首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We assess the accuracy of some indirect approaches to invariant point (IVP), or system reference point, determination of satellite laser ranging (SLR) and very long baseline interferometry (VLBI) systems using both observed and simulated survey data sets. Indirect IVP determination involves the observation of targets located on these systems during specific rotational sequences and by application of geometrical models that describe the target motion during these sequences. Of concern is that most SLR and VLBI systems have limited rotational freedom thereby placing constraint on the reliability of parameter estimation, including the IVP position. We assess two current approaches to IVP analysis using survey data observed at the Yarragadee (Australia) SLR and the Medicina (Italy) VLBI sites and also simulated data of a large rotationally constrained (azimuth-elevation) VLBI system. To improve reliability we introduce and assess some new geometric conditions, including inter-axis, inter-circle and inter-target conditions, to existing IVP analysis strategies. The error component of a local tie specifically associated with the indirect determination of SLR and VLBI IVP is less than 0.5 mm. For systems with significant rotational limits we find that the inter-axis and inter-circle conditions are critical to the computation of unbiased IVP coordinates at the sub-millimetre level. When the inter-axis and inter-circle geometric conditions are not imposed, we retrieve biased vertical coordinates of the IVP (in our simulated VLBI system) in the range of 1.2–3.4 mm. Using the new geometric conditions we also find that the axis-offset estimates can be recovered at the sub- millimetre accuracy (0.5 mm).  相似文献   

2.
Evaluation of co-location ties relating the VLBI and GPS reference frames   总被引:1,自引:5,他引:1  
We have compared the VLBI and GPS terrestrial reference frames, realized using 5 years of time-series observations of station positions and polar motion, with surveyed co-location tie vectors for 25 sites. The goal was to assess the overall quality of the ties and to determine whether a subset of co-location sites might be found with VLBI–GPS ties that are self-consistent within a few millimeters. Our procedure was designed to guard against internal distortion of the two space-geodetic networks and takes advantage of the reduction in tie information needed with the time-series combination method by using the very strong contribution due to co-location of the daily pole of rotation. The general quality of the available ties is somewhat discouraging in that most have residuals, compared to the space-geodetic frames, at the level of 1–2 cm. However, by a careful selection process, we have identified a subset of nine local VLBI–GPS ties that are consistent with each other and with space geodesy to better than 4 mm (RMS) in each component. While certainly promising, it is not possible to confidently assess the reliability of this particular subset without new information to verify the absolute accuracy of at least a few of the highest-quality ties. Particular care must be taken to demonstrate that possible systematic errors within the VLBI and GPS systems have been properly accounted for. A minimum of two (preferably three or four) ties must be measured with accuracies of 1 mm or better in each component, including any potential systematic effects. If this can be done, then the VLBI and GPS frames can be globally aligned to less than 1 mm in each Helmert component using our subset of nine ties. In any case, the X and Y rotations are better determined, to about 0.5 mm, due to the contribution of co-located polar motion.  相似文献   

3.
European geodetic very long baseline interferometry (VLBI) sessions (also known as EUROPE sessions) have been carried out on a regular basis for the past 15 years to study relative crustal motions within Europe. These sessions are based on observations of extragalactic radio sources, which serve as distant fiducial marks to establish an accurate and stable celestial reference frame for long-term geodetic measurements. The radio sources, however, are not always point-like on milliarcsecond scales, as VLBI imaging has revealed. In this work, we quantify the magnitude of the expected effect of intrinsic source structure on geodetic bandwidth synthesis delay VLBI measurements for a subset of 14 sources regularly observed during the EUROPE sessions. These sources have been imaged at both X-band (8.4 GHz) and S-band (2.3 GHz) based on dedicated observations acquired with the European VLBI Network (EVN) in November 1996. The results of this calculation indicate that the reference source 0457+024 causes significant structural effects in measurements obtained on European VLBI baselines (about 10 picoseconds on average), whereas most of the other sources produce effects that are only occasionally larger than a few picoseconds. Applying the derived source structure models to the data of the EUROPE5-96 session carried out at the same epoch as the EVN experiment shows no noticeable changes in the estimated VLBI station locations.  相似文献   

4.
We perform extensive simulations in order to assess the accuracy with which the position of a radio transmitter on the surface of the Moon can be determined by geodetic VLBI. We study how the quality and quantity of geodetic VLBI observations influence these position estimates and investigate how observations of such near-field objects affect classical geodetic parameters like VLBI station coordinates and Earth rotation parameters. Our studies are based on today’s global geodetic VLBI schedules as well as on those designed for the next-generation geodetic VLBI system. We use Monte Carlo simulations including realistic stochastic models of troposphere, station clocks, and observational noise. Our results indicate that it is possible to position a radio transmitter on the Moon using today’s geodetic VLBI with a two-dimensional horizontal accuracy of better than one meter. Moreover, we show that the next-generation geodetic VLBI has the potential to improve the two-dimensional accuracy to better than 5 cm. Thus, our results lay the base for novel observing concepts to improve both lunar research and geodetic VLBI.  相似文献   

5.
The combination of tropospheric parameters derived from different space-geodetic techniques has not been of large interest in geodesy so far. However, due to the high correlation between station coordinates and tropospheric parameters, the latter should not be neglected in combinations. This paper deals with the comparison and combination of tropospheric parameters derived from global positioning system (GPS) and very long baseline interferometry (VLBI) observations stemming from a 15-day campaign of continuous VLBI observations in 2002 (CONT02). The observation data of both techniques were processed homogeneously to avoid systematic differences between the solutions. We compared the tropospheric estimates of GPS and VLBI at eight co-location sites and found a very good agreement in the temporal behavior of the tropospheric zenith path delays (ZPD), reflected by correlation factors up to 0.98. Following this, a combination of the tropospheric parameters was performed. We demonstrate that the combination of tropospheric parameters leads to a stabilization of combined station networks. This becomes visible in the improvement of the repeatabilities of the station height components. Furthermore, the potential use of independent data from water vapor radiometers (WVRs) to validate space-technique-derived tropospheric parameters was investigated. Correlation coefficients of 0.95 or better were estimated between the tropospheric parameters of WVR and GPS or VLBI. Additionally, the utility of the tropospheric parameters for validation of local tie vectors was investigated. Both tropospheric zenith delays and tropospheric gradients were found to be very suitable to validate the height component and the horizontal components of the local tie, respectively.  相似文献   

6.
O. Titov 《Journal of Geodesy》2007,81(6-8):455-468
This paper evaluates the effect of the accuracy of reference radio sources on the daily estimates of station positions, nutation angle offsets, and the estimated site coordinates determined by very long baseline interferometry (VLBI), which are used for the realization of the international terrestrial reference frame (ITRF). Five global VLBI solutions, based on VLBI data collected between 1979 and 2006, are compared. The reference solution comprises all observed radio sources, which are treated as global parameters. Four other solutions, comprising different sub-sets of radio sources, were computed. The daily station positions for all VLBI sites and the corrections to the nutation offset angles were estimated for these five solutions. The solution statistics are mainly affected by the positional instabilities of reference radio sources, whereas the instabilities of geodetic and astrometric time-series are caused by an insufficient number of observed reference radio sources. A mean offset of the three positional components (Up, North, East) between any two solutions was calculated for each VLBI site. From a comparison of the geodetic results, no significant discrepancies between the respective geodetic solutions for all VLBI sites in the Northern Hemisphere were found. In contrast, the Southern Hemisphere sites were more sensitive to the selected set of reference radio sources. The largest estimated mean offset of the vertical component between two solutions for the Australian VLBI site at Hobart was 4 mm. In the worst case (if a weak VLBI network observed a limited number of reference radio sources) the daily offsets of the estimated height component at Hobart exceeded 100 mm. The exclusion of the extended radio sources from the list of reference sources improved the solution statistics and made the geodetic and astrometric time-series more consistent. The problem with the large Hobart height component offset is magnified by a comparatively small number of observations due to the low slewing rate of the VLBI dish (1°/ s). Unless a minimum of 200 scans are performed per 24-h VLBI experiment, the daily vertical positions at Hobart do not achieve 10 mm accuracy. Improving the slew rate at Hobart and/or having an increased number of new sites in the Southern Hemisphere is essential for further improvement of geodetic VLBI results for Southern Hemisphere sites.  相似文献   

7.
精确确定SLR (Satellite Laser Rainging)和VLBI (Very Long Baseline Interferometry) 天线的旋转中心是并址站归心基线测量的关键问题。本文利用两类约束条件建立旋转中心与观测标志之间的直接关系,第1类约束是SLR或VLBI上的观测标志绕其旋转轴旋转形成1个由平面和球面相割得到的平面圆,第2类约束是SLR或VLBI的旋转中心与其垂直轴旋转圆心在同一铅垂线上,与其水平轴旋转圆心在同一水平面上。根据这两类约束条件建立相应的条件方程,利用标志点观测值直接解算旋转中心的坐标及其协方差阵。利用我国2个GNSS (Global Navigation Satellite System) 与SLR或VLBI并址站的实测数据,求解了基于本文直接解法的空间归心基线。结果表明,与已有分步解的差值优于1mm。  相似文献   

8.
VLBI observations of GNSS-satellites: from scheduling to analysis   总被引:1,自引:1,他引:0  
The possibility of observing satellites with the very long baseline interferometry (VLBI) technique has been discussed for several years in the geodetic community, with observations of either existing satellites of the global navigation satellite systems or of satellites dedicated to realise a space tie. Such observations were carried out using the Australian telescopes in Hobart and Ceduna which, for the first time, integrated all the necessary steps: planning the observations (automated scheduling), correlation of the data and the generation of a series of time delay observables suitable for a subsequent geodetic analysis. We report on the development of new and the adaptation of existing routines for observing and data processing, focusing on technology development. The aim was to use methods that are routinely used in geodetic VLBI. A series of test experiments of up to six hours duration was performed, allowing to improve the observations from session to session and revealing new problems still to be solved. The newly developed procedures and programs now enable more observations. Further development assumed, this bears the prospect of being directly applied to the observation of dedicated space-tie satellites.  相似文献   

9.
On the accuracy assessment of celestial reference frame realizations   总被引:1,自引:1,他引:0  
The scatter of the celestial pole offset (CPO) time-series obtained from very long baseline interferometry (VLBI) observations is used as a measure of the accuracy of celestial reference frame (CRF) realizations. Several scatter indices (SI), including some proposed for the first time, are investigated. The first SI is based on residual analysis of CPO series with respect to a free core nutation (FCN) model. The second group of SIs includes Allan deviation and its extensions, which allow the treatment of unequally weighted and multidimensional observations. Application of these criteria to several radio source catalogues (RSCs) showed their ability to perform a preliminary assessment of the quality of each RSC. The 2D Allan deviation estimate seems to be the most sensitive measure. The proposed extensions of Allan deviation, weighted and multidimensional, can also be used for the statistical analysis of other time-series.  相似文献   

10.
New global positioning system reference station in Brazil   总被引:1,自引:0,他引:1  
Co-located very long baseline interferometry (VLBI) and global positioning system (GPS) reference stations were installed near Fortaleza, Brazil, in 1993. Both have been important in the realization and maintenance of the International Terrestrial Reference Frame. A new-generation GPS system was installed in 2005 to replace the original station. Experience gained in the prior 12 years was used to improve the design of the GPS antenna mount. Preliminary indications are greatly improved data quality from the new station. Simultaneous observations from the nearly half-year of overlapping operation have been used to determine the local tie between the new and old GPS reference points to about 1 mm accuracy. This can be used to update the 1993 survey tie between the original GPS and the VLBI points, although there are questions about the accuracy of that measurement based on a comparison with space geodetic data. A test of removing the conical radome over the old GPS antenna indicates that it has biased the station height by about 16 mm downward, which probably accounts for most of the previous survey discrepancy.  相似文献   

11.
高云鹏  任天鹏  杜兰  陈思睿  张中凯 《测绘学报》2019,48(10):1216-1224
“嫦娥5号”探测器的组成包括轨道器、返回器、着陆器和上升器。在环月阶段,两个组合体(轨道器/返回器组合体和着陆器/上升器组合体)之间的分离实时监测,是飞行控制的关键检测段。本文提出利用甚长基线干涉测量(VLBI)测轨技术实现绕月探测器器间分离实时监测。特别是在器间分离前后,本文方法能够利用探测器器间两路下行信号进行同波束干涉测量(SBI),差分时延测量能够提高器间相对距离的解算精度。单基线试验分析表明,本文方法基于实测数据的“嫦娥3号”着陆器两天线的相对距离解算精度优于0.3 m,平均相对距离误差约为0.15 m,基于“嫦娥5号”仿真数据的双阈值判定对器间分离监测的响应时延优于30 s。  相似文献   

12.
Tie vectors (TVs) between co-located space geodetic instruments are essential for combining terrestrial reference frames (TRFs) realised using different techniques. They provide relative positioning between instrumental reference points (RPs) which are part of a global geodetic network such as the international terrestrial reference frame (ITRF). This paper gathers the set of very long baseline interferometry (VLBI)–global positioning system (GPS) local ties performed at the observatory of Medicina (Northern Italy) during the years 2001–2006 and discusses some important aspects related to the usage of co-location ties in the combinations of TRFs. Two measurement approaches of local survey are considered here: a GPS-based approach and a classical approach based on terrestrial observations (i.e. angles, distances and height differences). The behaviour of terrestrial local ties, which routinely join combinations of space geodetic solutions, is compared to that of GPS-based local ties. In particular, we have performed and analysed different combinations of satellite laser ranging (SLR), VLBI and GPS long term solutions in order to (i) evaluate the local effects of the insertion of the series of TVs computed at Medicina, (ii) investigate the consistency of GPS-based TVs with respect to space geodetic solutions, (iii) discuss the effects of an imprecise alignment of TVs from a local to a global reference frame. Results of ITRF-like combinations show that terrestrial TVs originate the smallest residuals in all the three components. In most cases, GPS-based TVs fit space geodetic solutions very well, especially in the horizontal components (N, E). On the contrary, the estimation of the VLBI RP Up component through GPS technique appears to be awkward, since the corresponding post fit residuals are considerably larger. Besides, combination tests including multi-temporal TVs display local effects of residual redistribution, when compared to those solutions where Medicina TVs are added one at a time. Finally, the combination of TRFs turns out to be sensitive to the orientation of the local tie into the global frame.  相似文献   

13.
The source position time-series for many of the frequently observed radio sources in the NASA geodetic very long baseline interferometry (VLBI) program show systematic linear and non-linear variations of as much as 0.5 mas (milli-arc-seconds) to 1.0 mas, due mainly to source structure changes. In standard terrestrial reference frame (TRF) geodetic solutions, it is a common practice to only estimate a global source position for each source over the entire history of VLBI observing sessions. If apparent source position variations are not modeled, they produce corresponding systematic variations in estimated Earth orientation parameters (EOPs) at the level of 0.02–0.04 mas in nutation and 0.01–0.02 mas in polar motion. We examine the stability of position time-series of the 107 radio sources in the current NASA geodetic source catalog since these sources have relatively dense observing histories from which it is possible to detect systematic variations. We consider different strategies for handling source instabilities where we (1) estimate the positions of unstable sources for each session they are observed, or (2) estimate spline parameters or rate parameters for sources chosen to fit the specific variation seen in the position-time series. We found that some strategies improve VLBI EOP accuracy by reducing the biases and weighted root mean square differences between measurements from independent VLBI networks operating simultaneously. We discuss the problem of identifying frequently observed unstable sources and how to identify new sources to replace these unstable sources in the NASA VLBI geodetic source catalog.  相似文献   

14.
Combinations of station coordinates and velocities from independent space-geodetic techniques have long been the standard method to realize robust global terrestrial reference frames (TRFs). In principle, the particular strengths of one observing method can compensate for weaknesses in others if the combination is properly constructed, suitable weights are found, and accurate co-location ties are available. More recently, the methodology has been extended to combine time-series of results at the normal equation level. This allows Earth orientation parameters (EOPs) to be included and aligned in a fully consistent way with the TRF. While the utility of such multi-technique combinations is generally recognized for the reference frame, the benefits for the EOPs are yet to be quantitatively assessed. In this contribution, which is a sequel to a recent paper on co-location ties (Ray and Altamimi in J Geod 79(4–5): 189–195, 2005), we have studied test combinations of very long baseline interferometry (VLBI) and Global Positioning System (GPS) time-series solutions to evaluate the effects on combined EOP measurements compared with geophysical excitations. One expects any effect to be small, considering that GPS dominates the polar motion estimates due to its relatively dense and uniform global network coverage, high precision, continuous daily sampling, and homogeneity, while VLBI alone observes UT1-UTC. Presently, although clearly desirable, we see no practical method to rigorously include the GPS estimates of length-of-day variations due to significant time-varying biases. Nevertheless, our results, which are the first of this type, indicate that more accurate polar motion from GPS contributes to improved UT1-UTC results from VLBI. The situation with combined polar motion is more complex. The VLBI data contribute directly only very slightly, if at all, with an impact that is probably affected by the weakness of the current VLBI networks (small size and sparseness) and the quality of local ties relating the VLBI and GPS frames. Instead, the VLBI polar motion information is used primarily in rotationally aligning the VLBI and GPS frames, thereby reducing the dependence on co-location tie information. Further research is needed to determine an optimal VLBI-GPS combination strategy that yields the highest quality EOP estimates. Improved local ties (including internal systematic effects within the techniques) will be critically important in such an effort.  相似文献   

15.
推导了基于相对论时空理论的"嫦娥一号"地月转移轨道段差分VLBI(ΔVLBI)的数学模型,在此基础上利用"嫦娥一号"实测的VLBI时延观测量和模拟的河外射电源时延观测量组成了ΔVLBI时延观测量,在参数最优先验精度下解算了不同弧段长度的"嫦娥一号"轨道及地球定向参数(EOP)等未知参数,并根据各参数的解算精度及外符合程度确定了最优观测弧段长度,并分析了该条件下的参数解算精度。  相似文献   

16.
影响GEO轨道确定精度的原因主要有两方面:一是高轨卫星的几何跟踪条件受到局部测轨网的限制;二是卫星相对于地面的动力学约束信息较弱。利用一个针对GEO卫星的简化动力法定轨的协方差分析模型,研究了联合测距跟踪网和甚长基线干涉测量(VLBI)对定轨精度的改善情况。指出测距系统的校正误差是常规测距跟踪网定轨精度的主要误差源;当附加一条东西向VLBI基线时,仅利用不定期的少量VLBI高精度数据就能够显著改善测距偏差对轨道的影响,从而保证了卫星的整体位置解算精度。  相似文献   

17.
The geodetic VLBI community began using VLBA antennas in 1989 for geodesy and astrometry. We examine how usage of the VLBA has improved the celestial reference frame, the terrestrial reference frame, and Earth orientation parameters. Without the VLBA, ICRF2 would have had only 1011 sources instead of 3414. ICRF3 will contain at least 4121 sources, with approximately 70 % or more coming exclusively from VLBA astrometry and geodesy sessions. The terrestrial reference frame is also more stable and precise due to VLBA geodesy sessions. Approximately two dozen geodesy stations that have participated in VLBA sessions show average position formal errors that are \(\sim \)13–14 % better in the horizontal components and \(\sim \)5 % better in the vertical component than would be expected solely from the increased number of observations. Also the Earth orientation parameters obtained from the RDV sessions represent the most accurate EOP series of any of the long-term VLBI session types.  相似文献   

18.
The goal of the OSIRIS-REx mission is to return a sample of asteroid material from near-Earth asteroid (101955) Bennu. The role of the navigation and flight dynamics team is critical for the spacecraft to execute a precisely planned sampling maneuver over a specifically selected landing site. In particular, the orientation of Bennu needs to be recovered with good accuracy during orbital operations to contribute as small an error as possible to the landing error budget. Although Bennu is well characterized from Earth-based radar observations, its orientation dynamics are not sufficiently known to exclude the presence of a small wobble. To better understand this contingency and evaluate how well the orientation can be recovered in the presence of a large 1\(^{\circ }\) wobble, we conduct a comprehensive simulation with the NASA GSFC GEODYN orbit determination and geodetic parameter estimation software. We describe the dynamic orientation modeling implemented in GEODYN in support of OSIRIS-REx operations and show how both altimetry and imagery data can be used as either undifferenced (landmark, direct altimetry) or differenced (image crossover, altimetry crossover) measurements. We find that these two different types of data contribute differently to the recovery of instrument pointing or planetary orientation. When upweighted, the absolute measurements help reduce the geolocation errors, despite poorer astrometric (inertial) performance. We find that with no wobble present, all the geolocation requirements are met. While the presence of a large wobble is detrimental, the recovery is still reliable thanks to the combined use of altimetry and imagery data.  相似文献   

19.
Continuous (CONT) VLBI campaigns have been carried out about every 3 years since 2002. The basic idea of these campaigns is to acquire state-of-the-art VLBI data over a continuous time period of about 2 weeks to demonstrate the highest accuracy of which the current VLBI system is capable. In addition, these campaigns support scientific studies such as investigations of high-resolution Earth rotation, reference frame stability, and daily to sub-daily site motions. The size of the CONT networks and the observing data rate have increased steadily since 1994. Performance of these networks based on reference frame scale precision and polar motion/LOD comparison with global navigation satellite system (GNSS) earth orientation parameters (EOP) has been substantially better than the weekly operational R1 and R4 series. The precisions of CONT EOP and scale have improved by more than a factor of two since 2002. Polar motion precision based on the WRMS difference between VLBI and GNSS for the most recent CONT campaigns is at the 30 \(\upmu \)as level, which is comparable to that of GNSS. The CONT campaigns are a natural precursor to the planned future VLBI observing networks, which are expected to observe continuously. We compare the performance of the most recent CONT campaigns in 2011 and 2014 with the expected performance of the future VLBI global observing system network using simulations. These simulations indicate that the expected future precision of scale and EOP will be at least 3 times better than the current CONT precision.  相似文献   

20.
Results of the VLBI experiments conducted with Syowa Station, Antarctica   总被引:1,自引:0,他引:1  
The first successful geodetic Very Long Baseline Interferometry (VLBI) observations to Antarctica were made on baselines from Syowa Station (Antarctica) to Tidbinbilla (Australia) and to Kashima (Japan) in January 1990. Regular geodetic experiments started in 1998 with the installation of a permanent VLBI terminal at Syowa Station. These observations are conducted at the standard geodetic VLBI frequencies of 2.3 and 8.4 GHz, S- and X-Bands. In the first year, the 11-m multipurpose antenna at Syowa Station observed together with the 26-m radio telescope of the University of Tasmania in Australia and the 26-m radio telescope of the Hartebeesthoek Radio Astronomy Observatory in South Africa. From 1999, the experiments were expanded to also include the O’Higgins Station in Antarctica, Fortaleza in Brazil and Kokee on Hawaii. From 1999 until the end of 2003, 25 observing sessions have been reduced and analyzed using the CALC/SOLVE geodetic VLBI data reduction package. The results show that the horizontal baseline of Syowa-Hobart is increasing at the rate of 57.0±1.9 mm/year. The baseline Syowa-Hartebeesthoek is also increasing, but at the lower rate of 9.8±1.9 mm/year. The VLBI result of 2.0±3.1 mm/year and the GPS result of −1.9±0.7 mm/year for the Syowa-O’Higgins horizontal baseline support the hypothesis of one rigid Antarctic plate without intra-plate deformation, which is consistent with the NNR-NUVEL-1A global plate motion model. The location of the Euler pole of the Antarctic plate by VLBI is estimated as 59.7°S and 62.6°E with a rotation rate of 0.190 deg/Myr, while that by GPS in our study is estimated as 60.6°S and 42.2°E with a rotation rate of 0.221 deg/Myr. These pole positions are slightly different to that implied by the NNR-NUVEL-1A model of 63.0°S and 64.2°E with a rotation rate of 0.238 deg/Myr. VLBI observations over a longer time span may resolve small discrepancy of current plate motion from the NNR-NUVEL-1A model. The consistency of the VLBI coordinates with the GPS coordinates at Syowa Station, after correction for the local tie vector components between the two reference markers, is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号