首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Numerical analysis of the 1992 Flores Island, Indonesia earthquake tsunami is carried out with the composite fault model consisting of two different slip values. Computed results show good agreement with the measured runup heights in the northeastern part of Flores Island, except for those in the southern shore of Hading Bay and at Riangkroko. The landslides in the southern part of Hading Bay could generate local tsunamis of more than 10 m. The circular-arc slip model proposed in this study for wave generation due to landslides shows better results than the subsidence model, It is, however, difficult to reproduce the tsunami runup height of 26.2 m at Riangkroko, which was extraordinarily high compared to other places. The wave propagation process on a sea bottom with a steep slope, as well as landslides, may be the cause of the amplification of tsunami at Riangkroko. The simulation model demonstrates that the reflected wave along the northeastern shore of Flores Island, accompanying a high hydraulic pressure, could be the main cause of severe damage in the southern coast of Babi Island.  相似文献   

2.
The 1771 Yaeyama tsunami is successfully reproduced using a simple faulting model without submarine landslide. The Yaeyama tsunami (M 7.4), which struck the southern Ryukyu Islands of Japan, produced unusually high tsunami amplitudes on the southeastern coast of Ishigaki Island and caused significant damage, including 12,000 casualties. Previous tsunami source models for this event have included both seismological faults and submarine landslides. However, no evidence of landslides in the source has been obtained, despite marine surveying of the area. The seismological fault model proposed in this study, describing a fault to the east of Ishigaki Island, successfully reproduces the distribution of tsunami runup on the southern coast of the Ryukyu Islands. The unusual runup heights are found through the numerical simulation attributable to a concentration of tsunami energy toward the southeastern coast of Ishigaki Island by the effect of the shelf to the east. Thus, the unusual runup heights observed on the southeastern coast of Ishigaki Island can be adequately explained by a seismological fault model with wave-ray bending on the adjacent shelf.  相似文献   

3.
This paper presents the results from an extensive field data collection effort following the December 26, 2004 earthquake and tsunami in Banda Aceh, Sumatra. The data were collected under the auspices of TSUNARISQUE, a joint French-Indonesian program dedicated to tsunami research and hazard mitigation, which has been active since before the 2004 event. In total, data from three months of field investigations are presented, which detail important aspects of the tsunami inundation dynamics in Banda Aceh. These include measurements of runup, tsunami wave heights, flow depths, flow directions, event chronology and building damage patterns. The result is a series of detailed inundation maps of the northern and western coasts of Sumatra including Banda Aceh and Lhok Nga. Among the more important findings, we obtained consistent accounts that approximately ten separate waves affected the region after the earthquake; this indicates a high-frequency component of the tsunami wave energy in the extreme near-field. The largest tsunami wave heights were on the order of 35 m with a maximum runup height of 51 m. This value is the highest runup value measured in human history for a seismically generated tsunami. In addition, our field investigations show a significant discontinuity in the tsunami wave heights and flow depths along a line approximately 3 km inland, which the authors interpret to be the location of the collapse of the main tsunami bore caused by sudden energy dissipation. The propagating bore looked like a breaking wave from the landward side although it has distinct characteristics. Patterns of building damage are related to the location of the propagating bore with overall less damage to buildings beyond the line where the bore collapsed. This data set was built to be of use to the tsunami community for the purposes of calibrating and improving existing tsunami inundation models, especially in the analysis of extreme near-field events.  相似文献   

4.
Field Survey of the 27 February 2010 Chile Tsunami   总被引:1,自引:0,他引:1  
On 27 February 2010, a magnitude M w?=?8.8 earthquake occurred off the coast of Chile??s Maule region causing substantial damage and loss of life. Ancestral tsunami knowledge from the 1960 event combined with education and evacuation exercises prompted most coastal residents to spontaneously evacuate after the earthquake. Many of the tsunami victims were tourists in coastal campgrounds. The international tsunami survey team (ITST) was deployed within days of the event and surveyed 800?km of coastline from Quintero to Mehuín and the Pacific Islands of Santa María, Mocha, Juan Fernández Archipelago, and Rapa Nui (Easter). The collected survey data include more than 400 tsunami flow depth, runup and coastal uplift measurements. The tsunami peaked with a localized runup of 29?m on a coastal bluff at Constitución. The observed runup distributions exhibit significant variations on local and regional scales. Observations from the 2010 and 1960 Chile tsunamis are compared.  相似文献   

5.
The 1700 great Cascadia earthquake (M = 9) generated widespread tsunami waves that affected the entire Pacific Ocean and caused damage as distant as Japan. Similar catastrophic waves may be generated by a future Cascadia megathrust earthquake. We use three rupture scenarios for this earthquake in numerical experiments to study propagation of tsunami waves off the west coast of North America and to predict tsunami heights and currents in several bays and harbours on southern Vancouver Island, British Columbia, including Ucluelet, located on the west coast of the island, and Victoria and Esquimalt harbours inside Juan de Fuca Strait. The earthquake scenarios are: an 1100-km long rupture over the entire length of the subduction zone and separate ruptures of its northern or southern segments. As expected, the southern earthquake scenario has a limited effect over most of the Vancouver Island coast, with waves in the harbours not exceeding 1 m. The other two scenarios produce large tsunami waves, higher than 16 m at one location near Ucluelet and over 4 m inside Esquimalt and Victoria harbours, and very strong currents that reach 17 m/s in narrow channels and near headlands. Because the assumed rupture scenarios are based on a previous earthquake, direct use of the model results to estimate the effect of a future earthquake requires appropriate qualification.  相似文献   

6.
Lituya Bay Landslide Impact Generated Mega-Tsunami 50th Anniversary   总被引:4,自引:0,他引:4  
On July 10, 1958, an earthquake Mw 8.3 along the Fairweather fault triggered a major subaerial landslide into Gilbert Inlet at the head of Lituya Bay on the southern coast of Alaska. The landslide impacted the water at high speed generating a giant tsunami and the highest wave runup in recorded history. The mega-tsunami runup to an elevation of 524 m caused total forest destruction and erosion down to bedrock on a spur ridge in direct prolongation of the slide axis. A cross section of Gilbert Inlet was rebuilt at 1:675 scale in a two-dimensional physical laboratory model based on the generalized Froude similarity. A pneumatic landslide tsunami generator was used to generate a high-speed granular slide with controlled impact characteristics. State-of-the-art laser measurement techniques such as particle image velocimetry (PIV) and laser distance sensors (LDS) were applied to the decisive initial phase with landslide impact and wave generation as well as the runup on the headland. PIV provided instantaneous velocity vector fields in a large area of interest and gave insight into kinematics of wave generation and runup. The entire process of a high-speed granular landslide impact may be subdivided into two main stages: (a) Landslide impact and penetration with flow separation, cavity formation and wave generation, and (b) air cavity collapse with landslide run-out and debris detrainment causing massive phase mixing. Formation of a large air cavity — similar to an asteroid impact — in the back of the landslide is highlighted. A three-dimenional pneumatic landslide tsunami generator was designed, constructed and successfully deployed in the tsunami wave basin at OSU. The Lituya Bay landslide was reproduced in a three-dimensional physical model at 1:400 scale. The landslide surface velocities distribution was measured with PIV. The measured tsunami amplitude and runup heights serve as benchmark for analytical and numerical models.  相似文献   

7.
— Simulation of tsunami propagation and runup of the 1998 Papua New Guinea (PNG) earthquake tsunami using the detailed bathymetry measured by JAMSTEC and adding bathymetric data at depths less than 60 m is carried out, reproducing the tsunami energy focus into Warapu and Arop along the Sissano Lagoon. However, the computed runup heights in the lagoon are still lower than those measured. Even if the error in estimating the fault parameters is taken into consideration, computational results are similar. Analysis by the wave ray method using several scenarios of the source size of the tsunami and location by the wave ray method suggests that a source characterized by small size in water 1,000-m deep approximately 25 km offshore the lagoon, best fits the arrival determined from the interviews with eyewitnesses. A two-layer numerical model simulating the interaction of the tsunami with a landslide is employed to study the behavior of a landslide-generated tsunami with different size sand depths of the initial slide just outside the lagoon. A landslide model with a volume of 4–8 × 109 m3 is selected as the best in order to reproduce the distribution of the measured tsunami runup in the lagoon. The simulation of a tsunami generated in two stages, fault and landslide, could show good agreement with the runup heights and distribution of the arrival time, but a time gap of around 10 minutes remains, suggesting that a tsunami generated by the mainshock at 6:49 PM local time is too small for people to notice, and the following tsunami triggered by landslide or mass movement near the lagoon about ten minutes after the mainshock attacked the coast and caused the huge damage.  相似文献   

8.
Runup data in Hokkaido and in three prefectures in the Tohoku District are described with a few witnessed arrival times and with comments of tide records. The highest runup of 31.7 m was found at the bottom of a narrow valley on the west coast of Okushiri Island. In order to explain high runups of 20 m at Hamatsumae in the sheltered area, roles of edge waves, refraction of the Okushiri Spur and tsunami generation by causes other than the major fault motion should be understood. An early arrival of the tsunami on the west coast of Hokkaido suggests another tsunami generation mechanism in addition to the major fault motion.  相似文献   

9.
基于日本南海海槽地震活动性和历史海啸事件记载的分析,本文对日本南海海槽发生MW9.1罕遇地震情况下的海啸进行了数值模拟研究.结果表明:该地震可引发初始波幅约10 m的海啸,6个小时后传至浙江沿海,近岸各处波幅为1—2 m;8个小时后靠近上海海岸线,最大波幅约2 m,受地形影响局地爬高至近3 m;11个小时后抵达苏北黄海沿岸,预计波幅普遍在1 m左右.海啸的上岸高度与海岸附近的海深和海岸线的形态密切相关.我国近岸海域地形变化复杂,海湾众多,对海啸波有放大作用,该模拟结果可能比实际传播到近岸时偏小,因此综合评估日本海啸影响我国华东地区的规模m可达1—2级左右.一旦日本南海发生罕遇地震对我国的影响不容忽视,尤其遇上风暴潮与天文大潮叠加,则可能会造成一定程度的海啸灾害.   相似文献   

10.
The tsunami in the Indian Ocean caused by the earthquake of December 26, 2004, near Sumatra Island had catastrophic consequences in coastal areas of many countries in this region. Notwithstanding extensive investigations of this phenomenon at various laboratories of the world, the focal mechanism of the aftershock remains unclear. The paper analyzes possible seafloor movements in the source area of the earthquake on the basis of the keyboard model of tsunamigenic earthquakes and describes numerical simulation of the generation, propagation, and runup of water surface waves in terms of this model involving vertical displacements of seafloor “keyboard-blocks.” It is shown that generated tsunami waves are essentially dependent on the combination of keyboard-block movements, which results in an irregular distribution of maximum runups along the shoreline. If the oblique nature of the subduction zone associated with the Sumatra-Andaman earthquake of December 26, 2004, is taken into account, the model results fit well the runup values observed at the Thailand shoreline. It is noted that this model of the subduction zone accounts more adequately for the tsunami wave field pattern in both areas of the Indian Ocean and other water areas such as the region of the Kurile-Kamchatka Island Arc and the Sea of Okhotsk.  相似文献   

11.
Detailed field work at Okushiri Island and along the southwest coast of Hokkaido has revealed quantitatively (1) the advancing direction of tsunami on land, (2) the true tsunami height (i.e., height of tsunami, excluding its splashes, as measured from the ground) and (3) the flow velocity of tsunami on land, in heavily damaged areas. When a Japanese wooden house is swept away by tsunami, bolts that tie the house to its concrete foundation resist until the last moment and become bent towards the direction of the house being carried away. The orientations of more than 850 of those bent bolts and iron pipes (all that can be measured, mostly at Okushiri Island) and fell-down direction of about 400 trees clearly display how tsunami behaved on land and caused serious damage at various places. The true tsunami height was estimated by using several indicators, such as broken tree twigs and a window pane. The flow velocity of tsunami on land was determined by estimating the hydrodynamic force exerted on a bent handrail and a bent-down guardrail by the tsunami throughin situ strength tests.Contrary to the wide-spread recognition after the tsunami hazard, our results clearly indicate that only a few residential areas (i.e., Monai, eastern Hamatsumae, and a small portion at northern Aonae, all on Okushiri Island) were hit by a huge tsunami, with true heights reaching 10 m. Southern Aonae was completely swept away by tsunami that came directly from the focal region immediately to the west. The true tsunami height over the western sea wall of southern Aonae was estimated as 3 to 4 m. Northern Aonae also suffered severe damage due to tsunami that invaded from the corner zone of the sand dune (8 m high) and tide embankment at the northern end of the Aonae Harbor. This corner apparently acted as a tsunami amplifier, and tide embankment or breakwater can be quite dangerous when tsunami advances towards the corner it makes with the coast. The nearly complete devastation of Inaho at the northern end of Okushiri Island underscored the danger of tsunami whose propagation direction is parallel to the coast, since such tsunami waves tend to be amplified and tide embankment or breakwater is constructed low towards the coast at many harbors or fishing ports. Tsunami waves mostly of 2 to 4 m in true height swept away Hamatsumae on the southeast site of Okushiri Island where there were no coastal structures. Coastal structures were effective in reducing tsunami hazard at many sites. The maximum flow velocity at northern Aonae was estimated as 10 to 18 m/s (Tsutsumi et al., 1994), and such a high on-land velocity of tsunami near shore is probably due to the rapid shallowing of the deep sea near the epicentral region towards Okushiri Island. If the advancing direction, true height, and flow velocity of tsunami can be predicted by future analyses of tsunami generation and progagation, the analyses will be a powerful tool for future assessment of tsunami disasters, including the identification of blind spots in the tsunami hazard reduction.  相似文献   

12.
Heterogeneous fault motion of the 1993 Hokkaido Nansei-Oki earthquake is studied by using seismic, geodetic and tsunami data, and the tsunami generation from the fault model is examined. Seismological analyses indicate that the focal mechanism of the first 10 s, when about a third of the total moment was released, is different from the overall focal mechanism. A joint inversion of geodetic data on Okushiri Island and the tide gauge records in Japan and Korea indicates that the largest slip, about 6 m, occurred in a small area just south of the epicenter. This corresponds to the initial rupture on a fault plane dipping shallowly to the west. The slip on the northernmost subfault, which is dipping to the east, is about 2 m, while the slips on the southern subfaults, which are steeply dipping to the west, are more than 3 m. Tsunami heights around Okushiri Island are calculated from the heterogeneous fault model using different grid sizes. Computation on the smaller grids produces large tsunami height that are closer to the observed tsunami runup heights. Tsunami propagation in the nearly closed Japan Sea is examined as the free oscillation of the Japan Sea. The excitation of the free oscillation by this earthquake is smaller than that by the 1964 Niigata or 1983 Japan Sea earthquake.  相似文献   

13.
A field survey of the 1992 Flores Island earthquake tsunami was conducted during December 29, 1992 to January 5, 1993 along the north coast of the eastern part of Flores Island. We visited over 40 villages, measured tsunami heights, and interviewed the inhabitants. It was clarified that the first wave attacked the coast within five minutes at most of the surveyed villages. The crust was uplifted west of the Cape of Batumanuk, and subsided east of it. In the residential area of Wuring, which is located on a sand spit with ground height of 2 meters, most wooden houses built on stilts collapsed and 87 people were killed even though the tsunami height reached only 3.2 meters. In the two villages on Babi Island, the tsunami swept away all wooden houses and killed 263 of 1,093 inhabitants. Tsunami height at Riang-Kroko village on the northeastern end of Flores Island reached 26.2 meters and 137 of the 406 inhabitants were killed by the tsumani. Evidence of landslides was detected at a few points on the coast of Hading Bay, and the huge tsunami was probably formed by earthquake-induced landslides. The relationship between tsunami height and mortality was checked for seven villages. The efficiencies of trees arranged in front of coastal villages, and coral reefs in dissipating the tsunami energy are discussed.  相似文献   

14.
The Hokkaido-Nansei-Oki earthquake (M w 7.7) of July 12, 1993, is one of the largest tsunamigenic events in the Sea of Japan. The tsunami magnitudeM t is determined to be 8.1 from the maximum amplitudes of the tsunami recorded on tide gauges. This value is larger thanM w by 0.4 units. It is suggested that the tsunami potential of the Nansei-Oki earthquake is large forM w . A number of tsunami runup data are accumulated for a total range of about 1000 km along the coast, and the data are averaged to obtain the local mean heightsH n for 23 segments in intervals of about 40 km each. The geographic variation ofH n is approximately explained in terms of the empirical relationship proposed byAbe (1989, 1993). The height prediction from the available earthquake magnitudes ranges from 5.0–8.4 m, which brackets the observed maximum ofH n , 7.7 m, at Okushiri Island.  相似文献   

15.
On December 12, 1992 a large earthquake (M s 7.5) occurred just north of Flores Island, Indonesia which, along with the tsunami it generated, killed more than 2,000 people. In this study, teleseismicP andSH waves, as well asPP waves from distances up to 123°, are inverted for the orientations and time histories of multiple point sources. By repeating the inversion for reasonable values of depth, time separation and spatial separation, a 2-fault model is developed. Next, the vertical deformation of the seafloor is estimated from this fault model. Using a detailed bathymetric model, linear and nonlinear tsunami propagation models are tested. The data consist of a single tide gauge record at Palopo (650 km to the north), as well as tsunami runup height measurements from Flores Island and nearby islands. Assuming a tsunami runup amplification factor of two, the two-fault model explains the tide gauge record and the tsunami runup heights on most of Flores Island. It cannot, however, explain the large tsunami runup heights observed near Leworahang (on Hading Bay) and Riangkroko (on the northeast peninsula). Massive coastal slumping was observed at both of these locations. A final model, which in addition to the two faults, includes point sources of large vertical displacement at these two locations explains the observations quite well.  相似文献   

16.
The M w = 9.0 earthquake that occurred off the coast of Japan’s Tohoku region produced a great tsunami causing catastrophic damage and loss of life. Within hours of the tsunami event, satellite data were readily available and massive media coverage immediately circulated thousands of photographs and videos of the tsunami. Satellite data allow a rapid assessment of inundated areas where access can be difficult either as a result of damaged infrastructure (e.g., roads, bridges, ports, airports) or because of safety issues (e.g., the hazard at Nuclear Power Plant at Fukushima). In this study, we assessed in a day tsunami inundation distances and runup heights using satellite data (very high-resolution satellite images from the GeoEye1 satellite and from the DigitalGlobe worldview, SRTM and ASTER GDEM) of the Tohoku region, Northeast Japan. Field survey data by Japanese and other international scientists validated our results. This study focused on three different locations. Site selection was based on coastal morphologies and the distance to the tsunami source (epicenter). Study sites are Rikuzentakata, Oyagawahama, and Yagawahama in the Oshika Peninsula, and the Sendai coastal plain (Sendai City to Yamamoto City). Maximum inundation distance (6 km along the river) and maximum runup (39 m) at Rikuzentakata estimated from satellite data agree closely with the 39.7 m inundation reported in the field. Here the ria coastal morphology and horn shaped bay enhanced the tsunami runup and effects. The Sendai coastal plain shows large inundation distances (6 km) and lower runup heights. Natori City and Wakabayashi Ward, on the Sendai plain, have similar runup values (12 and 16 m, respectively) obtained from SRTM data; these are comparable to those obtained from field surveys (12 and 9.5 m). However, at Yagawahama and Oyagawahama, Miyagi Prefecture, both SRTM and ASTER data provided maximum runup heights (41 to 45 m and 33 to 34 m, respectively), which are higher than those measured in the field (about 27 m). This difference in DEM and field data is associated with ASTER and SRTM DEM’s pixel size and vertical accuracy, the latter being dependent on ground coverage, slope, aspect and elevation. Countries with less access to technology and infrastructure can benefit from the use of satellite imagery and freely available DEMs for an initial, pre-field surveys, rapid estimate of inundated areas, distances and runup, and for assisting in hazard management and mitigation after a natural disaster.  相似文献   

17.
—The 1996 subaquatic explosive eruption near the northern shore of Karymskoye Lake in Kamchatka, Russia, generated multiple tsunamis. We document the explosive process that produced the tsunamis, and describe the tsunami effects and runup around the 4-km diameter lake. These data enable the determination of an attenuation relation of runup (wave) height for these “explosive” tsunamis, which is compared with theoretical models of wave height distributions. For the proximal zone, involving radial distances (r) up to 1.3 km from the source, the runup height (R) shows rapid attenuation (from > 30 m to 8 m) with distance as log R = ?1.98 log[r] + 2.6. For the distal zone, r > 1.3 km, involving mainly wave travel southeastwards along the body of the lake away from the explosion source, R decays more slowly (from 8 m to 3 m) as log R = ?0.56 log[r] + 1.9. Rapid decay in the proximal zone suggests that near the source of the explosion, the tsunami propagated radially as a collapsing wave (bore) with discontinuous change in height. The break-in-slope of the runup plot at 1.3 km suggests that beyond this distance the tsunami propagated approximately as a decaying one-dimensional wave in a channel of approximately constant width.  相似文献   

18.
The boundary between the Pacific and North America plates along Canada’s west coast is one of the most seismically active regions of Canada, and is where Canada’s two largest instrumentally recorded earthquakes have occurred. Although this is a predominantly strike-slip transform fault boundary, there is a component of oblique convergence between the Pacific and North America plates off Haida Gwaii. The 2012 Mw 7.7 Haida Gwaii earthquake was a thrust event that generated a tsunami with significant run up of over 7 m in several inlets on the west coast of Moresby Island (several over 6 m, with a maximum of 13 m). Damage from this earthquake and tsunami was minor due to the lack of population and vulnerable structures on this coast.  相似文献   

19.
Sediment deposited by the Tohoku tsunami of March 11, 2011 in the Southern Kurils (Kunashir, Shikotan, Zeleniy, Yuri, Tanfiliev islands) was radically different from sedimentation during local strong storms and from tsunamis with larger runup at the same location. Sediments from the 2011 Tohoku tsunami were surveyed in the field, immediately and 6 months after the event, and analyzed in the laboratory for sediment granulometry, benthos Foraminifa assemblages, and diatom algae. Run-up elevation and inundation distance were calculated from the wrackline (accumulations of driftwood, woody debris, grass, and seaweed) marking the distal edge of tsunami inundation. Run-up of the tsunami was 5 m at maximum, and 3–4 m on average. Maximum distance of inundation was recorded in river mouths (up to 630 m), but was generally in the range of 50–80 m. Although similar to the local strong storms in runup height, the tsunami generally did not erode the coast, nor leave a deposit. However, deposits uncharacteristic of tsunami, described as brown aleuropelitic (silty and clayey) mud rich in organic matter, were found in closed bays facing the South Kuril Strait. These closed bays were covered with sea ice at the time of tsunami. As the tsunami waves broke the ice, the ice floes enhanced the bottom erosion on shoals and destruction of low-lying coastal peatland even at modest ranges of runup. In the muddy tsunami deposits, silt comprised up to 64 % and clay up to 41.5 %. The Foraminifera assemblages displayed features characteristic of benthic microfauna in the near-shore zone. Deep-sea diatoms recovered from tsunami deposits in two closely situated bays, namely Krabovaya and Otradnaya bays, had different requirements for environmental temperature, suggesting these different diatoms were brought to the bays by the tsunami wave entraining various water masses when skirting the island from the north and from the south.  相似文献   

20.
The stratigraphy of tsunami deposits along the Japan Sea, southwest Hokkaido, northern Japan, reveals tsunami recurrences in this particular area. Sandy tsunami deposits are preserved in small valley plains, whereas gravelly deposits of possible tsunami origin are identified in surficial soils covering a Holocene marine terrace and a slope talus. At least five horizons of tsunami events can be defined in the Okushiri Island, the youngest of which immediately overlies the Ko‐d tephra layer (1640 AD) and was likely formed by the historical Oshima‐Ohshima tsunami in 1741 AD. The four older tsunami deposits, dated using accelerator mass spectrometry 14C, were formed at around the 12th century, 1.5–1.6, 2.4–2.6, and 2.8–3.1 ka, respectively. Tsunami sand beds of the 1741 AD and circa 12th century events are recognized in the Hiyama District of Hokkaido Island, but the older tsunami deposits are missing. The deposits of these two tsunamis are found together at the same sites and distributed in regions where wave heights of the 1993 tsunami (Hokkaido Nansei‐oki earthquake, Mw = 7.7) were less than 3 m. Thus, the 12th century tsunami waves were possibly generated near the south of Okushiri Island, whereas the 1993 tsunami was generated towards the north of the island. The estimated recurrence intervals of paleotsunamis, 200–1100 years with an average of 500 years, likely represents the recurrence interval of large earthquakes which would have occurred along several active faults offshore of southwest Hokkaido.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号