首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Most arid and semi-arid soils, especially calcareous sandy soils, are widely distributed in the Middle East region; the deficiency in their content of many nutrients particularly phosphorus and organic matter limits crops production. This study aimed to assess the effects of adding biochar (B) with farmyard manure (FYM) and poultry manure (PM) on some soil properties, phosphorus (P) availability, and barley growth in calcareous sandy soil. The pot experiment includes the following treatments: Control, B, B?+?FYM (1:1), B?+?PM (1:1), B?+?FYM (2:1), B?+?PM (2:1), FYM?+?B (2:1), and PM?+?B (2:1). Biochar combined with FYM and PM enhanced the water holding capacity (WHC) and soil organic matter (SOM) content in calcareous sandy soil. Phosphorus availability was increased significantly by applying biochar mixed with farmyard manure and poultry manure at all treatments. Green biomass of barley improved because of adding biochar alone, poultry manure alone, and biochar co-applied with poultry manure at all mixing ratios. Biochar application caused significant increases in phosphorus use efficiency (PUE) by barley plants compared to all other treatments, except for the control. We recommend adding biochar either individually or mixed with poultry manure to improve the productivity of calcareous sandy soil.  相似文献   

2.
Soil aggregation is one of the key properties affecting the productivity of soils and the environmental side effects of agricultural soils. In this study, we aimed to identify whether biochar could be used to improve aggregate stability. A 2-year field experiment was conducted to investigate the effect of biochar application (0, 2.5, 5, 10, 20, 30 and 40 t ha?1) on aggregate characteristics of upland red soil under a rapeseed–sweet potato rotation in subtropical China. Percentage of aggregate destruction (PAD0.25), mean weight diameter (MWD), geometric mean diameter (GMD) and fractal characteristics of soil aggregates were measured using both wet and dry sieving methods. Results showed that applying biochar significantly decreased the percentage of aggregate destruction and soil fractal dimension and increased the MWD and GMD. The optimal amelioration was observed when biochar was applied at a rate of 40 t ha?1. The decline of the fractal dimension of dry aggregates was 2–9 times as much as that of water-stable aggregates in the 0–15 soil layer and 1–4 times in the 15–30 cm soil layer. These results suggested that biochar could improve the resistance of aggregates to stresses and provide scientific strategies for the agricultural production.  相似文献   

3.
A field study was performed to determine the efficiency of diammonium phosphate (DAP) applied alone or combined with biochar, lignite, and farmyard manure (FYM) on growth and cadmium (Cd) accumulation in wheat and rice. Before crop sowing, different treatments were applied in the field such as a control (T1), DAP alone (0.1%, T2), DAP + lignite (0.05% each, T3), DAP + FYM (0.05% each, T4), and DAP + biochar (0.05% each, T5). Afterwards, the wheat seeds were sown in the soil. At wheat postharvest, rice was sown without any further treatment. Raw effluent was applied as an irrigation source during the whole growth period of both crops since it is the common practice of the farmers of study area. It was revealed that the use of amendments enhanced the yield and photosynthesis but lowered the Cd contents in straw as well as grains of both crops. In both crops, the highest yield of straw and grain was found in DAP + FYM whereas the lowest Cd concentration was found in DAP alone. The ammonium bicarbonate-DTPA extractable Cd of post wheat and post rice soils were decreased while the soil pH and immobilization index were increased in all treatments as compared with the control. The present field study highlighted that the DAP + FYM can be effective in increasing yield with decreased Cd concentrations in crop grains.  相似文献   

4.
Estimation of soil erosion using RUSLE in Caijiamiao watershed,China   总被引:4,自引:1,他引:3  
Jinghu Pan  Yan Wen 《Natural Hazards》2014,71(3):2187-2205
Soil erosion is a serious environmental and production problem in China. In particular, natural conditions and human impact have made the Chinese Loess Plateau particularly prone to intense soil erosion area. To decrease the risk on environmental impacts, there is an increasing demand for sound, and readily applicable techniques for soil conservation planning in this area. This work aims at the assessment of soil erosion and its spatial distribution in hilly Loess Plateau watershed (northwestern China) with a surface area of approximately 416.31 km2. This study was conducted at the Caijiamiao watershed to determine the erosion hazard in the area and target locations for appropriate initiation of conservation measures using the revised universal soil loss equation (RUSLE). The erosion factors of RUSLE were collected and processed through a geographic information system (GIS)-based approach. The soil erosion parameters were evaluated in different ways: The R-factor map was developed from the rainfall data, the K-factor map was obtained from the soil map, the C-factor map was generated based on Landsat-5 Thematic Mapper image and spectral mixture analysis, and a digital elevation model with a spatial resolution of 25 m was derived from topographic map at the scale of 1:50,000 to develop the LS-factor map. Support practice P factor was from terraces that exist on slopes where crops are grown. By integrating the six-factor maps in GIS through pixel-based computing, the spatial distribution of soil loss in the study area was obtained by the RUSLE model. The results showed that spatial average soil erosion at the watershed was 78.78 ton ha?1 year?1 in 2002 and 70.58 ton ha?1 year?1 in 2010, while the estimated sediment yield was found to be 327.96 × 104 and 293.85 × 104 ton, respectively. Soil erosion is serious, respectively, from 15 to 35 of slope degree, elevation area from 1,126 to 1,395 m, in the particular area of soil and water loss prevention. As far as land use is concerned, soil losses are highest in barren land and those in waste grassland areas are second. The results of the study provide useful information for decision maker and planners to take appropriate land management measures in the area. It thus indicates the RUSLE–GIS model is a useful tool for evaluating and mapping soil erosion quantitatively and spatially at a river watershed scale on a cell basis in Chinese Loess Plateau and for planning of conservation practices.  相似文献   

5.
Soil salinity and sodicity are escalating problems worldwide, especially in arid and semiarid regions. A laboratory experiment was conducted using soil column to investigate leaching of soluble cations during reclamation process of a calcareous saline–sodic soil (CaCO3?=?20.7%, electrical conductivity (EC)?=?19.8 dS m?1, sodium absorption ratio (SAR)?=?32.2[meq L?1]0.5). The amendments consisted of control, cattle manure (50 g kg?1), pistachio residue (50 g kg?1), gypsum (5.2 g kg?1; equivalent of gypsum requirement), manure + gypsum and pistachio residue + gypsum, in three replicates which were mixed thoroughly with the soil, while sulfuric acid as an amendment was added to irrigation water. To reflect natural conditions, after incubation period, an intermittent irrigation method was employed every 30 days. The results showed that EC, SAR, and soluble cations of leachate for the first irrigation step were significantly higher than those of the subsequent leaching runs. Moreover, the concentration of removed soluble cations was lower for the control and gypsum-treated soils. It was found that among applied amendments, treatments containing cattle manure showed higher concentrations of sodium, calcium, and magnesium in the leachate, while due to pistachio residue application, further amount of potassium was removed out of soil column. The addition of pistachio residue resulted in the highest reduction in soil salinity and sodicity since the final EC and exchangeable sodium percentage dropped to 18.0% and 11.6% of their respective initial values, respectively. In the calcareous soil, solubility of gypsum found to be limited, in contrast, when it was added in conjunction with organic amendments, greater amounts of sodium were leached.  相似文献   

6.
Undulating landscapes of Chhotanagpur plateau of the Indian state of Jharkhand suffer from soil erosion vulnerability of varying degrees. An investigation was undertaken in some sections of the Upper Subarnarekha River Basin falling within this state. An empirical equation known as Universal Soil Loss Equation (USLE) was utilized for estimating the soil loss. Analysis of remote sensing satellite data, digital elevation model (DEM) and geographical information system (GIS)–based geospatial approach together with USLE led to the soil erosion assessment. Erosion vulnerability assessment was performed by analyzing raster grids of topography acquired from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global DEM data. LANDSAT TM and ETM+ satellite data of March 2001 and March 2011 were used for inferring the land use–land cover characteristics of the watershed for these years, respectively. USLE equation was computed within the GIS framework to derive annual soil erosion rates and also the areas with varying degrees of erosion vulnerability. Erosion vulnerability units thus identified covered five severity classes of erosion ranging from very low (0–5 ton ha?1 yr?1) to very severe (> 40 ton ha?1 yr?1). Results indicated an overall increase of erosion in the year 2011 as compared to the erosion computed for the year 2001. Maximum soil erosion rate during the year 2001 was found up to 40 ton ha?1 yr?1, whereas this went up to 49.80 ton ha?1 yr?1 for the year 2011. Factors for the increase in overall erosion could be variation in rainfall, decrease in vegetation or protective land covers and most important but not limited to the increase in built-up or impervious areas as well.  相似文献   

7.
Different bacterial and fungal strains, isolated from petroleum hydrocarbon-contaminated soil, were tested, in isolation as well as in combination, for their ability to degrade total petroleum hydrocarbon (TPH) in soil samples spiked with crude oil (2, 5 or 10 %, w/w) for 30 days. The selected combination of bacterial and fungal isolates, i.e., Pseudomonas stutzeri BP10 and Aspergillus niger PS9, exhibited the highest efficiency of TPH degradation (46.7 %) in soil spiked with 2 % crude oil under control condition. Further, when this combination was applied under natural condition in soil spiked with 2 % (w/w) crude oil along with inorganic fertilizers (NPK) and different bulking agents such as rice husk, sugarcane, vermicompost or coconut coir, the percent degradation of TPH was found to be maximum (82.3 %) due to the presence of inorganic fertilizers and rice husk as bulking agent. Further, results showed that the presence of NPK and bulking agents induced the activity of degradative enzymes, such as catalase (0.718 m mol H2O2 g?1), laccase (0.77 µmol g?1), dehydrogenase (37.5 µg g?1 h?1), catechol 1, 2 dioxygenase (276.11 µ mol g?1) and catechol 2, 3 dioxygenase (15.15 µ mol g?1) as compared to control (without bioaugmentation). It was inferred that the selected combination microbes along with biostimulants could accentuate the crude oil degradation as evident from the biostimulant-induced enhanced activity of degradative enzymes.  相似文献   

8.
生物质炭对于土壤中不同形态氮库的含量影响已有较多研究,但对西南喀斯特区石灰性土壤氮素形态,尤其是控制氮素形态的转化过程研究较为缺乏。本研究设置土壤中添加1%(C1)和3%(C2)蔗渣生物质炭2个用量水平,并以不施用蔗渣生物质炭作为对照(CK),共3个处理,通过 15 NH 4 NO 3 和NH^15 4 NO 3 成对标记技术,结合MCMC氮素转化模型研究了不同用量的蔗渣生物质炭对石灰性土壤氮转化过程的短期影响,为该地区蔗渣资源化利用和土壤氮保持提供理论支撑。结果表明,与CK相比,添加蔗渣生物质炭能够快速提高土壤pH和有机碳含量。添加生物质炭并没有显著改变土壤氮的矿化、铵态氮(NH^+ 4 )和硝态氮(NO^- 3 )的微生物同化和异养硝化速率,但NH^+ 4 吸附速率随生物质炭用量的增加而提高,以添加量最高的C2处理最大。添加生物质炭同样提高了土壤NH^+ 4 释放速率,但C1和C2处理的土壤NH^+ 4 释放速率并无显著性差异。与CK和C1处理相比,施用高量蔗渣生物质炭通过抑制自养硝化速率而显著降低了硝态氮净产生速率。这些结果表明,施用高量蔗渣生物质炭于石灰性土壤中可快速实现对NH^+ 4 吸附,降低自养硝化速率,减少NO^- 3 产生,从而降低了其损耗和淋失风险。  相似文献   

9.
Biochar prepared from corn stalks is used as a source of phosphorus in this study. The hypotheses were to investigate effects of biochar applications in clay soil on availability, changes of phosphorus pools and maximum adsorption of phosphorus as well as corn growth. The soil was placed in plastic pots with each contains 3 kg of this soil. Biochar was added at levels of 0 (control), 6.5 (B1), 19 (B2), and 38 (B3) g pot?1. In this experiment, the pot was planted with corn (Zea mays). The results of this study revealed that the biochar application enhanced available phosphorus (Olsen-P) from 11.51 to 17.10 mg kg?1. Adding biochar significantly increased the amount of NH4Cl-P, NaHCO3-Po, and NaOH I-Po fractions (p?≤?0.05), but it significantly decreased HCl-Pi fraction (p?≤?0.05). Addition of biochar at the highest level increased the fresh and dry matter productions by up to about 75 and 48.7%, respectively, compared to the control. The phosphorus uptake by corn plants significantly increased with increasing levels of biochar. The removal efficiency (% sorption) and maximum adsorption (b) of phosphorus increased with increasing level of biochar addition compared to control. Consequently, it is recommended to add biochar produced from corn stalks to the soil in order to substitute phosphate fertilizers.  相似文献   

10.
Qatar economy has been growing rapidly during the last two decades during which waste generation and greenhouse gas emissions increased exponentially making them among the main environmental challenges facing the country. Production of biochar from municipal solid organic wastes (SOWs) for soil application may offer a sustainable waste management strategy while improving crop productivity and sequestering carbon. This study was conducted to (1) investigate the physicochemical parameters of biochars for SOW, (2) select the best-performing biochars for soil fertility, and (3) evaluate the potential benefits of these biochars in lowering greenhouse gases (GHGs) during soil incubation. Biochars were produced from SOW at pyrolysis temperatures of 300–750 °C and residence times of 2–6 h. Biochars were characterized before use in soil incubation to select the best-performing treatment and evaluation of potential GHG-lowering effect using CO2 emission as proxy. Here, soil–biochar mixtures (0–2%w/w) were incubated in greenhouse settings for 120 days at 10% soil moisture. Soil properties, such as pH, EC, TC, and WHC, were significantly improved after soil amendment with biochar. Two biochars produced from mixed materials at 300–500 °C for 2 h and used at 0.5–1% application rate performed the best in enhancing soil fertility parameters. A significant decrease in CO2 emission was observed in vials with soil–biochar mixtures, especially for biochars produced at 500 °C compared the corresponding raw materials which exhibited an exponential increase in the CO2 emission. Hence, application of biochar to agricultural soils could be beneficial for simultaneously improving soil fertility/crop productivity while sequestering carbon, thereby reducing anthropogenic emissions of GHGs.  相似文献   

11.
The absence of environmentally sensitive soil management systems can be considered as one of the major risks to sustainability of agricultural soils in Iran. Tillage is the most critical operation in soil management designed to achieve high crop yield, but it can adversely affect the soil fauna in several ways. In the present study, assessment of soil fauna was carried out in Western Iran in 2008 and 2009 in soil subjected to conventional (CT), minimum (MT) and no (NT)-tillage systems and amended with three levels of cattle manure (CM). Earthworm, mite, springtail and nematode populations were measured as indicators of macro, meso and micro fauna groups, respectively. Soil moisture and bulk density were also determined. Generally, low populations of soil fauna were observed consistent with expectations under similar conditions for this region. Earthworm populations were low and had a patchy distribution. Tillage and CM were found to have no effects on soil mites in both years. Soil springtails were reduced by soil tillage, indicating their sensivity to soil disturbance induced by tillage. In 2008, the nematode population was greater with application of 40 ton ha?1 CM applications (113 N.100 g soil?1). Soil tillage-induced disturbance reduced nematode population in 2009 (214 N.100 g soil?1 at CT). Minimum seedbed preparation besides less soil disturbance makes MT a proper tillage system for Zea mays cultivation. Cattle manure application increased Z. mays’ biomass, but according to our results its annual application is not recommended. There were no changes in BD in both years. We conclude that in short-term studies, soil nematode populations are suitable biological indices (under similar soil and climatic conditions) for the ecological comparison of agricultural management systems in Iran.  相似文献   

12.
This study investigated the effect of cations and anions on the sorption and desorption of iron (Fe) and manganese (Mn) in six surface calcareous soil samples from Western Iran. Six 10 mM electrolyte background solutions were used in the study, i.e., KCl, KNO3, KH2PO4, Ca(NO3)2, NaNO3, and NH4NO3. NH4NO3 and NaNO3 increased the soil retention of Fe and Mn, whereas Ca(NO3)2 decreased the soil retention of Fe and Mn. Iron and Mn sorption was decreased by NO3 ? compared with H2PO4 ? or Cl?. The Freundlich equation adequately described Fe and Mn adsorption, with all background electrolytes. The Freundlich distribution coefficient (K F) decreased in the order H2PO4 ? > Cl? > NO3 ? for Mn and H2PO4 ? > NO3 ? > Cl? for Fe. The highest sorption reversibility was for Fe and Mn in competition with a Ca2+ background, indicating the high mobility of these two cations. A MINTEQ speciation solubility model showed that Fe and Mn speciation was considerably affected by the electrolyte background used. Saturation indices indicated that all ion background solutions were saturated with respect to siderite and vivianite at low and high Fe concentrations. All ion background solutions were saturated with respect to MnCO3(am), MnHPO4, and rhodochrosite at low and high Mn concentrations. The hysteresis indices (HI) obtained for the different ion backgrounds were regressed on soil properties indicating that silt, clay, sand, and electrical conductivity (EC) were the most important soil properties influencing Fe adsorption, while cation exchange capacity (CEC), organic matter (OM), and Mn-DTPA affected Mn adsorption in these soils.  相似文献   

13.
The chemistry of soil solutions can be altered by human activities, due to the intense agricultural and husbandry, leading to leaching of nutrients and subsequently elevating ground water levels. Multivariate statistical and inverse geochemical modeling techniques were used to determine the main factors controlling soil solution chemistry of calcareous soils. In this research, a total of 21 calcareous soils was characterized and assessed for soil solution using soil column. The major cations in the studied soil solutions were in the decreasing order as Ca2+ > Mg2+ > Na+ > K+. The anions were also arranged in decreasing order as HCO $ _{3}^{ - } $  > Cl $ ^{ - } $  > SO $ _{4}^{2 - } $  > NO $ _{3}^{ - } $ . Concentrations of NO $ _{3}^{ - } $ , P, and K+ in soil solutions were in the range of 6.8–307.5 mg l?1 (mean 63.2 mg l?1), 5.0–10.4 mg l?1 (mean 5.9 mg l?1), and 2.8–54.6 mg l?1 (mean 11.3 mg l?1), respectively. Results suggest that the concentration of P in the soil solutions could be primarily controlled by the solubility of dicalcium phosphate dihydrate and dicalcium phosphate. Interactions between soil properties and observed solubility of nutrients were described, and put into empirical multivariate formulations. Obtained equations contained electrical conductivity (EC) as a key factor in determining nutrients solubility. Inverse geochemical modeling of soil solution using PHREEQC indicates the dissolution of calcite, anhydrite, halite, CO2 (g), N2 (g), and hydroxyapatite, and precipitation of sulfur. Cation exchange between Ca2+, Mg2+, K+ and Na+ occurred with Mg2+ and K+ into the solution, and Ca2+ and Na+ out of the solution. Determination of soil solution will improve soil management in the area, and preventing groundwater deterioration.  相似文献   

14.
Macro- and micronutrient availability in high-pH soil is a major constraint in crop production especially for the sensitive plants, such as kiwi fruit. A field study was conducted to investigate the multiyear effects of biosolid application on nutrient availability of agricultural soil and elemental sufficiency in kiwi fruit. Solar-dried biosolid applied at 0, 25, 50, 100 and 200 t ha?1 annually for successive 2 years. The considered soil properties included pH, EC, organic matter, N, P, K, macro–microelements, heavy metals and DTPA-extractable elements were determined. Results showed that biosolid addition significantly reduced to initial soil pH from 8.2 to 7.8 at higher application doses. Optimization of pH resulted in increased levels of soluble elements in all treatments studied. Biosolid application particularly increased Fe, Cu, Zn, Mn and B concentrations to sufficient levels. Among the other elements analyzed, were not significantly affected by biosolid application. Biosolid addition also increased soil DTPA-extractable elements, especially Cd, Cu, Mn, Pb and Zn. Significant increases in DTPA-extractable elements occurred for increasing application rates at 50, 100 and 200 t ha?1 compared to control. We conclude that municipal biosolid applied at an annual rate at or less than 200 t ha?1 can be safely used for kiwi fruit production on high-pH soils.  相似文献   

15.
During the past 50 years, the amount of agricultural fertilizer used in Northern China increased from about 7.5 kg ha?1 in the 1950s to approximately 348 kg ha?1 in the 1990s. Given that little is known about the effects of nitrogen fertilization on soil labile carbon fraction in Northern China, this paper evaluated such effects in terms of microbial biomass and dissolved organic carbon in the Sanjiang Plain located in Northeast China. Soils with different cultivation time and undisturbed marsh with Deyeuxia angustifolia were selected to study the effects of nitrogen fertilization on the soil labile organic fractions microbial C (biomass C, microbial quotient, and basal respiration) and to estimate the contributions of nitrogen input on the dynamics of soil labile carbon. Continuous nitrogen application decreased total organic and dissolved organic carbon concentrations significantly, leading to the lack of carbon source for microbes. Therefore, continuous nitrogen fertilizer application induced negative effects on measured soil microbiological properties. However, a moderate nitrogen application rate (60 kg N ha?1) stimulated soil microbial activity in the short term (about 2 months), whereas a high nitrogen application rate (150 kg N ha?1) inhibited measured soil microbiological properties in the same period.  相似文献   

16.
Compacted soil–bentonite liners, consisting of a sandy soil mixed with bentonite as backfill, are used extensively as engineered barriers for contaminant containment. This paper studies the valorization of local materials containing calcareous sand, tuff obtained from Laghouat region (in the South Algeria), to associate with bentonite in order to improve their hydraulic characteristics for use as landfill liner material. Firstly, a geotechnical characterization of mixtures chooses from a fixed percentage to 10% bentonite and different percentages of calcareous sand and tuff so that they are complementary to 90% by not 10%. Thereafter, the determination of saturated hydraulic conductivity at falling-head permeability (Kv) and oedometer (Kid, indirect Measure) tests of all compacted mixtures at Optimum Normal Proctor have been carried out using both permeates by tap water and a landfill leachate in order to simulate long-term conditions. The results showed that the saturated hydraulic conductivity of tap water is relatively lower than the one saturated by leachate in the falling-head test, unlike the oedometer test. The B10CS20T70 mixture has satisfied the hydraulic conductivity criterion of bottom barriers (i.e. water permeated: kv20° = 1.97 × 10?9 and kid from 7 × 10?9 to 1.83 × 10?10 < 10?9m/s; leachate permeated: kv20° = 2.91 × 10?9 and kid from 7 × 10?9 at 1.44 × 10?10 < 10?9 m/s). Finally, a comparison between direct measurements of the saturated hydraulic conductivity by triaxial (Kd) test and oedometer test (Kid) in the range of effective stress applied 100–800 kPa led to propose equations of correlations between these two methods. In conclusion, adopted formulation B10CS20T70 perfectly meets the regulatory requirements in force and constitutes an economic product based on available local materials for engineers barriers.  相似文献   

17.
Estimation of spatial extent of soil erosion, one of the most serious forms of land degradation, is critical because soil erosion has serious implications on soil fertility, water ecosystem, crop productivity and landscape beauty. The primary objective of the current study was to assess and map the soil erosion intensity and sedimentation yield of Potohar region of Pakistan. Potohar is the rainfed region with truncated and complex topography lying at the top of the Indus Basin, the world’s largest irrigation networks of canals and barrages. Spatially explicit Revised Universal Soil Loss Equation (RUSLE) Model integrated with Remote Sensing-GIS techniques was used for detecting/mapping of erosion prone areas and quantification of soil losses. The results show that the Potohar region is highly susceptible to soil erosion with an average annual soil loss of 19 tons ha?1 year?1 of which the maximum erosion (70–208 tons ha?1 year?1) was near the river channels and hilly areas. The sediment yield due to the erosion is as high as 148 tons ha?1 year?1 with an average of 4.3 tons ha?1 year?1. It was found that 2.06% of the total area falls under severe soil erosion, 13.34% under high erosion, 15.35% under moderate soil erosion while 69.25% of the area lies in the low (tolerable) soil erosion. Chakwal and Jhelum districts of the region are seriously affected by erosion owing to their topography and soil properties. The information generated in this study is a step forward towards proper planning and implementation of strategies to control the erosion and for protection of natural resources. It is, hence, necessary that suitable water harvesting structures be made to control water to prevent soil erosion and provision of water in the lean season in this region. Tree plantation and other erosion control practices such as strip cropping can also minimize soil erosion in this region.  相似文献   

18.
In recent times, soil erosion interlocked with land use and land cover (LULC) changes has become one of the most important environmental issues in developing countries. Evaluation of this complex interaction between LULC change and soil erosion is indispensable in land use planning and conservation works. This paper analysed the impact of LULC change on soil erosion in the north-western highland Ethiopia over the period 1986–2016. Rib watershed, the area with dynamic LULC change and severe soil erosion problem, was selected as a case study site. Integrated approach that combined geospatial technologies with revised universal soil loss equation model was utilized to evaluate the spatio-temporal dynamics of soil loss over the study period. Pixel-based overlay of soil erosion intensity maps with LULC maps was carried out to understand the change in soil loss due to LULC change. Results showed that the annual soil loss in the study area varied from 0 to 236.5 t ha?1 year?1 (tons per hectare per year) in 1986 and 0–807 t ha?1 year?1 in 2016. The average annual soil loss for the entire watershed was estimated about 40 t ha?1 year?1 in 1986 comparing with 68 t ha?1 year?1 in 2016, a formidable increase. Soil erosion potential that was estimated to exceed the average soil loss tolerance level increased from 34.5% in 1986 to 66.8% in 2016. Expansion of agricultural land at the expense of grassland and shrubland was the most detrimental factor for severe soil erosion in the watershed. The most noticeable change in soil erosion intensity was observed from cropland with mean annual soil loss amount increased to 41.38 t ha?1 year?1 in 2016 from 26.60 in 1986. Moreover, the most successive erosion problems were detected in eastern, south-eastern and northern parts of the watershed. Therefore, the results of this study can help identify the soil erosion hot spots and conservation priority areas at local and regional levels.  相似文献   

19.
Soil organic carbon (SOC) storage and erosion in South China at the regional scale in the past decades remains far from being understood. This paper calculated the SOC density, storage and erosion in 14 soil classes in Guangdong Province, South China, based on statistical data from the soil survey and soil erosion survey of Guangdong, which was performed in the 1990s. The purpose of this study is to understand the relationships between soil classes and SOC erosion at the regional scale. The results indicated that the SOC density in the soils of Guangdong varied from 12.7 to 144.9 Mg ha?1 over the entire profile and from 12.6 to 68.4 Mg ha?1 in the top 20-cm soil layer. The average area-weighted SOC density in the topsoil (0–20 cm) and the entire profile was 32 ± 3 and 86 ± 4 Mg ha?1, respectively. The total SOC storage was 1.27 ± 0.06 Pg, with 35.6 % (0.46 ± 0.04 Pg) located in the topsoil. The average area-weighted strength of the SOC erosion in the 1990s was 20.6 ± 0.8 Mg km?2 year?1. The results indicated that SOC erosion was strongly related to soil class.  相似文献   

20.
The pollution of soil with heavy metals has direct or indirect adverse effect on human health. The present work was conducted to identify all the expected sources and sinks for heavy metals by applying mass balance model to identify the retention rate of metals by soils in Yaakob village, south Sohag Governorate, Egypt. The studied inputs (sources) include P-fertilizers, irrigation water and dustfall, while the main outputs (sinks) are drainage water and harvested plants. The measurements indicate that soil, clover, dustfall and P-fertilizers contain considerable concentration of Cd, Cr, Co, Cu and Pb. The mass balance measurements indicate that the accumulation rate of Cd, Cr and Co in soil was 5.4, 54.6 and 16.3 g ha?1 year?1, respectively. However, depletion trend of Pb and Cu was about 1.4 and 5.2 g ha?1 year?1, respectively. The main source of Cd, Pb, Cr and Co in the study area is P-fertilizers with input flux 14.9, 89.9, 198.6 and 18.5 g ha?1 year?1, while Cu source was dustfall with 19.33 g ha?1 year?1. The index of geoaccumulation calculations indicates different degrees of contamination with Cd, Cr, Co and Cu. On the other hand, the main sink for the studied heavy metals was the Egyptian clover (Trifolium alexandrinum) which can be considered a good bioaccumulator of heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号