首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterogeneous nucleation and condensation of dibutylphthalate, octadecane, octadecanol, and octadecanoic acid vapors at various pressures on insoluble AgCl and Ag nanoparticles in a turbulent mixing condensation nuclei counter (TMCNC) have been studied theoretically. A method to interpret the particle size distributions measured with a DMA and estimate the parameters for nucleation on single particles is proposed. Based on this semi-empirical method, the Gibbs free energy is calculated and a rate of heterogeneous nucleation on single particles is estimated directly from the experimental “condensation spectra” of inactive and active CN using the DMA data. In some cases, the dependence of the Gibbs nucleation energy on the vapor supersaturation had two maximums and one minimum, instead of one maximum as described by Gibbs' classical thermodynamics of phase transitions. This phenomenon, called “double barrier nucleation” (DBN) is caused by the surface heterogeneity of nano-CN; this is first experimental verification of DBN that had been previously predicted theoretically. Two types of heterogeneity may be present: topographic or energetic. Focusing on energetic heterogeneity, a theoretical model of DBN for spherical geometry is developed. The surface heterogeneity for insoluble nano-sized CN is shown to be critical to explaining the unusual transformation of a monomodal size distribution of inactive CN into a bimodal distribution of activated CN when coagulation is excluded. Future studies will be directed toward more data for further refining the theory and developing a model that simultaneously accounts for both types of surface heterogeneity of nano-CN.  相似文献   

2.
Different ice nucleation algorithms are implemented in a cloud microphysical scheme and numerical simulations of clouds are performed using a three-dimensional mesoscale model. The predicted ice crystal fields are found to be sensitive to the different modes of calculation of the number of deposition/ condensation freezing nuclei and contact freezing nuclei. Also a time and supercooling dependence of this sensitivity is established.The general features of the cirrus clouds observed by the research aircraft Falcon during the 1989 (International Cirrus Experiment) mission ICE212 are compared to those of the cirrus clouds generated by the model. The cloud top height, the cloud ice content and the ice number concentrations seem to be reproduced well.  相似文献   

3.
A model of ice heterogeneous nucleation is developed basing on assumption of embryo–size quasi–static distribution. When the system becomes meta-stable (increased supersaturation or supercooling), the largest embryos become viable. The viable embryo number and generation rate are estimated for direct sublimation of vapor onto the surface of the ice–generating nucleus and for immersion freezing. The calculation results are compared against experimental data.  相似文献   

4.
The hail cloud modification is carried out by means of the cloud seeding with AgI particles of submicron sizes, in order to create nuclei competing with the natural ones for supercooled liquid droplet water, or in order to accelerate precipitation generation. However, scientific research confirmed a primary role of giant and supergiant particles in generation of nuclei of convective precipitation and hail. Such particles occur also at high levels (5 km and more). As the cloud and precipitation particles grow mainly through coagulation, one can hardly expect a high success from the cloud seeding with AgI submicron particles for hail suppression. In the hail process modification, the Ag particles settle down not at the nuclei but in the hailstone layers. So, AgI is spent not for additional hail nuclei creation, but for intensification of coagulation growth of natural cloud and precipitation particles. This can represent one of the main mechanisms for cloud modification.  相似文献   

5.
Aerosol particles were collected on filters for studies of their ability to nucleate ice during the second Arctic Gas and Aerosol Sampling Program (AGASP-II) in April, 1986. The ice nuclei (IN) samples were collected from an aircraft at altitudes ranging from the surface to the vicinity of the tropopause in Arctic locations over Alaska, northern Canada and Greenland. Samples of other components of the aerosol were collected and measurements were made of other properties of the aerosol coincident in time with the IN samples. The IN filters were exposed to water saturation in a dynamic developing chamber at –15° C and –25° C. Ice crystals grew on the IN and were counted on the filters at discrete time intervals during the exposure period to determine the rate of ice nucleation and the final concentration of (IN). Results show that Arctic haze aerosol, identified by pollutant signatures, had lower IN concentrations, a lower IN to total aerosol fraction and slower ice nucleation rates than aerosol which had a chemical signature more indicative of the remote unpolluted troposphere. These observations suggest that the Arctic haze aerosol does not efficiently form ice in the arctic troposphere. This may be a factor contributing to the long-range transport of Arctic haze.  相似文献   

6.
王雨  银燕  陈倩  王旭  肖辉 《大气科学》2017,41(1):15-29
将DeMott冰核浓度参数化方案引入到WRF中尺度数值模式中,模拟了新疆阿克苏地区一次多单体型强对流风暴,并对背景大气条件和沙尘条件下气溶胶作为冰核,对云中微物理结构和降水变化的影响进行了敏感性试验和对比分析,结果显示:在背景大气条件和沙尘条件下增加冰核浓度对降水中心强度影响较小,并且总体上看降水分布变化不大,但是降水局部的变化量较明显;不同背景条件下IN(Ice Nuclei)浓度的增加使得冰晶和雪的质量混合比和数浓度均有较大幅度的增加,其中雪的主要源项为凝华增长过程,而霰增长主要来源于冰相粒子碰并过冷云滴,并且在背景大气和沙尘条件下增加IN都使得霰的数浓度增加,尺度减少。  相似文献   

7.
《Atmospheric Research》1988,22(2):149-181
A supercooled continuous flow, thermal gradient diffusion chamber has been developed to study the ice nucleating properties of natural or artificial aerosols. The chamber has concentric cylinder geometry with the cylinder axis alignment and airflow vertically downward. Sample airflow is 1 l min−1 and occupies the central 10% of the annular lamina; it is separated from the ice-covered walls by filtered sheath air. The wall temperatures are independently controlled over the range from about −4°C to −25°C, so that the vapor concentration at the location of the sample lamina can be set to a well defined value between ice saturation and a few percent water supersaturation. There is a range of temperature and supersaturation values across the sample region; for lamina center conditions of −15°C and +1% with respect to water, the range is −14.6 to −15.4°C and +0.53 to +1.31%. Errors in temperature control produce variations estimated as ±0.1°C and ±0.23%. Typical sample residence time is about 10 s. Ice crystals which form on active nuclei are detected optically at the outlet end of the chamber. To enhance the size difference between ice crystals and cloud droplets, the downstream 25% of the warm ice wall is covered with a thermally insulating vapor barrier which reduces the vapor concentration to ice saturation at the cold wall temperature, so cloud droplets evaporate.A mathematical model was developed to describe the temperature and vapor fields and to calculate the growth, evaporation, and sedimentation of water and ice particles. At 1% water supersaturation, the model predicts that ice particles will grow to about 5 μm diameter, and cloud droplets will achieve about 1 μm before they reach the evaporation section of the chamber. A different model was developed to describe the steady state airflow profile and location of the sample lamina.Experimental tests of the chamber were performed to characterize the airflow, to assess the ability of the technique to detect silver iodide ice nucleating aerosols and to distinguish ice crystals from water droplets.  相似文献   

8.
In this work, the charging state of atmospheric nanoparticles was estimated through simultaneous measurements of aerosol size distribution and air ions mobility distribution with the aim to elucidate the formation mechanisms of atmospheric aerosols. The measurements were performed as a part of the QUEST 2 campaign at a boreal forest station in Finland. The overlapping part of the measurement ranges of the particle size spectrometers and air ion mobility spectrometers in the mass diameter interval of 2.6–40 nm was used to assess the percentage of charged particles (charging probability). This parameter was obtained as the slope of the linear regression line on the scatterplot of the measured concentrations of total (neutral + charged) and charged particles for the same diameter interval. Charging probabilities as a function of particle diameter were calculated for different days and were compared with the steady state charging probabilities of the particles in the bipolar ion atmosphere. For the smallest particles detectable by the particle size spectrometers (2.6–5 nm), the high percentages of negatively charged particles were found during the nanometer particle concentration bursts. These values considerably exceeded the values for the steady charging state and it was concluded that negative cluster ions preferably act as condensation nuclei. This effect was found to be the highest in the case of comparatively weak nucleation bursts of nanoparticles, when the rate of the homogeneous nucleation and the concentration of freshly nucleated particles were low. The nucleation burst days were classified according to the concentration of the generated smallest detectable new particles (weak and strong bursts). Approximately the same classification was obtained based on the charge asymmetry on particles with respect to the charge sign (polarity). The probabilities of negative and positive charge on the particles with the diameter of 5–20 nm were found to be nearly equal and they approximately agree with the values corresponding to the steady state charge distribution for negative particles known from lab experiments. It means that the steady charging state was reached during the growing time of particles up to 5 nm. The natural charging state of particles with a diameter between 2.5 and 4.5 nm was estimated by means of a special DMPS setup. Results were found to be in good correlation with the data by the particle size spectrometers and air ion mobility spectrometers.  相似文献   

9.
Mineral dust particles are known to be efficient ice nuclei in the atmosphere. Previous work has probed heterogeneous ice nucleation on various laboratory dust samples including Arizona Test Dust, kaolinite, montmorillonite, and illite as atmospheric dust surrogates. However, it has recently been suggested that NX illite may be a better representation of atmospheric dust. Hiranuma et al. (2015) performed a laboratory comparison for immersion ice nucleation on NX illite, but here we focus on depositional ice nucleation because of its importance in low temperature cirrus cloud formation. A Raman microscope setup was used to examine the ice-nucleating efficiency of NX illite. Organic coatings on the NX illite particles were also investigated using a mixture of 5 dicarboxylic acids (M5). The ratio of NX illite to M5 was varied from 1:10 to 100:1. It was found that NX illite efficiently nucleates ice with Sice = 1.07 ± 0.01 at ?47 °C, with Sice slightly increasing at lower temperatures. In contrast, pure M5 is a poorer ice nucleus with Sice = 1.30 ± 0.02 at ?40 °C, relatively independent of temperature. Further, it was found that M5 coatings on the order of several monolayers thick hindered the ice nucleating ability of NX illite. Optical images suggest that at colder temperatures (< ?50 °C) 1:1 NX illite:M5 particles and pure M5 particles nucleate ice depositionally, while at warmer temperatures (> ?50 °C) subsaturated immersion ice nucleation dominates. These experiments suggest that mineral dust particles may become less active towards ice nucleation as they age in the atmosphere.  相似文献   

10.
周梅  许洪泽  方婉珍 《气象科技》2011,39(2):197-201
利用NCEP再分析格点资料、常规观测资料、数值预报产品以及卫星云图对2009年4月6日早晨浙江中部一次大范围大雾天气过程进行诊断分析。结果表明:高空槽后暖脊的大气环流背景有利于地面长波辐射冷却和中层增温,易形成逆温,为大雾生成提供了有利条件,而边界层逆温层或等温层的形成与维持对雾的发展持续具有重要作用;凝结核、低层湍流混合是山区能见度较城镇大的主要原因;交叉温度可用来预示整个潜在雾层的湿度状态,温度与交叉温度差值可作为了解大雾生成、发展、消散过程的一项指标;模式产品能提供雾形成的环境条件;红外云图、可见光云图有助于预测雾的形成、发展、消散过程。  相似文献   

11.
Frequency distributions of cloud base height and cloud type of low clouds observed between May and October 1998 at Mt. Brocken (Germany) have been derived from ceilometer measurements and synoptic observations. The summit at 1142 m a.s.l. was about 50% of that time in cloud. During daytime, Stratus clouds were the dominant cloud type (65%), whereas Cumulus clouds amounted to 27% and Stratocumulus clouds to 8%. Evidence was found that the increase of the cloud base height observed at Mt. Brocken continues since the end of the 1980s. An example for a clear anticorrelation between the liquid water content (LWC) of the cloud and the height above cloud base is shown. Other results of this detailed case study of a cloud event on October 8, 1998 concerning phase partitioning of water-soluble inorganic compounds, black carbon (BC) and organic carbon (OC) between the liquid and the interstitial phase will also be presented. The observed ion-specific increase in the solute mass per cubic meter of air with decrease of the distance between sampling position and cloud base was caused mainly by entrainment of air from the below-cloud layer. As expected, for sulfate, ammonia and nitrate, high scavenging coefficients (>0.8) were found. OC exhibits a high scavenging fraction of between 0.4 and 0.7; the value for black carbon (0.2–0.4) implies that soot was possibly to some extent internally mixed in the cloud condensation nuclei (CCN). Simultaneous measurements during a cloud event of HNO2 and HNO3 in the gas phase and N(III) and N(V) in the liquid phase were made for the first time.  相似文献   

12.
Summary The kinetic energy budget of the Asian summer monsoon is examined making use of the daily averaged (0000 and 1200 UTC) reanalysis data for forty-year (1960–99) period produced by the National Centres for Environmental Prediction-National Centre for Atmospheric Research (NCEP-NCAR). Especially, the features associated with evolution and established phases of the monsoon are elucidated. Some features are typical during both phases. The lower tropospheric balance is governed by adiabatic generation and frictional dissipation. On the other hand, the upper tropospheric balance is regulated by adiabatic generation and flux divergence. The adiabatic generation of kinetic energy within the boundary layer is mostly due to the meridional component. Contrasting characteristics during both phases are summarized as follows. Subtropical westerly jet controls the balance of kinetic energy during the evolution period. On the other hand, Tropical easterly jet and Somali jet modulate the balance during the established period. The adiabatic generation of kinetic energy is predominantly driven by the zonal component during the evolution phase and by the meridional component during the established phase of monsoon, respectively. This aspect essentially delineates the roles of zonal and meridional regimes during the evolution and established phases of the monsoon.  相似文献   

13.
We compare two molecular Monte Carlo simulation methods, the discrete summation method and the growth/decay method, which calculate the vapor-liquid nucleation free energy barrier by simulating isolated clusters of fixed size without the surrounding vapor. The methods are applied to calculations of nucleation barriers of Lennard–Jones argon at 60 K and 80 K. Both of these methods are computationally efficient, as only isolated clusters without the surrounding vapor are simulated, and the methods can be applied with any given cluster definition. They give equivalent results to other methods where the vapor phase is also included. The discrete summation method is based on the calculation of the difference in free energies between two systems containing an n-cluster and an (n − 1)-cluster plus one non-interacting (free) molecule. We show that the configurational space is not equivalent in the two systems. Hence, there has to be an additional term in the free energy calculation that accounts for several kT in magnitude. In contrast to previous studies we also show that it is not correct to prevent the overlap of the non-interacting molecule and another molecule by a zero or an arbitrarily small repulsive potential, but with a small excluded space around the free molecule.  相似文献   

14.
气溶胶影响混合相对流云降水的数值模拟研究   总被引:2,自引:0,他引:2  
利用一种新的异质冰相核化参数化方案,研究了当气溶胶同时作为云凝结核和冰核时,在不同高度输送对混合相对流云和降水的影响。结果发现,对于本文研究的理想混合相对流云,气溶胶在边界层的输送导致液滴数浓度明显增加,有效半径减小,霰粒的生长受到抑制,引起霰粒质量浓度降低;而气溶胶在对流层中层4~6km输送时,导致冰晶和霰粒数浓度明显增加。由于较多的冰晶引起更加快速的贝吉隆过程,使霰粒的质量浓度增加;气溶胶在对流层中层2~4km高度输送时冰相形成作用相对较弱,并引起霰粒的数浓度略微增加,由于霰粒的有效半径减小导致其质量浓度下降。气溶胶在不同高度的输送都导致液态和固态降水率降低,随着背景气溶胶数浓度的增加,气溶胶在0~2km、2~4km以及4~6km的输送分别导致累积降水量减少28%~64%、4%~44%和3%~46%,并且对降水的抑制效应及所在高度不同引起的降水差异随着背景气溶胶数浓度的增加而减小。  相似文献   

15.
Investigated are the features of the distribution of the generation of available potential energy (APE) due to the influx of long-wave radiation in the atmosphere. The reanalysis (ERA-Interim) data of the European Center for Medium-Range Weather Forecast are used as the reference values of fields for computing APE generation. The obtained results indicate the influence of cloudiness and atmospheric stratification on APE generation due to the inflow of long-wave radiation which values are by 4–5 times smaller than the values of APE generation due to the phase transitions of moisture in the atmosphere.  相似文献   

16.
《Atmospheric Research》2007,83(3-4):489-502
We compare two molecular Monte Carlo simulation methods, the discrete summation method and the growth/decay method, which calculate the vapor-liquid nucleation free energy barrier by simulating isolated clusters of fixed size without the surrounding vapor. The methods are applied to calculations of nucleation barriers of Lennard–Jones argon at 60 K and 80 K. Both of these methods are computationally efficient, as only isolated clusters without the surrounding vapor are simulated, and the methods can be applied with any given cluster definition. They give equivalent results to other methods where the vapor phase is also included. The discrete summation method is based on the calculation of the difference in free energies between two systems containing an n-cluster and an (n  1)-cluster plus one non-interacting (free) molecule. We show that the configurational space is not equivalent in the two systems. Hence, there has to be an additional term in the free energy calculation that accounts for several kT in magnitude. In contrast to previous studies we also show that it is not correct to prevent the overlap of the non-interacting molecule and another molecule by a zero or an arbitrarily small repulsive potential, but with a small excluded space around the free molecule.  相似文献   

17.
南海-西北太平洋地区大气准双周振荡对TC生成的调节作用   总被引:3,自引:1,他引:2  
通过对南海-西北太平洋地区大气10~20 d准双周振荡(QBWO)不同位相的划分(A~D),研究了QBWO对南海-西北太平洋海域热带气旋(TC)生成的调节作用。将TC分为强热带风暴及以下级别(TS)和台风及以上级别(TY),并将QBWO分为干湿位相,发现南海海域生成的TS(TY)在干湿位相的比与西北太平洋海域生成的TS(TY)在干湿位相的比相等,这表明QBWO对TS(TY)生成的调节作用在南海和西太平洋地区可能相同。从A位相到C位相,南海和西北太平洋地区TC的生成频数均逐渐增多,D位相时期,TC生成最少,多数TC发生在QBWO的对流活动湿位相,少数TC发生在干位相。南海-西北太平洋海域TC的生成受到QBWO的明显调制。从位相A到位相C,低频对流和低频风场逐渐向西北方向移动,低频对流强度持续加强,低频风场逐渐由异常西风-东风-西风转为异常东风-西风-东风配置,西北太平洋地区季风槽加强,使得TC生成频数逐渐增多。此外,在QBWO活跃位相,非绝热加热增强和纬向风垂直切变减弱也有利于TC的生成。  相似文献   

18.
A significant fraction of the total number of particles present in the atmosphere is formed by nucleation in the gas phase. Nucleation and the subsequent growth process influence both number concentration of particles and their size distribution besides chemical and optical properties of atmospheric aerosols. Sulphate aerosol nucleation mechanisms promoted by ions have been evaluated here in a tropospheric interactive chemistry-aerosol module for mass and number concentration in a global atmospheric model. The indirect radiative forcing of sulphate particles is assessed in this model; indirect radiative forcing is different for ion-induced (IIN) and ion-mediated (IMN) mechanisms. The indirect radiative forcing in 10-year simulation runs has been calculated as ?1.42?W/m2 (IIN) and ?1.54?W/m2 (IMN). The 5% emission of primary sulphate particles in simulations changes the indirect radiative forcing from ?1.42 to ?1.44?W/m2 for IIN case, and from ?1.54 to ?1.55 W/m2 for the IMN case. More precisely, owing to greater nucleation rates, IMN mechanisms produces greater cooling than the IIN mechanisms in the backdrop that both mechanisms produce almost identical distribution of CDNC in their pre-industrial runs. The inclusion of primary particles in simulations with IIN and IMN mechanisms increases both CDNC and the indirect radiative forcing.  相似文献   

19.
金莲姬  银燕  王盘兴 《大气科学》2007,31(5):793-804
利用中国科学院大气物理研究所发展的三维强风暴模式,对Egrett Microphysics Experiment with Radiation Lidar and Dynamics(EMERALD)试验期间的一次长寿命热带深对流个例进行对流产生、发展、消亡过程以及云砧的数值模拟,并与实测资料[包括C波段双线偏振雷达图像资料、机载云粒子成像仪(CPI)探测的云砧卷云微物理特性以及激光雷达探测的云砧宏观特性资料]进行了细致的对比,然后通过改变模式中最大云滴数浓度进行有关云凝结核数浓度影响云砧卷云冰晶含水量和数浓度的敏感性试验。模式较好地模拟出系统的一些重要宏观特征,如爆发性增长阶段、各高度雷达水平反射率因子的最大值、对流云主体移动方向、云砧底部和顶部高度。对云砧冰相粒子含水量、数浓度以及平均直径等微观特征的模拟结果与实测也比较接近。对于本文个例而言,异质核化为冰晶形成的最主要方式,其次为过冷云滴的均质核化。敏感性试验结果表明:当云凝结核数浓度增加时,爆发性增长阶段的垂直速度减小,使得对流云从中低层向高层的水物质输送量减少,从而使云砧卷云冰晶的数量减少。  相似文献   

20.
利用云分辨天气研究和预报模式(CR-WRF)模拟在清洁大气和污染大气下,气溶胶的云凝结核作用对不同强度南海热带气旋(TC)的强度变化影响,对比分析了动力结构和微物理结构的变化。(1)在污染大气环境中,更多气溶胶能进入到弱TC内部云带区,并充当凝结核作用,TC内部各相态水凝物含量都有明显增多, 释放潜热有利于TC内部的对流发展,弱TC中心海平面气压下降,强度加强。(2)在污染大气环境中,气溶胶主要影响强TC的外部螺旋云带区;外部云带区各相态水凝物增多,释放潜热有利于该处对流的发展;外部云带区对流与云墙区内对流形成竞争,导致入流减弱,云墙区内上升运动减弱,强TC中心海平面气压上升,强度减弱。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号