首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
试样经焙烧、王水分解后,在8%的王水介质中,MIBK负载泡塑吸附[AuCl_4]~-。灰化吸附泡塑或硫脲溶液解脱,用中子活化法测定Au。取10g样品,可测定0.000x~xxμg/g的Au。用于金标样的定值,具有良好的精密度和准确度。  相似文献   

2.
泡塑吸附-电感耦合等离子体发射光谱法测定矿石中的金   总被引:13,自引:9,他引:4  
试样在650℃烧制、王水溶解、泡塑振荡吸附、硫脲解脱,用电感耦合等离子体发射光谱法测定矿石中的金量,克服了原子吸收光谱法对低含量金测定稳定性和精密度差、对高含量金测定分取误差大和返工率高等不足,缩短了分析时间。方法经国家一级标准物质分析验证,结果与标准值相符。对二级标准物质测定的方法精密度(RSD,n=12)为6.45%。方法检出限为0.138μg/g,线性范围宽,适用于矿石中0.2μg/g以上金的测定。  相似文献   

3.
流动注射-火焰原子吸收光谱法测定地质样品中的常量金   总被引:4,自引:3,他引:1  
样品经室温烧至650℃高温后灼烧保持1.5 h,用浓王水溶解。用泡塑分两次吸附富集样品中的常量金,将富集同一样品中金的两块泡塑置于盛有10 mL 10 g/L硫脲溶液的玻璃试管中,沸水浴保持20 min,使金释放出来,所得溶液应用原子吸收分光光度计采用流动注射测定。对仪器的测定条件进行了优化比较。方法检出限(3σ)为0.022μg/g,精密度(RSD,n=11)小于8.0%,测定范围为0.05~60μg/g。经国家金矿石分析标准物质验证,其测定值与标准值基本一致。  相似文献   

4.
西藏锑矿中金和锑的测定方法研究   总被引:4,自引:0,他引:4  
西藏锑矿资源丰富,该矿的复杂性(含硫高,锑金共生)以及地理条件的特殊性,使得我们在分析金和高含量锑 的时候存在两个问题:首先是对测定锑的影响,其次是锑的干扰造成金测定结果不准确。本文采用王水溶矿,柠檬酸防止锑挥发及水解,氯化钡消除硫干扰,原子吸收分光光度法测定高含量锑,线性范围为0.xx-xx,xx%。根据锑量加入适量氯化铵,能有效消除锑对金的干扰,从而准确测定金;采用氢醌容量法可准确测定0.1-200μg/g的金;原子吸收分光光度法可以准确测定0.05-30μg/g的金。  相似文献   

5.
载炭泡塑吸附法对金有良好的吸附性能,但只能用于抽滤吸附不能振荡吸附,分析手续繁杂。本文以载炭泡塑振荡吸附-电感耦合等离子体发射光谱法测定金矿石的金量。样品在650℃高温灼烧2 h,用50%王水和10%氯化铁加热溶解,溶液冷却后加入5%高锰酸钾氧化,用中密度规格的载炭泡塑两次振荡吸附溶液中的金,然后于580℃高温灼烧后以50%王水溶解灰分,直接用ICP-OES测定金量。方法检出限(3σ)为0.002μg/g,精密度(RSD,n=11)小于3.7%。本方法对金的吸附率大于99.9%,测定范围为0.01~90μg/g,对不同类型金矿石的适应性强,解决了以往泡塑吸附法吸附率较低、标准系列与样品需同时预处理的问题,对低含量和高含量样品均有较高的准确度。  相似文献   

6.
氢化物发生-原子荧光光谱法测定铜矿石中的砷锑铋   总被引:1,自引:1,他引:0  
样品经王水溶矿分解,在氨水存在下,以Fe3+作共沉淀剂分离铜后,用氢化物发生-原子荧光光谱法测定铜矿石中的砷、锑、铋。方法检出限为砷0.19μg/g、锑0.052μg/g、铋0.049μg/g;精密度(RSD,n=10)为砷5.87%、锑7.58%、铋2.42%。  相似文献   

7.
莫尔盐容量法测定岩石矿物中微量金   总被引:1,自引:0,他引:1       下载免费PDF全文
本文用作者合成的新试剂——钒金试剂做指示剂莫尔盐容量法测定微量金,终点突跃明显,操作简便,测定金范围宽。岩石矿物经磷酸——王水溶样,聚氨酯泡塑富集分离后测金较王水溶样回收完全。测金范围在0.0003—100g/t。试样测定的变动系数在21.6—1.62%范围。  相似文献   

8.
火焰原子吸收光谱法测定高品位金矿石中的金   总被引:4,自引:4,他引:0  
采用经典火试金法测定高品位金,操作流程长,影响因素多,在铅扣灰吹过程中易挥发选出大量的铅,对实验环境造成严重污染.本文将20.0~100.0 g取样量先分成若干小样量进行焙烧,经50%王水完全分解后分离滤渣,所得若干份滤液定容于同一容量瓶内,分取适量体积进行泡沫塑料富集,将富集金的泡沫塑料灰化后用浓王水复溶,以火焰原子吸收光谱法(FAAS)测定高品位金矿石中金的含量.方法检出限为0.101 μg/g,通过多个国家一级标准物质和分析样品验证,准确度和精密度满足相关要求.此方法测定灵敏度高,取样量为20.0 ~ 100.0 g,有效地提高FAAS法取样代表性,同时拓展了FAAS法测定矿石中金的含量范围,针对50.0 ~ 550.0 μg/g中高含量段的金结果同样可靠.  相似文献   

9.
陈志兵 《岩矿测试》2002,21(4):311-314
土壤样品经王水分解,转化成HCl溶液,再用NaOH溶液调至碱性,样品溶液首先与KBH4混合,然后与酸作用完成氢化物发生,用原子荧光光谱法测定样品中的痕量硒。方法检出限为0.01μg/g。线性范围为1-200μg/L,样品中硒的含量为0.082μg/g和0.34μg/g时,RSD(n=12)分别为4.9%和2.9%。方法经土壤国家一级标准物质中硒的测定验证,结果与标准值相符。  相似文献   

10.
试样经灼烧,磷酸-王水分解,用泡沫塑料吸附富集金,经灰化,过氧化氢和盐酸溶解,在磷酸介质中,以钒金试剂指示,莫尔盐滴定将Au~(3+)还原为Au~+,使溶液紫红色消失即为终点.可测定0.004g/t以上的金。  相似文献   

11.
NK8310螯合树脂分离富集地质样品中痕量金银铂钯及其测定   总被引:14,自引:3,他引:14  
李志强  沈慧君 《岩矿测试》2001,20(2):91-96,99
研究了硫脲螯合树脂(NK8310)分类富集地质样品中痕量Au、Ag、Pt和Pd的实验条件。在φ=10%的王水介质中,[AuCI4]^-、[AgCI2]^-、[PtCI6]^2-和[PdCI4]^2-定量吸附于树脂上并与大量贱金属分离;用5g/L硫脲-0.12mol/L HCI溶液洗脱Au、Ag、Pt和Pd,回收率为97%-104%。用硫镍矿管理样以及国家一级标准物质进行分析验证,分析结果与推荐值及标准值吻合,表明NK8310螯合树脂适用于地质样品中Au、Ag、Pt和Pd的分离富集。  相似文献   

12.
李勇 《岩矿测试》2008,27(4):305-309
用φ=50%的王水分解样品,聚氨酯泡沫塑料吸附富集金,10g/L硫脲为解脱剂,偏振塞曼石墨炉原子吸收分光光度计测定痕量金。对干燥、灰化、原子化、净化温度和时间,以及载气流量和灯电流强度进行了讨论;对影响金吸附效果的泡塑载体和王水浓度等因素进行了研究。通过实验得到了Z-2000偏振塞曼原子吸收分光光度计最佳石墨炉分析测试条件。方法检出限为0.3ng/g,回收率为95.0%~101.0%,精密度(RSD,n=12)低于8.0%,经国家一级标准物质(GBW07243~GBW07245)分析验证,结果与标准值相符。  相似文献   

13.
采用生物氧化技术和化学方法,利用堆浸工艺分步提取,对含Au 140~150 g/t、Ag 900~1 000 g/t、B i 9.0%~10.0%、Cu14%~17%的多金属浮选金精矿的综合回收工艺进行了研究。经小型搅拌试验,确定了生物氧化浸铜—氰化浸金、NaC l-FeC l3-HC l体系(氯盐法)浸出铋和银的技术方法。通过柱浸试验,研究了利用该方法分步浸取Au、Ag、Cu和B i在堆浸工艺中的可行性。在10 t精矿的扩大试验验中,验证了柱浸试验所取得的工艺指标和参数。试验中掺入骨架材料,解决了精矿在堆浸中的渗透问题;生物氧化过程中,菌种在含高浓度铜离子浸出液中反复驯化,对铜的耐受力提高到30 g/L;在NaC l-FeC l3-HC l体系浸出B i和Ag时,用H2O2将浸出液中的Fe2+氧化成Fe3+,使浸出液能循环使用,且B i和Ag同时浸出。Au、Ag、Cu和B i的最终浸出率分别为92.98%、65.09%、45.33%和53.49%。  相似文献   

14.
等离子体质谱法直接测定地球化学样品中金铂钯   总被引:19,自引:0,他引:19  
建立了王水分解地球化学样品报直接用等离子体质谱法测定Au、Pd和Pt的分析方法。方法测定下限为Au4,0ng/g,Pd3.6ng/g,Pt2.4ng/g,方法精密度(RSD,n=12)为Au14.2%,Pd3.6%-5.2%,Pt6.6%-10.8%,三个元素的线性范围都为0.02-300μg/L。采用文中制定的分析方法直接测定了国家一级地球化学标准物质中的Au、Pd、Pt,在测定下限以上的测定结果与标准值吻合。  相似文献   

15.
采用717阴离子树脂活性炭联合交换分离富集技术,电感耦合等离子体发射光谱法同时测定富钴锰结壳中痕量金、银、铂、钯。方法检出限四元素分别为:Au1. 3、Ag0. 4、Pd0. 6、Pt4. 8ng/g。样品加标回收率在89. 0% ~110. 3%,相对标准偏差3. 5% ~7. 8% (n=4)。方法已用于富钴锰结壳中痕量金银铂钯的测定。  相似文献   

16.
发展了一种能在野外测定0.25~1000μg/g银量的Ag-TMK-DBS三元络合物光导比色测定法。样品经硝酸封闭溶解后,用巯基棉富集分离银,在pH 4.5的乙酸-乙酸钠缓冲介质中,银与硫代米蚩酮(TMK)-十二烷基苯磺酸钠(DBS)形成易溶于水的红色三元胶束络合物,用自行开发研制的光导(比色)分光光度计比色测定痕量银。方法检出限为0.10μg/g,加标回收率为96.0%~99.4%,11次测定的精密度(RSD)小于5.76%。方法较为快速、简便、准确和灵敏,经国家一级标准物质验证,分析结果与标准值吻合。用光导分光光度计测定,准确度和精密度均有很大改进,结果与室内原子吸收光谱分析结果一致。方法具有广阔的应用前景。  相似文献   

17.
华明 《岩矿测试》2013,32(2):235-239
在高氯酸-硫脲介质中用原子吸收光谱法同时测定地质及选冶样品中银和铜已有文献报道;但在王水-硫脲介质中存在铜对银的测定干扰.本文采用盐酸-氢氟酸-硝酸-高氯酸四酸溶矿,王水提取、硫脲络合,用火焰原子吸收光谱法对银精矿中铜、银进行连续测定.通过筛选不同的样品消解方法,试验了硫脲介质浓度的影响,对共存元素的干扰进行消除.结果表明:四酸溶矿效果最好;通过加入过量的硫脲并控制其浓度在20 g/L以内,使溶液中银的白色沉淀与硫脲生成可溶的Ag[SC(NH2)2]3+配离子,消除了铜对银测定的干扰.该方法用于样品分析,相对标准偏差RSD(n =6)铜为1.20%~2.11%,银为0.61% ~1.18%;加标回收率铜为96.5% ~ 107.0%,银为97.3% ~ 104.7%.测定值与碘量法、火试金法结果相符.本法具有简单、实用、成本低等优点,可满足银精矿选矿工艺生产的需要.  相似文献   

18.
We used samples from six Finnish ore deposits to evaluate the efficiency of sample pretreatment procedures — crushing, splitting and grinding — and to compare three analytical methods based on the atomic absorption determination of gold following: (1) classical lead fire assay (FA); (2) the aqua regia leach (AR) followed by Hg coprecipitation of Au; and (3) the sodium cyanide (NaCN) leach. Sample size used for the method comparison is 20 g. The Au deposits and ore types were: Suurikuusikko and Osikonmäki, refractory ores in which Au is associated with arsenopyrite and pyrite; Pampalo and Kutemajärvi ores with metallic Au and Au tellurides; and Jokisivu and Pahtavaara ores containing coarse-grained metallic Au. After crushing, the samples were split into three parts, one of which was put aside into storage. Two splits were further divided into two subsamples which were ground to two grades of fineness (<0.03 and <0.06 mm). The four subsamples thus obtained were analysed for Au using the three analytical methods. Each determination was performed five times on each of the four subsamples. According to t-tests on the FA results of the two splits, crushing and splitting produced samples of equal Au content in all six cases. Grinding to a finer grain size gave a significant difference in Au results only for the Pahtavaara ore sample. If the FA results are assumed to represent 100% recovery of Au, we obtained greater than 95% recoveries for all but the Suurikuusikko sample (87% recovery) by the AR leach method. We also obtained recoveries of over 95% by the NaCN leach method for the Pampalo, Kutemajärvi and Pahtavaara samples, whereas recoveries for the other three samples varied between 73 to 92%. The AR leach was also performed on 1-g samples and the NaCN leach on 250-g samples. For three of the ore samples, decreasing sample size from 20 g to 1 g did not cause a significant difference in the variance of the Au results. Increasing the sample size from 20 g to 250 g significantly improves the representativity of only the Pahtavaara sample. For the Kutemajärvi, Pahtavaara and Jokisivu ores, a sample larger than 250 g is needed in order to obtain a precision equivalent to that for reference samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号