用"预训练+微调"的训练策略对深层网络模型进行训练,从而使得所设计的深层网络在训练样本较少的情况下也能得到更加充分的优化.在Pavia大学和Indian Pines数据集上的试验结果表明,构建的深度卷积循环神经网络的分类精度比RNN方法分别提升了9.49%和5.8%.  相似文献   

5.
近年来,基于深度学习的高光谱影像分类取得重要进展,针对高光谱影像分类训练样本稀缺的情况,提出一种结合注意力机制的轻量化关系网络(lightweight attention depth-wise relation network, LWAD-RN), 以解决高光谱影像小样本分类问题。该网络由嵌入层和关联层组成,在嵌入层采用结合注意力机制的轻量化卷积神经网络提取像元特征,同时引入稠密网络结构;在关联层计算关联值进行分类,并采用基于任务的模式训练网络。利用3组公开的高光谱影像数据进行对比实验,结果表明,LWAD-RN能够有效提升小样本条件下(每类5个训练样本)的分类精度,同时提高了模型训练和分类效率。  相似文献   

6.
魏祥坡  余旭初  张鹏强  职露  杨帆 《遥感学报》2020,24(8):1000-1009
卷积神经网络CNN(Convolutional Neural Networks)具有强大的特征提取能力,应用于高光谱图像特征提取取得了良好的效果,双通道CNN模型能够分别提取高光谱图像的光谱特征和空间特征,并实现了特征的决策级融合。局部二值模式LBP(Local Binary Patterns)是一种简单但有效的空间特征描述算子,能够减轻CNN特征提取的压力并提高分类精度。为了充分利用CNN的特征提取能力及LBP特征的判别能力,提出一种双通道CNN和LBP相结合的高光谱图像分类方法,首先,采用1维CNN(1D-CNN)模型处理原始高光谱数据提取深层光谱特征,同时采用另一个1D-CNN模型处理LBP特征数据进一步提取深层空间特征,然后,将两个CNN模型的全连接层进行连接,实现深层光谱特征和空间特征的融合,并将融合特征输入到分类层中完成分类。实验结果表明,该方法在Indian Pines数据、Pavia University数据及Salinas数据上能够分别取得98.54%、99.73%、99.56%的分类精度,甚至在有限数量的训练样本条件下也能取得较好的分类效果。  相似文献   

7.
联合空-谱信息的高光谱影像深度三维卷积网络分类   总被引:4,自引:2,他引:2  
针对高光谱影像分类高维和小样本的特点,提出一种基于深度三维卷积神经网络的高光谱影像分类方法。首先,该方法直接以高光谱数据立方体为输入,利用三维卷积操作提取高光谱数据立方体的三维空-谱特征。然后,利用残差学习构建深层网络,提取更高层次的特征表达,以提高分类精度。最后,采用Dropout正则化方法防止过拟合。利用Pavia大学、Indian Pines和Salinas 3组高光谱数据进行试验验证,结果表明,与支持向量机和现有的基于深度学习的高光谱影像分类方法相比,该方法能有效提高高光谱影像的地物分类精度。  相似文献   

8.
现有的基于卷积神经网络的高光谱影像分类方法通常对影像的规则正方形区域进行卷积,无法普遍适应具有不同地物分布和几何外观的影像局部区域,因此在小样本情况下的分类性能较差,而图卷积网络能对图拓扑信息所代表的不规则影像区域进行卷积.为此,本文提出基于图卷积网络的高光谱影像分类方法.该方法在构建拓扑图的过程中考虑了影像的空间光谱信息,并利用图卷积网络聚合邻居节点的特征信息.在Pavia大学、Indian Pines和Salinas 3个数据集上的试验结果表明,该方法能在训练样本较少的情况下取得较高的分类精度.  相似文献   

9.
郭欣怡  吕扬  王源  宣兆新 《北京测绘》2023,(10):1391-1396
研究基于珠海一号高光谱影像的冬小麦识别提取技术,提出基于多级融合的多时相高分辨率高光谱冬小麦提取方法。本文从珠海一号高光谱影像入手,利用高分辨率影像改善高光谱影像空间分辨率,通过主成分分析降维、多种特征提取技术,大幅减少计算量的同时提高分类精度,Kappa系数提升0.05。针对融合影像是否有效、高程特征如何正确使用、U型语义分割网络(U-Net)和深度卷积语义分割网络(DeepLab)如何选择等问题,文中以4个实验对比说明,验证了该方法可以有效改善分类结果。  相似文献   

10.
针对高光谱影像分类问题,提出了一种显著性特征提取方法。首先,利用超像素分割算法将高光谱影像3个相邻波段分割为若干个小区域。然后,基于分割得到的小区域计算反映不同区域的显著性特征。最后,沿着光谱方向采用大小为3、步长为1的滑窗法获得所有波段的显著性特征。进一步将提取的显著性特征与光谱特征进行结合,并将结合后的特征输入到支持向量机中进行分类。利用Pavia大学、Indian Pines和Salinas 3组高光谱影像数据进行分类试验。试验结果表明,与传统的空间特征提取方法和基于卷积神经网络的高光谱影像分类方法相比,提取的显著性特征能够获得更高的高光谱影像分类精度,且结合光谱特征能够进一步提高分类精度。  相似文献   

11.
针对传统手工提取特征方法需要专业领域知识,提取高质量特征困难的问题,将深度迁移学习技术引入到高分影像树种分类中,提出一种结合面向对象和深度特征的高分影像树种分类方法。为了获取树种的精确边界,该方法首先利用多尺度分割技术分割整幅遥感影像,并选择训练样本作为深度卷积神经网络的输入。为了避免样本数量少导致过拟合问题,采用迁移学习方法,使用ImageNet上训练的VGG16模型参数初始化深度卷积神经网络,并利用全局平局池化压缩参数,在网络最后添加1024个节点的全连接层和7个节点的Softmax分类器,利用反向传播和Adam优化算法训练网络。最后分类整幅遥感影像,生成树种专题地图。以安徽省滁州市的皇甫山国家森林公园为研究区,QuickBird高分影像作为数据源,采用本文方法进行树种分类。试验结果表明,本文方法树种分类总体精度和Kappa系数分别为78.98%和0.685 0,在保证树种精度的同时实现了端到端的树种分类。  相似文献   

12.
薛朝辉  张瑜娟 《遥感学报》2022,26(4):722-738
高光谱遥感可同步获取地表覆盖空间影像和连续且精细的光谱数据,能够实现对地物的精细分类与识别。然而,高光谱图像的高维特性对分类带来巨大挑战。为此,本文探讨了一种基于卷积核哈希学习的高光谱图像分类方法。哈希学习可以将高维信息表达为低维哈希编码,通过计算哈希编码内积并借助最小汉明距离实现分类。为了有效表达非线性数据,又发展了核哈希学习方法。然而,直接应用核哈希学习进行高光谱图像分类存在运行速度慢和未考虑空间邻域信息的不足。为此,本文在核哈希学习中引入径向基函数RBF(Radial Basis Function)作为损失函数以提高运行效率;同时,借助四维卷积操作充分表达空间邻域信息,提出了基于卷积核哈希学习的高光谱图像分类方法CKSH(Supervised Hashing with RBF Kernel and Convolution),同时探讨了该方法在仅利用光谱特征和光谱—空间联合特征上的分类效果。在国际通用测试数据Indian Pines和University of Pavia上进行了实验,结果表明:本文提出的CKSH方法优于传统分类方法(支持向量机、随机子空间)和其他哈希学习方法(如谱哈希、球哈希、监督离散哈希、潜在因子哈希等),同时在不同训练样本数量条件下均取得了较高的分类精度,达到96.12%(Indian Pines,10%的训练样本)和98.00%(University of Pavia,5%的训练样本),从而验证了该方法的有效性。  相似文献   

13.
苗永庆  赵泉华  孙清 《测绘科学》2023,(2):148-156+184
针对高光谱遥感影像分类中空间特征和光谱特征利用率低问题,该文综合三维卷积神经网络、谷歌神经网络和残差神经网络的优势,提出融合改进Inception模块的残差三维卷积神经网络高光谱遥感影像分类方法。改进后的Inception模块包括4条不同的卷积层分支,用以提取蕴涵在高光谱遥感影像中多尺度的特征;利用了3D卷积核代替2D卷积核能直接同时提取高光谱遥感影像中更丰富的空-谱特征;通过残差结构连接分支提取特征缓解了梯度消失的问题,提取更深层次的特征。实验表明,该文算法不仅提高了条状和线状地物区域的边缘分类准确率,对小目标的分类能力也得到了增强。  相似文献   

14.
刘冰  左溪冰  谭熊  余岸竹  郭文月 《测绘学报》1957,49(10):1331-1342
针对高光谱影像分类面临的小样本问题,提出了一种深度少样例学习算法,该算法在训练过程中通过模拟小样本分类的情况来训练深度三维卷积神经网络提取特征,其提取得到的特征具有较小类内间距和较大的类间间距,更适合小样本分类问题,且能用于不同的高光谱数据,具有更好的泛化能力。利用训练好的模型提取目标数据集的特征,然后结合最近邻分类器和支持向量机分类器进行监督分类。利用Pavia大学、Indian Pines和Salinas 3组高光谱影像数据进行分类试验,试验结果表明,该算法能够在训练样本较少的情况下(每类地物仅选取5个标记样本作为训练样本)取得优于传统半监督分类方法的分类精度。  相似文献   

15.
传统基于深度卷积神经网络的场景分类方法往往需要大量标记样本用于模型的参数训练,在标记训练集数量有限的情况下,学习得到的特征泛化能力降低.针对这一问题,本文提出了高分影像分类的半监督深度卷积神经网络学习方法(3sCNN),采用自学习半监督策略,训练阶段不断增加训练样本:首先,通过有限的标记数据对深度网络进行初步训练;然后,利用经过初步训练的网络对未标记数据进行预测,得到未标记样本的预测标签及其对应的置信度;最后,将具有高置信度的未标记样本作为真实标记数据加入到训练集中,继续对网络进行训练并重复上述过程.为验证算法的有效性,本文在3个常用数据集上进行试验,试验结果证明本文算法可以有效提高有限样本下高分影像场景分类精度.  相似文献   

16.
深度学习技术因其在深度挖掘地物特征方面的独特优势为高光谱图像分类提供了技术手段。但是在高光谱图像的像素级地物分类中,由于样本输入尺寸的影响导致深度学习的层数受限,不能充分挖掘高光谱图像中的深度特征,为此提出基于残差网络特征融合的高光谱图像分类方法。首先通过主成分分析(principal component analysis,PCA)方法提取原始高光谱图像中的第一主成分,利用残差网络有效提取地物空谱特征;再通过反卷积算法实现特征图的扩充,将反卷积后不同维度的特征进行多尺度特征融合,充分挖掘高光谱图像中的深度特征信息,进一步提升高光谱图像分类精度。对"珠海一号"卫星拍摄的江苏太湖和安徽巢湖两个区域进行地物分类实验,结果表明,与其他方法相比,该方法有效解决了高光谱图像分类中深度特征提取不足的问题,获得了更好的分类性能。  相似文献   

17.
深度卷积神经网络在高光谱图像分类任务上取得了优越性能。但是,主流深度学习算法通常采用一阶池化运算,容易忽略光谱之间的相关性,因而难以获取高阶统计判别特征。另外,这类算法往往难以选择最优的窗口大小去捕获不同感受野信息。针对上述问题,本文提出了一种结合协方差池化和跨尺度特征提取的高光谱影像分类方法。该方法设计了跨尺度自适应特征提取模块,能够自动提取多尺度特征,获取不同视野的互补信息,避免了尺度选择问题;进一步利用平均池化和快速协方差池化的联合池化操作,得到一阶统计量和结合空间光谱信息的二阶统计量;最终,将一阶和二阶池化特征进行融合用于分类。在3个公开高光谱数据集Indian Pines、Houston和Pavia University上分别随机选取5%、5%和1%标记样本进行训练,本文算法得到的总体分类精度分别达到97.63%、98.48%和98.21%,分类性能优于主流深度学习方法。  相似文献   

18.
针对当前特征提取方法不能充分挖掘高光谱影像稀疏特性的问题,提出一种基于稀疏判别分析的高光谱影像特征提取方法。首先,在线性判别分析的系数向量中引入稀疏正则项来捕获具有更强判别能力的特征,将高光谱影像映射至低维稀疏的子空间;然后,利用迭代优化方法对模型进行求解。利用Salinas和Pavia University高光谱影像进行对比实验,所提方法与分类方法结合用于影像分类时,其分类精度优于其他方法,总体分类精度分别达到97.42%和97.64%。  相似文献   

19.
高光谱影像特征的利用率对提高其分类精度具有重要意义。为充分利用影像的特征,提出了一种特征重标定网络的高光谱影像分类方法。该方法通过全局平均池化将特征图转换为具有全局信息的实数,利用全连接层与非线性层生成能够代表各通道相对重要性的权值,进而采取加权法完成初始特征的重标定。为验证该方法的有效性,选取PaviaU和KSC两组高光谱影像数据进行实验。结果表明,提出方法总体分类精度分别达到98.38%和95.61%,可为高光谱影像提供有效的类别判定特征,有助于提高影像分类精度并获取平滑的分类结果图。  相似文献   

20.
深度学习可以有效表达影像的深层特征,在遥感图像处理特别是在分类方面取得了良好的效果。提出了一种基于变分自编码网络的高光谱遥感影像深度学习分类方法,该方法利用变分自编码器进行无监督训练,用分类层替换解码层,输入训练样本进行分类网络的微调,最后在分类器预测的类别概率图基础上使用条件迭代模型求解马尔可夫随机场,对分类结果进行优化。在两幅通用高光谱数据集上进行分类实验,结果表明基于变分自编码器的高光谱遥感影像分类方法取得了优于其它方法的分类效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号