首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tsunami event generated by the great Sumatra–Andaman earthquake on 26 December 2004 was simulated with the recently developed model TsunAWI. The model is based on the finite element method, which allows for a very flexible discretization of the model domain. This is demonstrated by a triangulation of the whole Indian Ocean with a resolution of about 14 km in the deep ocean but a considerably higher resolution of about 500 m in the coastal area. A special focus is put on the Banda Aceh region in the Northern tip of Sumatra. This area was heavily hit by the tsunami and the highest resolution in this area is about 40 m in order to include inundation processes in the model simulation. We compare model results to tide gauge data from all around the Indian Ocean, to satellite altimetry, and field measurements of flow depth in selected locations of the Aceh region. Furthermore, we compare the model results of TsunAWI to the results of a nested grid model (TUNAMI-N3) with the same initial conditions and identical bathymetry and topography in the Aceh region. It turns out that TsunAWI gives accurate estimates of arrival times in distant locations and in the same mesh gives good inundation results when compared to field measurements and nested grid results.  相似文献   

2.
Modeling of the 2011 Japan Tsunami: Lessons for Near-Field Forecast   总被引:2,自引:0,他引:2  
During the devastating 11 March 2011 Japanese tsunami, data from two tsunami detectors were used to determine the tsunami source within 1.5 h of earthquake origin time. For the first time, multiple near-field tsunami measurements of the 2011 Japanese tsunami were used to demonstrate the accuracy of the National Oceanic and Atmospheric Administration (NOAA) real-time flooding forecast system in the far field. To test the accuracy of the same forecast system in the near field, a total of 11 numerical models with grids telescoped to 2 arcsec (~60 m) were developed to hindcast the propagation and coastal inundation of the 2011 Japanese tsunami along the entire east coastline of Japan. Using the NOAA tsunami source computed in near real-time, the model results of tsunami propagation are validated with tsunami time series measured at different water depths offshore and near shore along Japan’s coastline. The computed tsunami runup height and spatial distribution are highly consistent with post-tsunami survey data collected along the Japanese coastline. The computed inundation penetration also agrees well with survey data, giving a modeling accuracy of 85.5 % for the inundation areas along 800 km of coastline between Ibaraki Prefecture (north of Kashima) and Aomori Prefecture (south of Rokkasho). The inundation model results highlighted the variability of tsunami impact in response to different offshore bathymetry and flooded terrain. Comparison of tsunami sources inferred from different indirect methods shows the crucial importance of deep-ocean tsunami measurements for real-time tsunami forecasts. The agreement between model results and observations along Japan’s coastline demonstrate the ability and potential of NOAA’s methodology for real-time near-field tsunami flooding forecasts. An accurate tsunami flooding forecast within 30 min may now be possible using the NOAA forecast methodology with carefully placed tsunameters and large-scale high-resolution inundation models with powerful computing capabilities.  相似文献   

3.
The M w = 9.0 earthquake that occurred off the coast of Japan’s Tohoku region produced a great tsunami causing catastrophic damage and loss of life. Within hours of the tsunami event, satellite data were readily available and massive media coverage immediately circulated thousands of photographs and videos of the tsunami. Satellite data allow a rapid assessment of inundated areas where access can be difficult either as a result of damaged infrastructure (e.g., roads, bridges, ports, airports) or because of safety issues (e.g., the hazard at Nuclear Power Plant at Fukushima). In this study, we assessed in a day tsunami inundation distances and runup heights using satellite data (very high-resolution satellite images from the GeoEye1 satellite and from the DigitalGlobe worldview, SRTM and ASTER GDEM) of the Tohoku region, Northeast Japan. Field survey data by Japanese and other international scientists validated our results. This study focused on three different locations. Site selection was based on coastal morphologies and the distance to the tsunami source (epicenter). Study sites are Rikuzentakata, Oyagawahama, and Yagawahama in the Oshika Peninsula, and the Sendai coastal plain (Sendai City to Yamamoto City). Maximum inundation distance (6 km along the river) and maximum runup (39 m) at Rikuzentakata estimated from satellite data agree closely with the 39.7 m inundation reported in the field. Here the ria coastal morphology and horn shaped bay enhanced the tsunami runup and effects. The Sendai coastal plain shows large inundation distances (6 km) and lower runup heights. Natori City and Wakabayashi Ward, on the Sendai plain, have similar runup values (12 and 16 m, respectively) obtained from SRTM data; these are comparable to those obtained from field surveys (12 and 9.5 m). However, at Yagawahama and Oyagawahama, Miyagi Prefecture, both SRTM and ASTER data provided maximum runup heights (41 to 45 m and 33 to 34 m, respectively), which are higher than those measured in the field (about 27 m). This difference in DEM and field data is associated with ASTER and SRTM DEM’s pixel size and vertical accuracy, the latter being dependent on ground coverage, slope, aspect and elevation. Countries with less access to technology and infrastructure can benefit from the use of satellite imagery and freely available DEMs for an initial, pre-field surveys, rapid estimate of inundated areas, distances and runup, and for assisting in hazard management and mitigation after a natural disaster.  相似文献   

4.
Several independent indicators imply a high probability of a great (M > 8) earthquake rupture of the subduction megathrust under the Mentawai Islands of West Sumatra. The human consequences of such an event depend crucially on its tsunamigenic potential, which in turn depends on unpredictable details of slip distribution on the megathrust and how resulting seafloor movements and the propagating tsunami waves interact with bathymetry. Here we address the forward problem by modelling about 1000 possible complex earthquake ruptures and calculating the seafloor displacements and tsunami wave height distributions that would result from the most likely 100 or so, as judged by reference to paleogeodetic data. Additionally we carry out a systematic study of the importance of the location of maximum slip with respect to the morphology of the fore-arc complex. Our results indicate a generally smaller regional tsunami hazard than was realised in Aceh during the December 2004 event, though more than 20% of simulations result in tsunami wave heights of more than 5 m for the southern Sumatran cities of Padang and Bengkulu. The extreme events in these simulations produce results which are consistent with recent deterministic studies. The study confirms the sensitivity of predicted wave heights to the distribution of slip even for events with similar moment and reproduces Plafker's rule of thumb. Additionally we show that the maximum wave height observed at a single location scales with the magnitude though data for all magnitudes exhibit extreme variability. Finally, we show that for any coastal location in the near field of the earthquake, despite the complexity of the earthquake rupture simulations and the large range of magnitudes modelled, the timing of inundation is constant to first order and the maximum height of the modelled waves is directly proportional to the vertical coseismic displacement experienced at that point. These results may assist in developing tsunami preparedness strategies around the Indian Ocean and in particular along the coasts of western Sumatra.  相似文献   

5.
The 2010 Mentawai earthquake (magnitude 7.7) generated a destructive tsunami that caused more than 500 casualties in the Mentawai Islands, west of Sumatra, Indonesia. Seismological analyses indicate that this earthquake was an unusual “tsunami earthquake,” which produces much larger tsunamis than expected from the seismic magnitude. We carried out a field survey to measure tsunami heights and inundation distances, an inversion of tsunami waveforms to estimate the slip distribution on the fault, and inundation modeling to compare the measured and simulated tsunami heights. The measured tsunami heights at eight locations on the west coasts of North and South Pagai Island ranged from 2.5 to 9.3 m, but were mostly in the 4–7 m range. At three villages, the tsunami inundation extended more than 300 m. Interviews of local residents indicated that the earthquake ground shaking was less intense than during previous large earthquakes and did not cause any damage. Inversion of tsunami waveforms recorded at nine coastal tide gauges, a nearby GPS buoy, and a DART station indicated a large slip (maximum 6.1 m) on a shallower part of the fault near the trench axis, a distribution similar to other tsunami earthquakes. The total seismic moment estimated from tsunami waveform inversion was 1.0 × 1021 Nm, which corresponded to Mw 7.9. Computed coastal tsunami heights from this tsunami source model using linear equations are similar to the measured tsunami heights. The inundation heights computed by using detailed bathymetry and topography data and nonlinear equations including inundation were smaller than the measured ones. This may have been partly due to the limited resolution and accuracy of publically available bathymetry and topography data. One-dimensional run-up computations using our surveyed topography profiles showed that the computed heights were roughly similar to the measured ones.  相似文献   

6.
The near-field expression of the tsunami produced by the 15 November 2006 Kuril earthquake (Mw 8.1–8.4) in the middle Kuril Islands, Russia, including runup of up to 20 m, remained unknown until we conducted a post-tsunami survey in the summer of 2007. Because the earthquake occurred between summer field expeditions in 2006 and 2007, we have observations, topographic profiles, and photographs from three months before and nine months after the tsunami. We thoroughly surveyed portions of the islands of Simushir and Matua, and also did surveys on parts of Ketoi, Yankicha, Ryponkicha, and Rasshua. Tsunami runup in the near-field of the middle Kuril Islands, over a distance of about 200 km, averaged 10 m over 130 locations surveyed and was typically between 5 and 15 m. Local topography strongly affected inundation and somewhat affected runup. Higher runup generally occurred along steep, protruding headlands, whereas longer inundation distances occurred on lower, flatter coastal plains. Sediment transport was ubiquitous where sediment was available—deposit grain size was typically sand, but ranged from mud to large boulders. Wherever there were sandy beaches, a more or less continuous sand sheet was present on the coastal plain. Erosion was extensive, often more extensive than deposition in both space and volume, especially in areas with runup of more than 10 m. The tsunami eroded the beach landward, stripped vegetation, created scours and trim lines, cut through ridges, and plucked rocks out of the coastal plain.  相似文献   

7.
On 11 March 2011, a moment magnitude M w = 9.0 earthquake occurred off the Japan Tohoku coast causing catastrophic damage and loss of human lives. In the immediate aftermath of the earthquake, we conducted the reconnaissance survey in the city of Rikuzentakata, Japan. In comparison with three previous historical tsunamis impacting the same region, the 2011 event presented the largest values with respect to the tsunami height, the inundation area and the inundation distance. A representative tsunami height of 15 m was recorded in Rikuzentakata, with increased heights of 20 m around rocky headlands. In terms of the inundation area, the 2011 Tohoku tsunami exceeded by almost 2.6 times the area flooded by the 1960 Chilean tsunami, which ranks second among the four events compared. The maximum tsunami inundation distance was 8.1 km along the Kesen River, exceeding the 1933 Showa and 1960 Chilean tsunami inundations by factors of 6.2 and 2.7, respectively. The overland tsunami inundation distance was less than 2 km. The tsunami inundation height linearly decreased along the Kesen River at a rate of approximately 1 m/km. Nevertheless, the measured inland tsunami heights exhibit significant variations on local and regional scales. A designated “tsunami control forest” planted with a cross-shore width of about 200 m along a 2 km stretch of Rikuzentakata coastline was completely overrun and failed to protect the local community during this extreme event. Similarly, many designated tsunami shelters were too low and were overwashed by tsunami waves, thereby failing to provide shelter for evacuees—a risk that had been underestimated.  相似文献   

8.
On March 11th 2011 a M w 9.0 mega-thrust interface subduction earthquake, the Great East Japan Earthquake, occurred 130 km off the northeast coast of Japan in the Pacific Ocean at the Japan Trench, triggering tsunami which caused damage along 600 km of coastline. Observations of damage to buildings (including vertical evacuation facilities) and coastal defences in Tōhoku are presented following investigation by the Earthquake Engineering Field Investigation Team (EEFIT) at 10 locations in Iwate and Miyagi Prefectures. Observations are presented in the context of the coastal setting and tsunami characteristics experienced at each location. Damage surveys were carried out in Kamaishi City and Kesennuma City using a damage scale for reinforced concrete (RC), timber and steel frame buildings adapted from an earlier EEFIT tsunami damage scale. Observations show that many sea walls and breakwaters were overtopped, overturned, or broken up, but provided some degree of protection. We show the extreme variability of damage in a local area due to inundation depth, flow direction, velocity variations and sheltering. Survival of many RC shear wall structures shows their high potential to withstand local earthquake and significant tsunami inundation but further research is required into mitigation of scour, liquefaction, debris impact, and the prevention of overturning failure. Damage to steel and timber buildings are also discussed. These observations are intended to contribute to mitigation of future earthquake and tsunami damage by highlighting the key features which influence damage level and local variability of damage sustained by urban coastal infrastructure when subjected to extreme tsunami inundation depths.  相似文献   

9.
Field survey of the 1994 Mindoro Island,Philippines tsunami   总被引:2,自引:0,他引:2  
This is a report of the field survey of the November 15, 1994 Mindoro Island, Philippines, tsunami generated by an earthquake (M=7.0) with a strike-slip motion. We will report runup heights from 54 locations on Luzon, Mindoro and other smaller islands in the Cape Verde passage between Mindoro and Luzon. Most of the damage was concentrated along the northern coast of Mindoro. Runup height distribution ranged 3–4 m at the most severely damaged areas and 2–4 in neighboring areas. The tsunami-affected area was limited to within 10 km of the epicenter. The largest recorded runup value of 7.3 m was measured on the southwestern coast of Baco Island while a runup of 6.1 m was detected on its northern coastline. The earthquake and tsunami killed 62 people, injured 248 and destroyed 800 houses. As observed in other recent tsunami disasters, most of the casualties were children. Nearly all eyewitnesses interviewed described the first wave as a leading-depression wave. Eyewitnesses reported that the main direction of tsunami propagation was SW in Subaang Bay, SE in Wawa and Calapan, NE on Baco Island and N on Verde Island, suggesting that the tsunami source area was in the southern Pass of Verde Island and that the wave propagated rapidly in all directions. The fault plane extended offshore to the N of Mindoro Island, with its rupture originating S of Verde Island and propagating almost directly south to the inland of Mindoro, thereby accounting for the relatively limited damage area observed on the N of Mindoro.  相似文献   

10.
— Simulation of tsunami propagation and runup of the 1998 Papua New Guinea (PNG) earthquake tsunami using the detailed bathymetry measured by JAMSTEC and adding bathymetric data at depths less than 60 m is carried out, reproducing the tsunami energy focus into Warapu and Arop along the Sissano Lagoon. However, the computed runup heights in the lagoon are still lower than those measured. Even if the error in estimating the fault parameters is taken into consideration, computational results are similar. Analysis by the wave ray method using several scenarios of the source size of the tsunami and location by the wave ray method suggests that a source characterized by small size in water 1,000-m deep approximately 25 km offshore the lagoon, best fits the arrival determined from the interviews with eyewitnesses. A two-layer numerical model simulating the interaction of the tsunami with a landslide is employed to study the behavior of a landslide-generated tsunami with different size sand depths of the initial slide just outside the lagoon. A landslide model with a volume of 4–8 × 109 m3 is selected as the best in order to reproduce the distribution of the measured tsunami runup in the lagoon. The simulation of a tsunami generated in two stages, fault and landslide, could show good agreement with the runup heights and distribution of the arrival time, but a time gap of around 10 minutes remains, suggesting that a tsunami generated by the mainshock at 6:49 PM local time is too small for people to notice, and the following tsunami triggered by landslide or mass movement near the lagoon about ten minutes after the mainshock attacked the coast and caused the huge damage.  相似文献   

11.
Sediment deposited by the Tohoku tsunami of March 11, 2011 in the Southern Kurils (Kunashir, Shikotan, Zeleniy, Yuri, Tanfiliev islands) was radically different from sedimentation during local strong storms and from tsunamis with larger runup at the same location. Sediments from the 2011 Tohoku tsunami were surveyed in the field, immediately and 6 months after the event, and analyzed in the laboratory for sediment granulometry, benthos Foraminifa assemblages, and diatom algae. Run-up elevation and inundation distance were calculated from the wrackline (accumulations of driftwood, woody debris, grass, and seaweed) marking the distal edge of tsunami inundation. Run-up of the tsunami was 5 m at maximum, and 3–4 m on average. Maximum distance of inundation was recorded in river mouths (up to 630 m), but was generally in the range of 50–80 m. Although similar to the local strong storms in runup height, the tsunami generally did not erode the coast, nor leave a deposit. However, deposits uncharacteristic of tsunami, described as brown aleuropelitic (silty and clayey) mud rich in organic matter, were found in closed bays facing the South Kuril Strait. These closed bays were covered with sea ice at the time of tsunami. As the tsunami waves broke the ice, the ice floes enhanced the bottom erosion on shoals and destruction of low-lying coastal peatland even at modest ranges of runup. In the muddy tsunami deposits, silt comprised up to 64 % and clay up to 41.5 %. The Foraminifera assemblages displayed features characteristic of benthic microfauna in the near-shore zone. Deep-sea diatoms recovered from tsunami deposits in two closely situated bays, namely Krabovaya and Otradnaya bays, had different requirements for environmental temperature, suggesting these different diatoms were brought to the bays by the tsunami wave entraining various water masses when skirting the island from the north and from the south.  相似文献   

12.
Centroid moment tensor solutions for the 2011 Tohoku earthquake are determined by W phase inversions using 5 and 10 min data recorded by the Full Range Seismograph Network of Japan (F-net). By a scaling relation of moment magnitude to rupture area and an assumption of rigidity of 4 × 1010 N m?2, simple rectangular earthquake fault models are estimated from the solutions. Tsunami inundations in the Sendai Plain, Minamisanriku, Rikuzentakata, and Taro are simulated using the estimated fault models. Then the simulated tsunami inundation area and heights are compared with the observations. Even the simulated tsunami heights and inundations from the W phase solution that used only 5 min data are considerably similar to the observations. The results are improved when using 10 min of W phase data. These show that the W phase solutions are reliable to be used for tsunami inundation modeling. Furthermore, the technique that combines W phase inversion and tsunami inundation modeling can produce results that have sufficient accuracy for tsunami early warning purposes.  相似文献   

13.
The problem of tsunami wave runup on a beach is discussed in the framework of the rigorous solutions of the nonlinear shallow-water theory. We present an analysis of the runup characteristics for various shapes of the incoming symmetrical solitary tsunami waves. It will be demonstrated that the extreme (maximal) wave characteristics on a beach (runup and draw-down heights, runup and draw-down velocities and breaking parameter) are weakly dependent on the shape of incident wave if the definition of the “significant” wavelength determined on the 2/3 level of the maximum height is used. The universal analytical expressions for the extreme wave characteristics are derived for the runup of the solitary pulses. They can be directly applicable for tsunami warning because in many cases the shape of the incident tsunami wave is unknown.  相似文献   

14.
The effect of offshore coral reefs on the impact from a tsunami remains controversial. For example, field surveys after the 2004 Indian Ocean tsunami indicate that the energy of the tsunami was reduced by natural coral reef barriers in Sri Lanka, but there was no indication that coral reefs off Banda Aceh, Indonesia had any effect on the tsunami. In this paper, we investigate whether the Great Barrier Reef (GBR) offshore Queensland, Australia, may have weakened the tsunami impact from the 2007 Solomon Islands earthquake. The fault slip distribution of the 2007 Solomon Islands earthquake was firstly obtained by teleseismic inversion. The tsunami was then propagated to shallow water just offshore the coast by solving the linear shallow water equations using a staggered grid finite-difference method. We used a relatively high resolution (approximately 250 m) bathymetric grid for the region just off the coast containing the reef. The tsunami waveforms recorded at tide gauge stations along the Australian coast were then compared to the results from the tsunami simulation when using both the realistic 250 m resolution bathymetry and with two grids having fictitious bathymetry: One in which the the GBR has been replaced by a smooth interpolation from depths outside the GBR to the coast (the “No GBR” grid), and one in which the GBR has been replaced by a flat plane at a depth equal to the mean water depth of the GBR (the “Average GBR” grid). From the comparison between the synthetic waveforms both with and without the Great Barrier Reef, we found that the Great Barrier Reef significantly weakened the tsunami impact. According to our model, the coral reefs delayed the tsunami arrival time by 5–10 minutes, decreased the amplitude of the first tsunami pulse to half or less, and lengthened the period of the tsunami.  相似文献   

15.
Lituya Bay Landslide Impact Generated Mega-Tsunami 50th Anniversary   总被引:4,自引:0,他引:4  
On July 10, 1958, an earthquake Mw 8.3 along the Fairweather fault triggered a major subaerial landslide into Gilbert Inlet at the head of Lituya Bay on the southern coast of Alaska. The landslide impacted the water at high speed generating a giant tsunami and the highest wave runup in recorded history. The mega-tsunami runup to an elevation of 524 m caused total forest destruction and erosion down to bedrock on a spur ridge in direct prolongation of the slide axis. A cross section of Gilbert Inlet was rebuilt at 1:675 scale in a two-dimensional physical laboratory model based on the generalized Froude similarity. A pneumatic landslide tsunami generator was used to generate a high-speed granular slide with controlled impact characteristics. State-of-the-art laser measurement techniques such as particle image velocimetry (PIV) and laser distance sensors (LDS) were applied to the decisive initial phase with landslide impact and wave generation as well as the runup on the headland. PIV provided instantaneous velocity vector fields in a large area of interest and gave insight into kinematics of wave generation and runup. The entire process of a high-speed granular landslide impact may be subdivided into two main stages: (a) Landslide impact and penetration with flow separation, cavity formation and wave generation, and (b) air cavity collapse with landslide run-out and debris detrainment causing massive phase mixing. Formation of a large air cavity — similar to an asteroid impact — in the back of the landslide is highlighted. A three-dimenional pneumatic landslide tsunami generator was designed, constructed and successfully deployed in the tsunami wave basin at OSU. The Lituya Bay landslide was reproduced in a three-dimensional physical model at 1:400 scale. The landslide surface velocities distribution was measured with PIV. The measured tsunami amplitude and runup heights serve as benchmark for analytical and numerical models.  相似文献   

16.
Regional source tsunamis pose a potentially devastating hazard to communities and infrastructure on the New Zealand coast. But major events are very uncommon. This dichotomy of infrequent but potentially devastating hazards makes realistic assessment of the risk challenging. Here, we describe a method to determine a probabilistic assessment of the tsunami hazard by regional source tsunamis with an “Average Recurrence Interval” of 2,500-years. The method is applied to the east Auckland region of New Zealand. From an assessment of potential regional tsunamigenic events over 100,000 years, the inundation of the Auckland region from the worst 100 events is modelled using a hydrodynamic model and probabilistic inundation depths on a 2,500-year time scale were determined. Tidal effects on the potential inundation were included by coupling the predicted wave heights with the probability density function of tidal heights at the inundation site. Results show that the more exposed northern section of the east coast and outer islands in the Hauraki Gulf face the greatest hazard from regional tsunamis in the Auckland region. Incorporating tidal effects into predictions of inundation reduced the predicted hazard compared to modelling all the tsunamis arriving at high tide giving a more accurate hazard assessment on the specified time scale. This study presents the first probabilistic analysis of dynamic modelling of tsunami inundation for the New Zealand coast and as such provides the most comprehensive assessment of tsunami inundation of the Auckland region from regional source tsunamis available to date.  相似文献   

17.
Historic‐ and prehistoric‐tsunami sand deposits are used to independently establish runup records for tsunami hazard mitigation and modeled runup verification in Crescent City, California, located in the southern Cascadia Subduction Zone. Inundation from historic (1964) farfield tsunami (~5–6 m runup height) left sand sheet deposits (100–200 m width) in wetlands located behind a low beach ridge [3–4 m elevation of the National Geodetic Vertical Datum of 1988 (NAVD88)]. The most landward flooding lines (4·5–5 m elevation) in high‐gradient alluvial wetlands exceed the 1964 sand sheet records of inundation by 1–2 m in elevation. The most landward flooding in low‐gradient alluvial wetlands exceed the corresponding sand sheet record of inundation distance by 1000 m. Nevertheless, the sand sheet record is an important proxy for high‐velocity inundation. Sand sheet deposition from the 1964 historic tsunami closely corresponds to the landward extent of large debris transport and structural damage in the Crescent City waterfront. The sand sheet deposits provide a proxy for maximum hazard or ‘kill zone’ in the study area. Six paleotsunami sand sheets (0·3–3 ka) are recorded in the back‐ridge marshes in Crescent City, yielding a ~450 year mean recurrence interval for nearfield Cascadia tsunami. Two paleotsunami sand deposit records, likely correlated to Cascadia ruptures between 1·0 and 1·5 ka, are traced to 1·2 km distance and 9–10 m elevation, as adjusted for paleo‐sea level. The paleotsunami sand deposits demonstrate at least twice the runup height, and four times the inundation distance of the farfield 1964 tsunami sand sheet in the same marsh system. The preserved paleotsunami deposits in Crescent City are compared to the most landward flooding, as modeled by other investigators from a predicted Cascadia (~ Mw 9) rupture. The short geologic record (~1·5 ka) yields slightly lower runup records than those predicted for the modeled Mw 9 rupture scenario in the same marsh, but it generally verifies predicted maximum tsunami runup for use in the planning of emergency response and rapid evacuation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
We apply a recently developed and validated numerical model of tsunami propagation and runup to study the inundation of Resurrection Bay and the town of Seward by the 1964 Alaska tsunami. Seward was hit by both tectonic and landslide-generated tsunami waves during the $M_{\rm W}$ 9.2 1964 megathrust earthquake. The earthquake triggered a series of submarine mass failures around the fjord, which resulted in landsliding of part of the coastline into the water, along with the loss of the port facilities. These submarine mass failures generated local waves in the bay within 5?min of the beginning of strong ground motion. Recent studies estimate the total volume of underwater slide material that moved in Resurrection Bay to be about 211?million m3 (Haeussler et?al. in Submarine mass movements and their consequences, pp 269?C278, 2007). The first tectonic tsunami wave arrived in Resurrection Bay about 30?min after the main shock and was about the same height as the local landslide-generated waves. Our previous numerical study, which focused only on the local landslide-generated waves in Resurrection Bay, demonstrated that they were produced by a number of different slope failures, and estimated relative contributions of different submarine slide complexes into tsunami amplitudes (Suleimani et?al. in Pure Appl Geophys 166:131?C152, 2009). This work extends the previous study by calculating tsunami inundation in Resurrection Bay caused by the combined impact of landslide-generated waves and the tectonic tsunami, and comparing the composite inundation area with observations. To simulate landslide tsunami runup in Seward, we use a viscous slide model of Jiang and LeBlond (J Phys Oceanogr 24(3):559?C572, 1994) coupled with nonlinear shallow water equations. The input data set includes a high resolution multibeam bathymetry and LIDAR topography grid of Resurrection Bay, and an initial thickness of slide material based on pre- and post-earthquake bathymetry difference maps. For simulation of tectonic tsunami runup, we derive the 1964 coseismic deformations from detailed slip distribution in the rupture area, and use them as an initial condition for propagation of the tectonic tsunami. The numerical model employs nonlinear shallow water equations formulated for depth-averaged water fluxes, and calculates a temporal position of the shoreline using a free-surface moving boundary algorithm. We find that the calculated tsunami runup in Seward caused first by local submarine landslide-generated waves, and later by a tectonic tsunami, is in good agreement with observations of the inundation zone. The analysis of inundation caused by two different tsunami sources improves our understanding of their relative contributions, and supports tsunami risk mitigation in south-central Alaska. The record of the 1964 earthquake, tsunami, and submarine landslides, combined with the high-resolution topography and bathymetry of Resurrection Bay make it an ideal location for studying tectonic tsunamis in coastal regions susceptible to underwater landslides.  相似文献   

19.
Numerical analysis of the 1992 Flores Island, Indonesia earthquake tsunami is carried out with the composite fault model consisting of two different slip values. Computed results show good agreement with the measured runup heights in the northeastern part of Flores Island, except for those in the southern shore of Hading Bay and at Riangkroko. The landslides in the southern part of Hading Bay could generate local tsunamis of more than 10 m. The circular-arc slip model proposed in this study for wave generation due to landslides shows better results than the subsidence model, It is, however, difficult to reproduce the tsunami runup height of 26.2 m at Riangkroko, which was extraordinarily high compared to other places. The wave propagation process on a sea bottom with a steep slope, as well as landslides, may be the cause of the amplification of tsunami at Riangkroko. The simulation model demonstrates that the reflected wave along the northeastern shore of Flores Island, accompanying a high hydraulic pressure, could be the main cause of severe damage in the southern coast of Babi Island.  相似文献   

20.
The tsunami in the Indian Ocean caused by the earthquake of December 26, 2004, near Sumatra Island had catastrophic consequences in coastal areas of many countries in this region. Notwithstanding extensive investigations of this phenomenon at various laboratories of the world, the focal mechanism of the aftershock remains unclear. The paper analyzes possible seafloor movements in the source area of the earthquake on the basis of the keyboard model of tsunamigenic earthquakes and describes numerical simulation of the generation, propagation, and runup of water surface waves in terms of this model involving vertical displacements of seafloor “keyboard-blocks.” It is shown that generated tsunami waves are essentially dependent on the combination of keyboard-block movements, which results in an irregular distribution of maximum runups along the shoreline. If the oblique nature of the subduction zone associated with the Sumatra-Andaman earthquake of December 26, 2004, is taken into account, the model results fit well the runup values observed at the Thailand shoreline. It is noted that this model of the subduction zone accounts more adequately for the tsunami wave field pattern in both areas of the Indian Ocean and other water areas such as the region of the Kurile-Kamchatka Island Arc and the Sea of Okhotsk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号