首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biochar has been considered a safe soil additive to enhance soil fertility and agronomic traits of different crops. This study was conducted to explore the impacts of sugarcane waste straw biochar on soil characteristics and some agronomic traits of okra. The experiment was carried out with four treatments, i.e., control, sugarcane waste straw biochar (10 ton ha?1), farmyard manure (FYM, 10 ton ha?1), and chemical fertilizers (NPK; 120:100:80 kg ha?1) having three replications of each treatment. Soil samples were tested for texture, bulk density, particle density, pH, electrical conductivity (EC), organic matter content, nitrate nitrogen (NO3-N), and extractable-P. The sugarcane waste straw biochar was characterized for plant major nutrient elements. The impact of various treatments was observed on soils and agronomic traits of okra like plant height, fruit size, fruit length, and yield of okra. Results revealed that sugarcane waste straw biochar expressed higher EC value and noticeable amounts of nitrogen (N), phosphorus (P), potassium (K), sulfur (S), and magnesium (Mg). The sugarcane waste straw biochar, in comparison with FYM and NPK, significantly improved the NO3-N, extractable-P, OM and EC of the calcareous soil, and reduced the soil bulk density. Furthermore, plant growth and yield parameters were significantly improved under biochar application over the control, FYM and NPK. Overall, sugarcane waste straw biochar proved to be a good alternative to conventional organic and inorganic fertilizers under calcareous soil conditions.  相似文献   

2.
Cadmium (Cd) is the family member of toxic heavy metals, and its accumulation in food crops has become a global environmental constraint. Biochar potentially minimizes the metal contents in plants, but limited work has been reported on its residual effect on subsequent crops. The residual effect of various biochar levels (0, 1.5, 3.0, and 5.0% w/w) on Cd accumulation in rice has been investigated in this study. Biochar treatments enhanced the rice growth, photosynthesis, and antioxidant enzymes, whereas diminished the Cd contents and oxidative stress in rice. Cadmium concentration in shoots decreased by 24.4, 36.6, and 57.5% in 1.5, 3.0, and 5.0% biochar treatments over the control. Biochar supply enhanced the soil pH and electrical conductivity, whereas diminished the soil bioavailable Cd. Overall, the results depicted a significant residual impact of rice straw biochar on rice growth attributes and Cd uptake. However, studies are still needed to explore the long-term sustainability of biochars prepared from different feedstocks on bioavailability of toxic metals in soils and uptake by food crops under field conditions.  相似文献   

3.
Biochar is considered a promising amendment for the reduction of metal concentration in plants; however, the effects of biochar in terms of dose and feedstock on metal uptake by plants remain widely unclear. In the current study, three individual biochars were prepared at 450 °C from different feedstocks (wheat straw, sukh chain (Pongamia pinnata), and cotton sticks). The main aim was to evaluate their ability to remediate cadmium (Cd)-spiked soil in terms of growth response and Cd uptake by wheat (Triticum aestivum) tissues. Biochars were separately applied at 0, 1, and 2% (w/w) in Cd-spiked soil and wheat was grown until maturity in pots and then morphological and physiological parameters and Cd concentrations in grains, roots, and shoots were determined. The post-harvest soil was analyzed for extractable Cd concentrations. Plants grown in Cd-spiked soil treated with biochars had higher seed germination, lengths of roots, shoots, and spikes, grains per spike and leaf relative water contents, chlorophyll contents, and dry weight of roots, shoots, and grains as compared to the untreated control. Biochar treatments significantly decreased the Cd concentrations in shoots, roots, and grains as well as total Cd uptake by grains. Soil extractable Cd concentrations were significantly decreased with biochar treatments. The application of 2.0% wheat straw biochar was the most efficient treatment in increasing grain yield and decreasing Cd in grains as well as soil extractable Cd than the other two biochars and doses applied.  相似文献   

4.
Most arid and semi-arid soils, especially calcareous sandy soils, are widely distributed in the Middle East region; the deficiency in their content of many nutrients particularly phosphorus and organic matter limits crops production. This study aimed to assess the effects of adding biochar (B) with farmyard manure (FYM) and poultry manure (PM) on some soil properties, phosphorus (P) availability, and barley growth in calcareous sandy soil. The pot experiment includes the following treatments: Control, B, B?+?FYM (1:1), B?+?PM (1:1), B?+?FYM (2:1), B?+?PM (2:1), FYM?+?B (2:1), and PM?+?B (2:1). Biochar combined with FYM and PM enhanced the water holding capacity (WHC) and soil organic matter (SOM) content in calcareous sandy soil. Phosphorus availability was increased significantly by applying biochar mixed with farmyard manure and poultry manure at all treatments. Green biomass of barley improved because of adding biochar alone, poultry manure alone, and biochar co-applied with poultry manure at all mixing ratios. Biochar application caused significant increases in phosphorus use efficiency (PUE) by barley plants compared to all other treatments, except for the control. We recommend adding biochar either individually or mixed with poultry manure to improve the productivity of calcareous sandy soil.  相似文献   

5.
In this study, bentonite (Ben), compost (Com), and biochar (Bio) were used as soil amendments to enhance sandy soil physical properties. A soil column experiment was conducted in a laboratory. Application rates were 3% (weight/weight) of Bio (T1), Ben (T2), and Com (T3). Furthermore, mixtures 1.5% and 1.5% of Bio and Ben (T4), Ben and Com (T5), and Bio and Com (T6), and a mixture 1%, 1%, and 1% of Bio, Ben, and Com (T7) in addition to control treatment were adopted. The mixtures of amendments and sandy soil were concentrated at the top 10 cm of columns. Results revealed that the cumulative evaporation was reduced by 2.3% and 5.7% as a result of using T3 and T5, respectively. However, the remaining treatments enhanced the cumulative evaporation. The application of amendments increased the capacity of the soil to maintain water by 35.4%, 24.4%, 13.3%, and 10.2%, for soils treated with T5, T3, T7, and T4, respectively. The water content at field capacity had the highest increase in the top 10 cm when treatment T3 was used. Although T3 (compost) was the most efficient for enhancing soil physical properties, this study recommends T5 and T7 to improve hydraulic properties of sandy soils. This is due to the fact that biochar and bentonite remain in the soil for a longer period and resist biodegradation while compost overcomes the negative impact of soil chemical properties as a result of biochar and bentonite additions.  相似文献   

6.
Previously studied thermosequences of wood (chestnut) and grass (rice straw) biochar were subjected to hydrogen pyrolysis (hypy) to evaluate the efficacy of the technique for determining pyrogenic carbon (CP) abundance. As expected, biochar from both wood and grass produced at higher temperature had higher CP amount. However, the trend was not linear, but more sigmoidal. CP/CT ratio values (CT = total organic carbon) for the wood thermosequence were ⩽0.03 at biochar production temperature (TCHAR)  300 °C. They increased dramatically until 600 °C and remained relatively constant and near unity at higher biochar production temperature. Grass biochar was similar in profile, but CP/CT values rose dramatically after 400 °C. The findings are consistent with the hypothesis that hypy residues contain polycyclic aromatic hydrocarbons (PAHs) with a degree of condensation above at least 7–14 fused rings, with labile organic matter and pyrogenic PAHs below this degree of condensation removed by hypy.Both wood and grass thermosequences displayed δ13CP values that decreased with increased TCHAR, indicating that recalcitrant carbon compounds (pyrogenic aromatic PAHs with a relatively high degree of condensation) were first formed from structural components with relatively high δ13C values (e.g. cellulose). Relatively constant δ13C values at TCHAR  500 °C suggested the dominant pyrolysis reaction was condensation of PAHs with no additional fractionation. Comparison of hypy with benzene polycarboxylic acid (BPCA), ‘ring current’ NMR and pyrolysis gas chromatography–mass spectrometry (GC–MS) results from the same suite of samples indicated a consistent overview of the structure of CP, but provided unique and complimentary information.  相似文献   

7.
南川市三泉镇岩溶区农田生态系统植被碳库的动态变化   总被引:3,自引:0,他引:3  
罗怀良  袁道先  陈浩 《中国岩溶》2008,27(4):382-387
通过农田样方观测与实验分析获得南川市三泉镇农田生态系统主要农作物的含碳率、经济系数、果实水分系数,结合该区近26年来( 1980- 2005)主要农作物产量与耕地面积的相关数据,用农作物产量与碳储量转换模型计算法估算和分析该区农田生态系统植被碳库的总量及构成的动态变化。结果发现: 近26年来该镇农田植被碳库和碳密度略有提高,具有微弱的碳汇效应。与邻近的四川盆地非岩溶区相比,该区农田植被碳密度较低。针对农田生态系统植被碳库的构成特点和动态特征,该镇今后应进行作物结构调整,适度增加水稻等大春作物的种植和马铃薯、油菜和饲料等小春作物的种植面积,稳定小麦等作物的播种面积; 加强农田基本建设,发展生态农业,以进一步提高农田生态系统植被碳库的碳储量和碳密度。   相似文献   

8.
In this study, raw and treated wastewaters were reused for potato cultivation in order to verify the effect of wastewater on crop yield, crop’s heavy metals’ concentration as well as some major traits of potato. To this regard, a completely randomized test was designed with five water treatments and three replications. The watering were as follows: raw wastewater (T1), treated wastewater (T2), a combination of 50 % raw wastewater and 50 % fresh water (T3), a combination of 50 % treated wastewater and 50 % fresh water (T4), and fresh water (T5). The experiments were run during October 2009–June 2010 in the greenhouse of Bu-Ali Sina University. The results show that the effects of treatments were significant on the length and number of stems per plant (p < 0.05). The number of nodes and weight of tubers, crop yield and heavy metal (cadmium, nickel and lead) concentration in shoots and tubers were also significant (p < 0.01). The results indicated that the highest length of stem (55.44 cm) was obtained in T2 which had no significant differences from that of T1. The maximum and minimum tuber weights and crop yield were obtained in T1 and T5, respectively. Based on crop yield rate, the watering ranked as follows: T1 > T3 > T2 > T4 > T5. The maximum and minimum heavy metal values were observed in T1 and T5, respectively. Based on the cadmium, nickel and lead accumulations in shoots and tubers (except cadmium in shoots), the watering treatments ranked as: T1 > T3 > T2 > T4 > T5.  相似文献   

9.
磷石膏中的磷在雨水淋滤作用下浸出,将污染堆场附近水体。本研究采用生物炭固化磷石膏中的磷,以减少其对周遭水体的污染。主要通过模拟固化实验和对照浸出实验,分析生物炭用量、反应时间和温度、初始pH值对固化效果的影响,通过XRD、SEM-EDS分析固化后的生成物。实验结果显示,在生物炭用量为25 mg时,单位固化量达到最大值13.20 mg/g;在反应温度T=293 K、初始pH=7条件下,反应平衡时间72 h时浸出液的磷平衡浓度Ce= 1.40 mg/L;温度提升有助于提高生物炭的固化效果,当T=308 K时,浸出液的磷平衡浓度Ce=0.167 mg/L;碱性条件有利于固化反应持续进行,在pH=11条件下,浸出液的磷平衡浓度Ce=0.153 mg/L。实验结果表明生物炭对磷石膏中的磷具有明显的固化效果。磷石膏中的二水硫酸钙溶解后,Ca2+与表面带负电的生物炭结合,在生物炭显微结构的凹陷处,化学吸附溶液中的磷酸根生成了絮状、团簇状的羟基磷灰石(HAP)沉淀,从而使浸出磷得到有效控制。  相似文献   

10.
土壤污染防治工作已成为提升耕地质量、保护国土生态安全的重要任务之一。为了科学预测我国大宗农作物(如水稻、小麦)与土壤重金属含量的关系,减少安全利用类农用地的大量农产品与土壤的协同监测,实现重金属污染农用地的安全利用,本研究以重金属Cd为例,选取对水稻、小麦Cd含量影响较大的土壤Cd含量、土壤pH值、土壤阳离子交换量(CEC)和土壤有机碳(OC)含量作为输入因子,水稻、小麦Cd含量作为输出因子,分别建立了多元回归模型与神经网络模型。结果表明:水稻、小麦Cd含量与土壤Cd含量呈现正相关关系;模拟出的水稻、小麦与土壤Cd的多元线性回归模型的预测能力分别为67.8%和83.8%;利用神经网络构建了水稻、小麦Cd含量预测模型,在训练集、验证集和测试集中都表现出很好的预测能力,R值均大于多元线性回归模型,且MSE(均方误差)值较小,神经网络对水稻、小麦Cd含量预测具有很好的适用性,模拟精度总体优于多元回归预测模型。研究结果可为污染农用地的安全利用评价及优化配置提供一定的理论依据和参考。  相似文献   

11.
Atomic layer deposition (ALD) thin film coating was applied to improve the hydrophilia of biochar derived from black willow. 2 (2Al, 0.82 wt% Al2O3), 5 (5Al, 1.40 wt% Al2O3), and 10 (10Al, 2.36 wt% Al2O3) cycles of alumina ALD were applied. The biochars were characterized by inductively coupled plasma–atomic emission spectroscopy, nitrogen adsorption and desorption, scanning electron microscopy, and Fourier transform infrared spectroscopy. The adsorbents were utilized for the removal of methylene blue (MB) from an aqueous solution to evaluate their adsorption capacities. The 5Al biochar showed the highest adsorption capacity, compared to the uncoated biochar and other Al2O3 coated biochars, due to its improved hydrophilia. The amount of MB adsorbed onto the 5Al biochar was almost three times that adsorbed onto the uncoated biochar during the first hour of adsorption experiments. Adsorption isotherms were modeled with the Langmuir and Freundlich isotherms. The data fit well with the Langmuir isotherm, and the maximum adsorption capacities were found to be 26.8 and 35.0 mg/g at 25 °C for the uncoated biochar and 5Al biochar, respectively. The adsorbed MB amount per square meter achieved 1.3 mg/m2 onto the 5Al biochar, and it was twice the amount on the uncoated biochar. The experimental data were analyzed by pseudo-first-order and pseudo-second-order kinetics models of adsorption. The pseudo-second-order model better describes adsorption kinetic data for the uncoated biochar and 5Al biochar than the pseudo-first-order model does.  相似文献   

12.
将农林废弃物通过不同碳化方式制备成水热炭或生物炭,用于土壤改良和环境污染修复,是当前研究和应用的热点领域。由于受到不同自然条件的长期影响,如环境温度变化,水热炭和生物炭会发生老化作用,从而影响其对污染物的吸附能力,因此,评估老化作用对碳化材料吸附能力的影响是一个重要的科学问题。采用高温和冻融循环2种加速老化方式模拟自然界中的温度变化,对稻壳和玉米秸秆水热炭、生物炭进行老化培养,通过元素分析仪、傅里叶红外光谱分析仪、扫描电子显微镜等手段对老化前后水热炭、生物炭样品的物化性质进行分析,通过批实验对比研究2种新鲜炭材料对Cd(II)及莠去津的吸附能力及吸附稳定性,并研究了30、60、90次老化循环后生物炭和水热炭吸附能力的变化。结果表明,生物炭对Cd(II)和莠去津有良好的吸附稳定性,而水热炭对莠去津的吸附稳定性较差。2种老化作用均使水热炭、生物炭表面含氧官能团增加,从而增强了水热炭、生物炭对Cd(II)和莠去津的吸附能力。在高温和冻融环境中,随着老化时间的持续,生物炭比水热炭更容易受到环境的影响。研究相关成果对于水热炭和生物炭合理应用于不同环境的污染修复具有试验参考价值。  相似文献   

13.
Biochar prepared from corn stalks is used as a source of phosphorus in this study. The hypotheses were to investigate effects of biochar applications in clay soil on availability, changes of phosphorus pools and maximum adsorption of phosphorus as well as corn growth. The soil was placed in plastic pots with each contains 3 kg of this soil. Biochar was added at levels of 0 (control), 6.5 (B1), 19 (B2), and 38 (B3) g pot?1. In this experiment, the pot was planted with corn (Zea mays). The results of this study revealed that the biochar application enhanced available phosphorus (Olsen-P) from 11.51 to 17.10 mg kg?1. Adding biochar significantly increased the amount of NH4Cl-P, NaHCO3-Po, and NaOH I-Po fractions (p?≤?0.05), but it significantly decreased HCl-Pi fraction (p?≤?0.05). Addition of biochar at the highest level increased the fresh and dry matter productions by up to about 75 and 48.7%, respectively, compared to the control. The phosphorus uptake by corn plants significantly increased with increasing levels of biochar. The removal efficiency (% sorption) and maximum adsorption (b) of phosphorus increased with increasing level of biochar addition compared to control. Consequently, it is recommended to add biochar produced from corn stalks to the soil in order to substitute phosphate fertilizers.  相似文献   

14.
Sixteen soil samples were collected from the vicinity of an abandoned lead–zinc mine in Shangyu City, eastern China, and the heavy-metal speciation and wheat phytotoxicity in the soils were studied. The results showed that the concentrations of free Cu2+, Zn2+, Cd2+ and Pb2+ were highly variable and ranged from <0.01 to 0.32, 0.06 to 10.62, <0.01 to 1.40 and 0.02 to 37.10 μmol l−1, respectively. The concentrations of soluble Cu, Zn, Cd and Pb ranged from 0.38 to 3.24, 0.72 to 78.74, <0.01 to 1.95 and 0.15 to 639.34 μmol l−1, respectively. The general trend of mean solid/liquid partition coefficient and percentage of free metal ion to total soluble metal concentration were Cu > Pb > Zn > Cd and Cd > Zn > Cu > Pb, respectively. Stepwise multiple linear regression with pH, log(total metal) and log(organic matter) showed that log(total metal) was an important factor that controlled log(free metal ion) and log(soluble metal). Of the variability in log(free Cu2+), log(free Cd2+) and log(free Pb2+), 55.2, 58.6 and 64.3% could be explained by log(total Cu), log(total Cd) and log(total Pb) alone, respectively. Of the variability in log(soluble Cu) and log(soluble Cd), 77.1 and 72.5% could be explained by log(total Cu) and log(total Cd) alone, respectively. Wheat root length was controlled by the various metals with different free and soluble concentrations, and 99.2% of the variability in root length could be explained by concentrations of free and soluble Pb, soluble Cu and total Zn in the soils.  相似文献   

15.
Tillage systems affect soil properties, crop growth and nutrient uptake under various agro-ecological conditions. The uptake of water and nutrients are largely dependent on the root systems of wheat (Triticum aestivum L.) and rice (Oryza sativa L.). The application of manure has direct influence on the nutrient uptake by the crop plants. A 2 year field experiment was conducted to evaluate the impact of tillage and farm manure on root growth by measuring the root length density on a sandy clay loam (Typic calciargid soil). Three tillage systems were used; (i) minimum tillage (MT), (ii) deep tillage (DT) and (iii) conventional tillage (CT). Three farm manure levels were used; (i) FM0 (only chemical fertilizers), (ii) FM15 (farm manure at 15 Mg ha?1) and (iii) FM30 (farm manure at 30 Mg ha?1). The incorporation of farm manure into soil markedly improved the root length density (RLD) of both wheat and rice crops. For wheat, the application of FM30 increased RLD by 16% and 9% in cases of deep tillage and minimum tillage, respectively. For rice, the increase in RLD at the same farm manure rate (FM30) was 13% and 17%, during first and second year, respectively. Averaged across tillage, the trend of RLD for both wheat and rice was DT > CT > MT. The incorporation of FM has increased the uptake of N, P and K significantly (P < 0.05), thereby increasing the agronomic parameters. The manure may be used to ameliorate the deleterious effects of tillage for sustainable crop yield.  相似文献   

16.
作物对土壤中重金属的吸收受作物种类、采集部位及土壤理化性质等多方面因素的影响。近年来,金衢盆地土壤酸化面积逐年增大,酸化程度逐渐加深,其对土壤-作物系统中重金属元素的活动影响尚不明确。本文基于金衢盆地典型地区264组根系土壤-稻米样品分析数据,开展土壤、作物的重金属含量特征及其影响因素的研究,重点讨论了土壤pH对作物吸收重金属的影响。结果表明:①264件土壤中多数重金属元素的变异系数大于0.5,As、Cd、Cr、Cu、Ni和Zn元素之间呈显著正相关(P<0.01)。土壤Cd超标样品23件,超标率为8.7%;As、Cr、Cu、Hg、Ni、Pb和Zn超标样品均未超过2件。②稻米中Cu、Zn与Cd含量呈显著正相关,Cd的富集系数(BCF)高于植物营养元素Cu、Zn。③稻米中Zn和Cu在P<0.1水平上与pH值呈显著正相关。Cd、Cr、Hg的BCF与pH值之间存在一定的负相关性。研究认为,适当调低土壤的酸碱度会削减土壤中Cd、Hg等重金属元素的活性,从而减少农作物对重金属的吸收转运。研究结果可为当地粮食安全生产决策提供科学数据,为土地管护提供参考依据。  相似文献   

17.
Lignite samples from two deposits located in the Megalopolis Basin, Southern Greece, were evaluated for their potential applicability as raw materials for the production of organomineral fertilizers. Fundamental chemical analyses were carried out to demonstrate high humic substances and metal contents. To determine their relative distribution in the Megalopolis lignite extract, eight elements, namely Na, K, Cd, Mn, Mg, Pb, Zn, and Cu, were studied both in H2O and in Na4P2O7/NaOH solutions. The behavior of these metals showed significant variations; Zn, Pb, Cd, and Cu associate mostly to the humic substances and proved scarce in the water extract. Contrarily, K and Mg gave a significantly low total yield in the Na4P2O7/NaOH solution, while Mn was classified among the least extracted elements. Further enrichment of Megalopolis humic substances in these metals was achieved; Pb and Mg proved the most and least retained metal, respectively. Decomplexation titration curves of humic matter saturated with these metal ions demonstrated that novel organomineral fertilizing materials may develop based on optimized metal ion and humate contents, which can retain metals in a soluble form within a wide pH range. Formation of complexes between humic substances and Zn, Cd, and Mg was clearly indicated.  相似文献   

18.
Phase relations and mineral chemistry involving the phases garnet (Gt), spinel (Sp), hypersthene (Hy), sapphirine (Sa), cordierite (Cd), sillimanite (Sil) and quartz (Qz) have been experimentally determined in the system FMAS (FeO−MgO−Al2O2−SiO2) under low fO2 and for various H2O/CO2 conditions. Several compositions were studied with 100 (Mg/Mg+Fe) ratio ranging from 64 to 87 with excess quartz and sillimanite. Our data do not show any differences in Gt−Cd stability and composition as a function of H2O, CO2 and H2O−CO2 (±CH4) content, in good agreement with a previous experimental study at lower temperature (Aranovich and Podlesskii 1983). At 1,000° C and 11 kbar, under CO2-saturated conditions, cordierite grew from a crystalline mix unseeded with cordierite. Thus, under water-absent conditions, cordierite will have a high-P stability field in the presence of CO2. If water has a pressure stabilizing effect on cordierite, then our results would indicate that the effects of H2O and CO2 are of the same magnitude at high temperature. Our data support the theoretical P-T grid proposed by Hensen (1986) for high-T metapelites and are largely consistent with the high-temperature experimental data of Hensen and Green (1973). The univariant boundary Gt+Cd=Hy+Sil+Qz, which marks the disappearance of Hy−Sil−Qz assemblages, has a negative dP/dT slope above 1,000° C and a positive one below this temperature. Extrapolation of our data to iron-free systems shows that the high-P breakdown limit of Mg-cordierite has a negative slope in the range 1,025–1,300° C and probably positive below 1,000° C. This indicates a maximum of stability for Mg-cordierite at around 1,000° C and 13 kbar. Because of the curvature of the univariant reactions En+Sil=Py+Qz, Mg−Cd=En+Sil+Qz and Gt+Cd=Hy+Sil+Qz, the iron-free invariant point involving the phases Py, En, Cd, Sil and Qz probably does not exist. Sapphirine—Qz-bearing assemblages are stable only at temperatures above 1,050° C. At 1,075° C, the joint Gt−Sa is stable up to 11 kbar. At higher pressure, garnet, sapphirine and quartz react according to the reaction Gt+Sa+Qz=Hy+Sil. Reequilibrated sapphirines are more aluminous than the theoretical endmember Mg2Al4SiO10 due to AlAl=MgSi substitutions [100(Al2O3/Al2O3+FeO+MgO) in experimental sapphirines ranges from 50.5 to 52.2]. Sapphirine in the assemblage Sa−Cd−Sil−Qz shows a decrease in Al content with decreasing temperature and pressure, such that the alumina isopleths for sapphirine have a slight negative dP/dT slope. A similar decrease in Al content of sapphirine with temperature is also observed in Sa−Sil−Qz assemblages.  相似文献   

19.
Feasibility of using straw as sole substrate for in situ bioremediation of acidic mine drainage (AMD) was studied. The result showed that straw was more suitable than woodchips, which had been successfully used for bioremediating AMD at the source, for establishing bioremediation layer. The sulfate removal rate of rice straw treatment was almost two times higher than that of the woodchips treatment when the initial pH of the synthetic AMD was set to 3.0. Straw treatment may be more efficient at reducing sulfate than woodchips treatment under stressful conditions. The sulfate removal rate of the rice straw treatment increased from 8.67 to 21.77 mg L−1 day−1 when initial pH increased from 1 to 7 while the removal rate of woodchips treatment increased from 3.80 to 11.95 mg L−1 day−1. The sulfate removal rate of the rice straw treatment decreased from 13.93 to 9.91 mg L−1 day−1 when temperature decreased from 25 to 5°C while the removal rate of woodchips treatment decreased from 7.43 to 4.98 mg L−1 day−1. Differences in soluble organic carbon release between rice straw and woodchips led to the differences in bioremediation efficiency. Concentrations of Cu2+ maintained at low level in the column effluent during the whole bioremediation period. Cu2+ was removed by forming sulfide precipitates. Microbial community analysis showed that sulfate reducing bacteria in the bioremediation layer together with microorganisms capable of degrading rice straw caused the bioremediation of AMD. These findings have significant environmental implications in terms of in situ bioremediation of AMD using straw as sole substrate.  相似文献   

20.
Speciation and reactivity characterization of solid-phase Fe in marine sediments are of significance to understanding its heterogeneous mineralogy and crystallinity, the diagenetic cycling of Fe and its regulating roles on many other elements in sediments. In this study, a combination of sequential and single-step extractions was used for the determination of seven Fe pools in surface sediments of the East China Sea (ECS) continental shelf: (1) carbonate associated Fe (Fe(II)carb) plus acid volatile sulfide-Fe (Fe(II)AVS), (2) easily reducible amorphous/poorly crystalline Fe oxides (Feox1), (3) reducible crystalline Fe oxides (Feox2), (4) magnetite (Femag), (5) poorly reactive sheet silicate Fe (FePRS), (6) pyrite-Fe (Fepy), and (7) unreactive silicate Fe (FeU). Total Fe (FeT) in the sediments is largely determined by terrestrial aluminosilicate particles as indicated by a great similarity of the FeT with that of the Yangtze River and global riverine particulates. The size of FePRS is found to be the largest pool, followed by FeU, Feox2, Femag, Fe(II)AVS+carb, Feox1 and Fepy. The large FePRS may result from neoformation of Fe-rich clay minerals via reverse weathering and subsequent ageing. The small sizes of Fe(II)AVS+carb and Fepy pools is believed to be the result of low SO4 reduction due to generally low labile organic matter together with the oxic/suboxic, dynamic environments of the surface sediments. The occurrence of Feox1, Feox2 and FePRS in the sediments is closely associated with the clay fraction as indicated by a high spatial correlation between the former and the latter. Highly reactive Fe(FeHR) in the sediments is comparable to that in global marine sediments, but apparently lower than in the Yangtze River and global riverine particulates due probably to sequestration in the Yangtze Estuary. The ratios of FeHR/FeT, FePR/FeT and FeU/FeT in the ECS surface sediments consistently show more similarity to those in the Yangtze River particulates than in the global continental margin or deep-sea sediments. The surface sediments maintain a high level of buffering capacity toward sulfidation suggested by a large fraction of highly reactive Fe(III) oxides (Fe(III)HR) in FeHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号