首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Validation of Indian National DEM from Cartosat-1 Data   总被引:1,自引:0,他引:1  
CartoDEM is an Indian National DEM generated from Cartosat-1 stereo data. Cartosat-1, launched in May, 2005, is an along track (aft ?5°, Fore +26°) stereo with 2.5 m GSD, give base-height ratio of 0.63 with 27 km swath. The operational procedure of DEM generation comprises stereo strip triangulation of 500?×?27 km segment with 10 m posting along with 2.5 m resolution ortho image and free—access posting of 30 m has been made available (bhuvan.nrsc.gov.in). A multi approach evaluation of CartoDEM comprising (a) absolute accuracy with respect to ground control points for two sites namely Jagatsinghpur -flat and Dharamshala- hilly; second site i.e. Alwar-plain and hilly with high resolution aerial DEM, (b) relative difference between SRTM and ASTERDEM (c) absolute accuracy with ICESat GLAS for two sites namely Jagatsinghpur-plain and Netravathi river, Western Ghats-hilly (d) relative comparison of drainage delineation with respect to ASTERDEM is reported here. The absolute height accuracy in flat terrain was 4.7 m with horizontal accuracy of 7.3 m, while in hilly terrain it was 7 m height with a horizontal accuracy of 14 m. While comparison with ICESat GLAS data absolute height difference of plain and hilly was 5.2 m and 7.9 m respectively. When compared to SRTM over Indian landmass, 90 % of pixels reported were within ±8 m difference. The drainage delineation shows better accuracy and clear demarcation of catchment ridgeline and more reliable flow-path prediction in comparison with ASTER. The results qualify Indian DEM for using it operationally which is equivalent and better than the other publicly available DEMs like SRTM and ASTERDEM.  相似文献   

2.
CARTOSAT-1 satellite, launched in May, 2005 is a dedicated along track stereo mission providing high quality data for topographic and cartographic applications. The present paper describes the evaluation of the Cartosat-1 stereo data, mainly through the generation and validation of DEM for moderately undulating and hilly areas. Photogrammetric techniques have been used for generation of DEM and Orthoimage for two cases i.e. 1) using RPCs (Rational Polynomial Coefficients) and 2) using RPCs along with ground control points. Root Mean Square Error (RMSE) in elevation values for the moderately undulating (Dehradun) and hilly area (Shimla), are found to be 4.38 and 3.69m respectively.  相似文献   

3.
Cartosat–1 is the first Indian Remote Sensing Satellite capable of providing along-track stereo images. Cartosat–1 provides forward stereo images with look angles +26° and −5° with respect to nadir for generating Digital Elevation Models (DEMs), Orthoimages and value added products for various applications. A pitch bias of −21° to the satellite resulted in giving reverse tilt mode stereo pair with look angles of +5° and −26° with respect to nadir. This paper compares DEMs generated using forward, reverse and other possible synthetic stereo pairs for two different types of topographies. Stereo triplet was used to generate DEM for Himalayan mountain topography to overcome the problem of occlusions.For flat to undulating topography it was shown that using Cartosat-1 synthetic stereo pair with look angles of −26° and +26° will produce improved version of DEM. Planimetric and height accuracy (Root Mean Square Error (RMSE)) of less than 2.5 m and 2.95 m respectively were obtained and qualitative analysis shows finer details in comparison with other DEMs. For rugged terrain and steep slopes of Himalayan mountain topography simple stereo pairs may not provide reliable accuracies in DEMs due to occlusions and shadows. Stereo triplet from Cartosat-1 was used to generate DEM for mountainous topography. This DEM shows better reconstruction of elevation model even at occluded region when compared with simple stereo pair based DEM. Planimetric and height accuracy (RMSE) of nearly 3 m were obtained and qualitative analysis shows reduction of outliers at occluded region.  相似文献   

4.
This study reports results from evaluation of the quality of digital elevation model (DEM) from four sources viz. topographic map (1:50,000), Shuttle Radar Topographic Mission (SRTM) (90 m), optical stereo pair from ASTER (15 m) and CARTOSAT (2.5 m) and their use in derivation of hydrological response units (HRUs) in Sitla Rao watershed (North India). The HRUs were derived using water storage capacity and slope to produce surface runoff zones. The DEMs were evaluated on elevation accuracy and representation of morphometric features. The DEM derived from optical stereo pairs (ASTER and CARTOSAT) provided higher vertical accuracies than the SRTM and topographic map-based DEM. The SRTM with a coarse resolution of 90 m provided vertical accuracy but better morphometry compared to topographic map. The HRU maps derived from the fine resolution DEM (ASTER and CARTOSAT) were more detailed but did not provide much advantage for hydrological studies at the scale of Sitla Rao watershed (5800 ha).  相似文献   

5.
Radargrammetry technique using the stereoscopic synthetic aperture radar (SAR) images is used for the generation of a digital elevation model (DEM) of a region requires only the amplitude images. SAR stereoscopic technique is analogous to the stereo-photogrammetric technique where the optical stereoscopic images are used for DEM generation. While the advantages of the SAR images are their indifference to atmospheric transparency and solar illumination conditions, the side-looking geometry of the SAR increases the complexity in the SAR stereo analysis. The availability of high spatial and temporal resolution SAR data in recent years has facilitated generation of high-resolution DEM with greater vertical accuracy using radargrammetric technique. In the present study, attempt has been made to generate the DEM of Dehra Dun region, India, from the COSMO-Skymed X-band SAR data-pair acquired at 8 days interval through the radargrammetry technique. Here, radargrammetric orientation approach has been adopted to generate the DEM and various issues and processing steps with the radargrammetry technique have been discussed. The DEM was validated with ground measured elevation values using a differential global positioning system and the root-mean-square error of the DEM was found as 7.3 m. The DEM was compared with the reference DEM of the study area generated from the Cartosat-1 stereo data with a model accuracy of 4 m.  相似文献   

6.
作为"云控制"摄影测量理论和方法的发展,研究了DEM约束的立体卫星影像区域网平差方法。与DEM仅作为高程控制信息使用,或者是通过DEM表面匹配实现绝对定向的间接定位方法不同,DEM作为平高控制信息被直接引入至基于RFM模型的卫星影像区域网平差之中。本文方法将连接点地面高程与DEM格网内插高程之差作为虚拟观测值构建约束方程,不仅利用了DEM高程信息,并且利用了其地形曲面包含的平面信息,以"云控制"方式在区域网平差过程中有效消除卫星影像RPC参数中包含的整体偏移及区域网内部的扭曲变形,实现了无地面控制点条件下卫星影像平面及高程绝对定位精度的大幅提升。使用覆盖山东全境的330景天绘一号立体卫星影像进行试验,分别以AW3D30、ASTER GDEM和SRTM GL3共3种开源DEM作为控制信息,并使用100个外业实测控制点进行精度评测。试验表明,以DEM作为控制可显著提高区域网平差的平面与高程精度,卫星影像绝对定位精度与DEM自身精度有关。当使用AW3D30作为控制时,可以取得与使用100个外业控制点平差同等精度,平面中误差为5.0 m(约1像素),高程中误差为2.9 m。试验结果证明了DEM替代外业控制点作为平差控制信息的有效性与可行性。  相似文献   

7.
Topographic corrections of synthetic aperture radar (SAR) images over hilly regions are vital for retrieval of correct backscatter values associated with natural targets. The coarse resolution external digital elevation models (DEM) available for topographic corrections of high resolution SAR images often result into degradation of spatial resolution or improper estimation of backscatter values in SAR images. Also, many a times the external DEMs do not spatially co-register well with the SAR data. The present study showcases the methodology and results of topographic correction of ALOS-PALSAR image using high resolution DEM generated from the same data. High resolution DEMs of Jaipur region, India were generated using multiple pair SAR images acquired from ALOS-PALSAR using interferometric (InSAR) techniques. The DEMs were validated using differential global positioning system measured elevation values as ground control points and were compared with photogrammetric DEM (advanced spaceborne thermal emission and reflection radiometer – ASTER) and SRTM (Shuttle Radar Topography Mission) DEM. It was observed that ALOS-PALSAR images with optimum baseline parameters produced high resolution DEM with better height accuracy. Finally, the validated DEM was used for topographic correction of ALOS-PALSAR images of the same region and were found to produce better result as compared with ASTER and SRTM-DEM.  相似文献   

8.
SRTM约束的无地面控制立体影像区域网平差   总被引:4,自引:2,他引:2  
周平  唐新明  曹宁  王霞  李国元  张恒 《测绘学报》2016,45(11):1318-1327
针对SRTM(shuttle radar topography mission)数据在平坦地形或局部区域的高程精度远远高于其标称精度的特点,研究设计了一种无地面控制条件下利用SRTM作为高程约束的立体区域网平差方法。通过构建一个较大范围区域网并匹配密集连接点,将SRTM作为连接点物方高程初值,并在平差解算过程中确保分布于地形平坦区域(根据经验,在该类区域SRTM精度较高)的连接点的物方高程严格趋近SRTM高程,最终实现大范围区域内影像高程精度的整体提升。通过以覆盖湖北省全境的资源三号卫星三线阵立体影像作为试验影像的试验验证表明,采用该平差方案,在无地面控制点条件下资源三号立体影像的高程中误差从7.2m提升到2.0m,其中地形平坦区域高程中误差1.44m,山地区域高程中误差3.0m,达到了我国1∶25 000比例尺测图应用的高程精度要求。  相似文献   

9.
The orbital and the rational polynomial coefficients (RPC) models are the two most commonly used models to compute a three-dimensional coordinates from an image stereo-pair. But it is still confusing that with the identical user provided inputs, which one of these two models provides more accurate digital elevation model (DEM), especially for mountainous terrain. This study aimed to find out the answer by evaluating the impact of used models on the vertical accuracy of DEM extracted from Cartosat-1 stereo data. We used high-accuracy photogrammetric DEM as the reference DEM. Apart from general variations in statistics, surprisingly in a few instances, both the DEMs provided contrasting results, thus proving the significance of this study. The computed root mean square errors and linear error at 90% (LE90) were lower in case of RPC DEM for various classes of slope, aspect and land cover, thus suggesting its better relative accuracy.  相似文献   

10.
Stereo Cartosat-1 satellite data was processed to generate high spatial resolution digital elevation model (DEM) using ground control points (GCPs) collected through geodetic single frequency GPS in differential GPS mode. DEM was processed to generate bare earth DEM by removing heights of natural and man made features from DEM. The bare earth DEM was further analysed in GIS environment to generate terrain-topographic indices viz. wetness index (WI), stream power index (SPI) and sediment transport index (STI) to characterize topographic potential of soil erosion. Hillslopes in the studied watershed (part of Shiwalik hills of Dehradun district, Uttarakhand state) were characterized as low wetness index values indicating dry areas whereas high wetness index values at lower reaches of the watershed indicating as possible source areas for generation of saturated overland flow. Higher STI values were observed in hilly as well as upper part of the piedmont plain and at along sides of the streams in upper piedmont indicating areas susceptible to severe soil erosion. GIS based these topographic indices provided an easy and quick appraisal and scientific basis to identify spatial variability of soil erosion risk in a hilly watershed.  相似文献   

11.
针对海岛礁卫星影像的定位问题,提出一种利用航天飞机雷达地形测绘任务(shuttle radar topography mission,SRTM)DEM辅助的无地面控制点定位方法。该方法分为概略定位和精定位两个阶段,各阶段均包括DEM提取和DEM匹配等主要步骤,可分别对影像中的相对误差和绝对误差进行补偿。SRTM DEM被充分应用到方法各环节中,以发挥其高精度的特性:提取DEM时既用于剔除海域点,也用于确定求解陆域点高程时的高程搜索范围,从而避免海域影像的不利影响,同时保证计算效率;DEM匹配时其作为基准数据。利用多景天绘一号卫星海岛礁地区的立体影像进行验证。实验结果表明,所提出的方法对具有不同陆域比例、不同生产方式的天绘一号海岛礁影像均能得到较稳定且较高的定位精度,平面和高程精度分别优于6.2 m、5.2 m,能较好地满足1:50 000比例尺地形图的精度要求。定位精度基本不受待匹配DEM分辨率的影响,计算效率取决于陆域比例和待匹配DEM的分辨率。  相似文献   

12.
资源三号测绘卫星影像平面和立体区域网平差比较   总被引:6,自引:1,他引:5  
针对弱交会条件下卫星遥感影像区域网平差无法正确求解的问题,本文提出了利用数字高程模型(DEM)作为高程约束的平面区域网平差方法提高其对地目标定位精度的策略。首先,选取带仿射变换项的有理函数模型(RFM)作为卫星影像平面区域网平差的数学模型。其次,在平差过程中更新连接点的地面坐标时仅求解地面点的平面坐标,高程值利用DEM进行内插获得。最后,在布设少量控制点的情况下通过平面区域网平差求解所有参与平差的卫星影像定向参数和连接点的地面平面坐标。利用两个地区的资源三号正视影像的平面区域网平差以及前正后三视影像的立体区域网平差的对比试验表明,对于资源三号卫星影像在1:50000DEM的支持下,平面平差可以达到和立体平差相当平面精度。对于近似垂直正视的资源三号影像,全球1km格网的DEM和90m格网的SRTM可以取代1:50000DEM作为高程控制,平面精度几乎没有损失。最终,试验结果证明了平面区域网平差方法的有效性和可行性。  相似文献   

13.
为揭示我国SRTM3DEM数据高程精度质量,结合已开展过SRTM3DEM高程精度质量评价工作的局部地区的研究,考虑空间分布情况,选取新疆、辽宁、山东、浙江、海南5个地区的平原、丘陵、盆地、山地等地形区域作为典型研究区,并以1∶5万DEM为假定真值、以1∶25万DEM为参照,通过DEM面误差可视化分析、DEM面误差信息熵模型、中误差模型等方法对SRTM3DEM数据高程精度质量做了分析。计算结果表明我国SRTM3DEM数据高程精度质量受地形影响并存在一定的空间差异性,同时我国范围内SRTM3DEM数据高程精度质量整体上要高于1∶25万DEM。  相似文献   

14.
Digital Elevation Model (DEM) is a quantitative representation of terrain and is important for Earth science and hydrological applications. DEM can be generated using photogrammetry, interferometry, ground and laser surveying and other techniques. Some of the DEMs such as ASTER, SRTM, and GTOPO 30 are freely available open source products. Each DEM contains intrinsic errors due to primary data acquisition technology and processing methodology in relation with a particular terrain and land cover type. The accuracy of these datasets is often unknown and is non-uniform within each dataset. In this study we evaluate open source DEMs (ASTER and SRTM) and their derived attributes using high postings Cartosat DEM and Survey of India (SOI) height information. It was found that representation of terrain characteristics is affected in the coarse postings DEM. The overall vertical accuracy shows RMS error of 12.62 m and 17.76 m for ASTER and SRTM DEM respectively, when compared with Cartosat DEM. The slope and drainage network delineation are also violated. The terrain morphology strongly influences the DEM accuracy. These results can be highly useful for researchers using such products in various modeling exercises.  相似文献   

15.
Abstract

Geomorphologic and hydrologic research heavily depends on digital elevation models (DEM) which are currently being prepared from digital contours. The present study examines the use and applicability of freely available global elevation data source (3 arc seconds finished Shuttle Radar Topography Mission (SRTM)) in landform characterisation, geomorphometry, river basin studies and other allied scientific applications in comparison with contour elevation data derived from the surveyed topographical sheets. The relief data extracted from a conventionally digitised geo-information science dataset of topographic contours (1:50,000) are compared with the SRTM-DEM and the variations are analysed. The automated geomorphometric and landform parameters derived from the contour DEM and the computed statistical properties of those parameters have substantial agreement with the same parameters derived from the SRTM-DEM. At the same time, localised variations also exist in some spatial domains. Derivative landscape analysis outputs from the SRTM-DEM suggest the wide acceptability and applicability of the freely available SRTM data source, especially in the regional scale applications related to hydrological modelling, terrain characterisation, disaster management and land degradation studies.  相似文献   

16.
Information on the depth and bed width of ravines (network of gullies) at large scales is critical for their reclamation and management. Hitherto such information has been generated from aerial photographs and space borne stereo images with medium to coarse ‘z’ – axis resolution. The present study, aims at demonstrating the potential of Cartosat ?1 (an Indian Earth observations satellite) stereo images with 2.5 m spatial resolution in deriving morphometric information on ravines for their reclamative grouping. The study area is a part of Jhansi and Hamirpur districts of Uttar Pradesh, northern India. The approach involves acquiring precise ground control points using Differential GPS (DGPS), triangulation, DEM extraction and generation of ortho image as well as anaglyphs for stereo viewing. The depth and bed width of ravines were measured in the field for validation. A comparison with field observations reveal that the bed width of ravines and depth can be measured successfully with Carto-1 stereo data. The anaglyph data was used to delineate various categories of ravines based on their depth and bed width. Results indicate that the Cartosat-1 stereo images are quite suitable for delineation of three categories of ravines, namely shallow (<3 m deep and <18 m bed width), medium deep (3–9 m deep and >18 m bed width) and deep (>9 m deep) which are important for their reclamation.  相似文献   

17.
ACCURACY PREDICTION FOR ORTHO-IMAGE GENERATION   总被引:1,自引:0,他引:1  
This paper revisits the basic mathematical formulation of ortho-image (digital orthophoto) generation. The main objective is to provide an approach for predicting the accuracy of an ortho-image, according to the accuracy of the digital elevation model (DEM), control points and image measurements, the configuration of fiducial, tie and control points, and the ground slope. The approach is based on applying the well-known law of error propagation to the mathematical model of ortho-image generation. Although it may seem intuitive for professionals in the field of photogrammetry, such an approach is essential in the era when specialists in other fields use off-the-shelf software packages for ortho-image generation. Simulations with the derived approach show that the accuracy of the ortho-image is more sensitive to errors in image measurement of fiducial, tie and control points and ground coordinates of control points, than to DEM errors. Non-standard configurations of fiducial, tie and control points further impair the accuracy. In addition, certain combinations of point location and ground slope might lead to unacceptably large error on the ortho-image.  相似文献   

18.
减少有理函数模型中高次项的初步研究   总被引:1,自引:0,他引:1  
本文简要介绍了有理函数模型(RFM)的原理与方法,给出了利用地面控制点分别针对单片和立体影像的RFM系统误差改正方法。在实际应用中,虽然全三次项形式的RFM可以保证高精度,但是其计算量非常庞大,为此,我们探讨了减少RFM中高次项的可行性,并研究了其在立体模型重构与正射影像纠正中对精度的影响。最后,使用中国西藏、北京和芬兰的三个IKONOS影像立体像对数据进行了相关试验,结果表明,在一定影像范围内,RFM和地形无关,不论是平原、丘陵,还是高山地,在一定影像范围内仅使用RFM的二次项形式可以满足单片正射影像纠正和立体模型重构等应用要求。  相似文献   

19.
Digital elevation model (DEM) data of Shuttle Radar Topography Mission (SRTM) are distributed at a horizontal resolution of 90 m (30 m only for US) for the world, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM data provide 30 m horizontal resolution, while CARTOSAT-1 (IRS-P5) gives 2.6 m horizontal resolution for global coverage. SRTM and ASTER data are available freely but 2.6 m CARTOSAT-1 data are costly. Hence, through this study, we found out a horizontal accuracy for selected ground control points (GCPs) from SRTM and ASTER with respect to CARTOSAT-1 DEM to implement this result (observed from horizontal accuracy) for those areas where the 2.6-m horizontal resolution data are not available. In addition to this, the present study helps in providing a benchmark against which the future DEM products (with horizontal resolution less than CARTOSAT-1) with respect to CARTOSAT-1 DEM can be evaluated. The original SRTM image contained voids that were represented digitally as ?140; such voids were initially filled using the measured values of elevation for obtaining accurate DEM. Horizontal accuracy analysis between SRTM- and ASTER-derived DEMs with respect to CARTOSAT-1 (IRS-P5) DEM allowed a qualitative assessment of the horizontal component of the error, and the appropriable statistical measures were used to estimate their horizontal accuracies. The horizontal accuracy for ASTER and SRTM DEM with respect to CARTOSAT-1 were evaluated using the root mean square error (RMSE) and relative root mean square error (R-RMSE). The results from this study revealed that the average RMSE of 20 selected GCPs was 2.17 for SRTM and 2.817 for ASTER, which are also validated using R-RMSE test which proves that SRTM data have good horizontal accuracy than ASTER with respect to CARTOSAT-1 because the average R-RMSE of 20 GCPs was 3.7 × 10?4 and 5.3 × 10?4 for SRTM and ASTER, respectively.  相似文献   

20.
将卫星三线阵CCD影像变换为正直影像进行立体测绘   总被引:8,自引:8,他引:0  
可以展望利用卫星三线阵CCD影像自动采集的DEM、按共线方程将三线阵CCD影像变换为正直摄影像对(Normal case photography)提供用户立体测绘。文中着重讨论了正直摄影像中不在DEM表面上的目标点的位置误差,以及改进的立体测绘数学模型。利用卫星获取的前、后视CCD影像,并在其上添加由计算机生成的高层目标(约300m)的图像,验证了生成的正直影像对立体测绘的可行性,试验的高层目标点的坐标量测中误差为实验影像的0.5像元之内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号