首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 155 毫秒
1.
利用常规气象资料、NCEP FNL 1°×1°再分析、风廓线雷达、云顶亮温(black body temperature, TBB)及逐时自动气象站降雨量资料,对2019 年8 月10—13 日由台风“利奇马”引起山东极端暴雨的多尺度特征进行分析。结果表明:(1)此次台风特大暴雨主要为中低纬系统相互作用及台风倒槽本体直接影响产生,其与冷空气密切相关。冷暖空气交汇有利于山东大部地区稳定性降水长时间持续发生。冷空气从低层侵入暖湿气流底部,形成冷垫,使得暖湿气流在冷垫上滑行,加大降水强度。(2)低空急流指数的变化提前1 h 预示了降水的出现及未来小时雨量的增减,其峰值出现预示着未来3 h 的强降雨时段,即对强降雨时段的出现和雨强大小有一定的预示性,低空急流向低空的快速扩展对应着短时强降水的开始。可以用于强降水的短时临近预报。(3)Q 矢量散度负值的强弱对于未来6 h 的雨强大小有较好的指示意义。(4)淄博西河镇出现全省最大降雨量与其朝向东北的喇叭口地形和对流层低层东北风倒灌有关。(5)TBB 场能较直观地反映强降水过程中降水的分布和强度。风廓线雷达超低空风场的变化对雨强大小和出现最大雨强的时段有着明显的指示意义。  相似文献   

2.
利用常规气象观测、NCEP/NCAR再分析、风廓线雷达及逐时自动气象站降雨量等资料,对2019年8月10—13日台风“利奇马”造成山东省有气象记录以来最大一次特大暴雨进行了成因分析。结果表明:(1) 此次台风特大暴雨主要为中低纬系统相互作用及台风倒槽直接影响产生,其与冷空气密切相关,冷暖空气交汇的位置正对应强降水落区;(2) 特大暴雨发生在θse密集带上冷暖空气交汇的对流不稳定强烈发展的锋生区域。锋生大值中心与特大暴雨中心对应较好,锋生强度对未来6小时降雨预报有指示作用;(3) 切变变形锋生为总锋生的主要正贡献,强降水区位于θse密集带上风向曲率最大的地方,在台风预报业务中要注意等θse线密集带上是否出现“对头风”的明显风向切变;(4) 强锋生次级环流与台风倒槽辐合及冷暖空气交汇等共同作用导致动力抬升快速增强,促使对流不稳定能量大量释放形成强降水。锋生次级环流上升支最强的区域,正对应降水最强的区域,也是冷暖空气交汇区域;(5) 风廓线雷达超低空风场的变化对小时雨强大小有明显的指示意义。近地面层风向发生突变,由东南风转北风的时段与潍坊出现山东全省最大小时雨强的时段一致。低空急流向低空的快速扩展对应着短时强降水的开始。近地面层暖平流的强弱变化影响着此次强降雨的雨强大小。  相似文献   

3.
利用茂名博贺观测站提供的高时空分辨率的LQ-7风廓线雷达资料对茂名2008年6月5—6日暴雨过程的强降雨时段进行分析,结果表明:超低空急流风速中心的出现和较强降水的出现在时间上相吻合;低空急流的脉动及向地面扩展程度与中小尺度强降水之间有着密切关系,低空急流指数对强降水的出现和雨强的大小有一定的预示作用,对短时强降水的临近预报也有着指示作用。  相似文献   

4.
利用常规气象观测资料、自动站逐时降雨量资料以及NCEP逐6小时再分析资料(1°×1°),对2020年8月31日大连地区一次副热带高压(下称副高)边缘暖锋暴雨过程的环境场特征和动力热力机制进行了分析。结果表明:暴雨发生在远距离台风活动的有利背景下,由副高、500 hPa高空槽和850 hPa暖式切变线共同影响所致。大连地区处于副高边缘,台风造成副高西伸北抬,副高和台风外围的偏南暖湿气流共同为暴雨区输送充足的水汽条件,为此次暴雨的产生提供了有利的大尺度环流背景场。暴雨发生前大气对流不稳定,深厚的湿层和暖云层以及较低的云底高度,是产生较高降雨效率的有利条件。850 hPa比湿大于14 g﹒kg-1,超过区域暴雨阈值;近地层出现强水汽通量辐合中心并配合上升运动区,对强降水的预报具有明显指示意义。高空急流提供强辐散“抽吸”作用,对流层中下层西南风的不断加强和向下传播出现低空和超低空急流,高、低空急流耦合形成较强的上升运动,触发不稳定能量释放,产生强降水,超低空急流的出现对此次暴雨的产生、发展和维持发挥关键的作用。暴雨区上空存在广义位温等值线密集带和陡立区,由于凝结潜热释放而引起广义位温高值区呈漏斗状向下伸展,中低层强暖平流促使湿斜压性显著增强,有利于暖锋锋生,从而导致整层饱和大气的抬升,最终产生强降雨天气。  相似文献   

5.
郑怡  杨晓霞  孙晶 《山东气象》2019,39(1):106-115
利用气象卫星、多普勒天气雷达、区域自动气象观测站及常规气象观测资料,结合NCEP/NCAR逐日6 h再分析资料(0.25°×0.25°),对2018年18号台风“温比亚”及其残骸长时间影响山东引发特大暴雨的成因进行分析发现:1)此次极端降水可分为三个阶段,分别受台风外围螺旋云系、倒槽和变性后温带气旋冷锋影响,其中弱冷空气与台风倒槽相互作用对强降水的产生和维持起到了重要作用。2)“温比亚”缓慢北上过程中,强降水落区从台风东侧逆时针转至其北部倒槽附近,并逐渐远离台风中心,台风强度逐渐减弱。3)冷空气在对流层中层与台风倒槽相互作用,中层冷暖平流增强形成锋区,斜压不稳定能量增强,暖湿空气在锋区附近上升,并与低层倒槽辐合上升运动相配合,引发了倒槽附近特大暴雨的发生。4)此次过程中,低空急流稳定维持,源源不断地将水汽自东海输送至台风倒槽附近,水汽输送集中在800 hPa以下,850 hPa水汽通量辐合强度大于8×10-6 g·cm-2·hPa-1·s-1区域与暴雨落区的形态和位置对应良好。5)对流层中层的弱冷空气和低层的强暖湿气流促进了对流不稳定层结的发展和维持,低层强风速带在鲁中山区迎风坡强迫抬升不断触发中尺度对流系统,在中高层气流引导和地形作用下产生“列车效应”,也是此次过程中局地特大暴雨产生的重要因素。  相似文献   

6.
一次大暴雨过程中低空急流演变与强降水的关系   总被引:18,自引:1,他引:18       下载免费PDF全文
金巍  曲岩  姚秀萍  黄素文 《气象》2007,33(12):31-38
利用营口新一代天气雷达提供的每6分钟一次的风廓线资料,详细分析了2006年6月29日辽宁省西部大暴雨过程中强降雨时段的低空风场结构。得出:此次强降水天气的发生与低空急流的迅速加强和向下扩展相对应,短时大暴雨发生前低空西南急流提前2小时左右开始有动量快速下传,当20m.s-1的急流中心下传到≤1km超低空,1.2~2.1km低空出现24m.s-1东南急流,有利于产生短时大暴雨;说明低空脉动及向地面扩展程度与短时强降水之间关系密切。低空急流到达测站上空不一定立即产生强降水,有时会滞后1~2个小时,强降水或强烈天气的发生都存在着一定的动量下传,引起低空扰动加强,同时低空急流的强度和伸展高度,以及动量下传的能量大小,都直接制约着强降水的强弱。低空急流指数增大的程度和降水量的强度呈正比关系,低空急流指数不仅可以说明低空急流的脉动以及向地面扩展程度与中小尺度的强降水存在密切的关系,同时对强降水的出现以及雨强的大小有一定的预示作用。  相似文献   

7.
利用NCEP/NCAR 1°×1°的6 h再分析资料、常规气象观测资料和潍坊风廓线雷达资料综合分析了台风“麦德姆”影响山东时的环流背景、冷空气活动和风廓线特征,结果表明:此次台风暴雨过程中,西风槽冷空气渗透到台风倒槽云系,通过在低层形成冷垫强迫暖空气抬升,形成斜压锋区后触发不稳定能量及潜热能释放,对暴雨的产生加强起了巨大作用;风廓线雷达的垂直风场分布对此次降水的强弱特别是短时强降水的预报有明显的指示作用,低层风速迅速加大的时段与潍坊短时强降水出现的时段是一致的。  相似文献   

8.
李博  吕桂恒  高飞  刘飞  郭文明 《气象科技》2022,50(5):702-712
利用常规地面、高空观测和ERA5再分析数据,对鲁西南2020年7月22日(简称“7〖DK〗·22”过程)和8月6—7日(简称“8〖DK〗·6”过程)两次区域性大暴雨及伴随的短时强降水形成机制诊断分析。结果表明:“7〖DK〗·22”过程是一次地面气旋降水过程,大暴雨主要出现在气旋中心至移向右前部的倒槽内,短时强降水是对流不稳定触发后,惯性不稳定的增强造成。“8〖DK〗·6”过程是一次副高边缘暖区降水过程,大暴雨主要出现在低空急流的前端、地面辐合线附近,短时强降水由对流不稳定的触发和释放造成。“7〖DK〗·22”过程暖湿急流较强,水汽通量散度和动力条件显著强于“8〖DK〗·6”过程,超低空强辐合区、水汽通量散度辐合大值区、水平动能大值区边缘的强锋生区以及湿位涡MPV大值区边缘的|MPV2|小值区对短时强降水的出现区域指示较好。两次过程分析均表明垂直上升运动和深厚湿区的配合对短时强降水的出现时间指示较好。  相似文献   

9.
利用多源气象资料,对台风“温比亚”引发豫东降水的极端性特征及极端降水产生机制进行分析,提炼预报着眼点。此次降水是河南继驻马店“75·8”暴雨之后的又一次罕见特大暴雨,表现为过程雨量极大、破极值站数最多、降水强度极大、强降水时段集中的特征。结果表明:(1)高低空系统耦合为特大暴雨的发生发展创造了良好的环境条件,极端降水的产生主要受台风北侧螺旋云系影响,并有持续不断的强回波单体在同一个地点移动,冷空气与台风环流相互作用是重要的预报着眼点,重点分析台风和副热带高压的相对运动及西风带对台风的引导作用。(2)河南东部水汽输送条件一直处于较好的状态,这是降水维持较长时间的重要因素,急流中心区域和强度的变化对降水量多少有指示意义。(3)豫东地区对流不稳定和斜压不稳定均比较明显,低层MPV1<0、MPV2>0的区域与强降水落区有较好的对应关系。(4)强辐合中心位于台风中心的北侧,降水强度与辐合强度有较好的对应关系,螺旋度大值区分布对强降水的分布区域有较好的指示意义。  相似文献   

10.
利用常规气象观测资料、NCEP FNL分析资料(水平分辨率为1°×1°,时间分辨率为6 h),对2013年7月21-22日和2014年7月8-9日两次陕北暴雨过程成因进行热力动力诊断,结果表明:两次陕北暴雨与高低空急流关系密切,暴雨带位于低空急流左侧的水汽辐合区,“0721”过程低空急流更强,在高低空急流耦合的强上升运动区(延安)出现大暴雨。降水前期,两次过程大气均存在对流不稳定,切变线触发对流,产生强降水,而其释放的凝结潜热加热形成中低层大气的热力不连续面,湿斜压性及锋生增强,造成整层饱和大气的抬升,维持强降水。“0721”过程前期对流降水的潜热释放更大,由此反馈的低空急流及锋生更强,出现大暴雨天气。广义对流涡度矢量垂直分量很好地描述了两次暴雨过程高低空急流耦合作用以及凝结潜热释放增强的锋生作用,其变化趋势能够反映降水的发展和减弱过程。暴雨出现在湿热力平流参数垂直积分大值中心及南侧的高梯度区,大值中心出现后约6 h会产生强降水,这对于强降水落区的预报有一定指示意义。  相似文献   

11.
贺兰山东麓极端暴雨的中尺度特征   总被引:1,自引:0,他引:1  
利用近10年宁夏逐时自动气象站降水、银川CD雷达、FY-2、探空和ECMWF再分析0.125°×0.125°等高分辨率多源气象资料,在中尺度系统分型基础上,对比分析贺兰山东麓6次极端暴雨的中尺度特征。结果表明:(1)低空偏(东)南急流夜间增强并配合贺兰山地形,在东坡山前触发或增强了暴雨中小尺度系统,造成地形处降水增幅,极端暴雨都是伴有短时强降水的对流性暴雨,主要集中在东坡山前,中心在山洪沟口,夜雨特征显著。(2)环境场都满足对流性暴雨的3个基本条件:700 hPa(东)南急流将暖湿水汽输向暴雨区,低层高温高湿促进了大气不稳定与动力、热力、地形抬升触发机制;深对流过程850 hPa无明显急流,水汽主要来自孟加拉湾,水汽输送受限,但大气稳定度更低,更有利于对流性暴雨发生,混合对流过程850 hPa与700 hPa急流路径重合,水汽来自孟加拉湾、南海、黄海和渤海,水汽输送更充沛,更有利于持续性暴雨产生。(3)极端暴雨主要有暖区对流降水、锋面对流降水、锋区层状云降水3种性质;暖区对流主要在山区,地形抬升是触发机制,锋面对流的触发是低层暖湿气流沿着冷垫抬(爬)升,平原和山区皆有;对流系统的移动与低层风场一致,山区和平原分别沿山体和低空急流轴传播,通常移动与传播方向平行,山区低层为偏东风时,移动与传播近似垂直,列车效应明显。(4)线型对流系统过程冷空气弱,以暖区或(和)锋面对流性降水为主,对流系统在山前沿山体传播形成组织化程度高的带状线型回波,移动与传播有平行有垂直,受地形抬升作用,对流系统在山前稳定少动、发展强盛,降水历时短、范围小、雨强大、有间歇性,3~4 h的累计雨量占过程总量的85%左右,区域平均雨量远小于暴雨量级,地形性强对流暴雨特征凸显。(5)非线型对流系统过程冷空气强,以锋面对流性降水和锋区层状云降水为主,对流系统在山前和平原沿山体和急流轴传播和移动形成非线型回波,平原地区传播与移动平行,山区两者垂直,对流系统组织化程度不高、移速快、强度弱,降水历时长、范围大、雨强小,连续降水累计雨量大,区域平均雨量接近或达到暴雨量级,混合性降水特征明显。(6)降水强度R与CAPE增幅、回波强度Z、强回波持续时间、回波顶高、液态水含量呈正相关,与TBB呈负相关,相关性在深对流过程更清晰;Z≥40 dBZ时,Z-R满足关系式:R=3.67×10-8Z5.222+4.835。  相似文献   

12.
利用FNL再分析资料,结合加密自动站、多普勒雷达、卫星资料和数值模式预报产品,对2018年9月16—17日长三角地区一次典型的秋季台风倒槽大暴雨进行了分析。结果表明:大暴雨是在远距离台风倒槽、低空急流和高空槽共同影响下,由冷暖空气持续交汇激发的4个中尺度对流云团活动造成。第一阶段长江口区强暴雨发生在3号云团快速增强期间,暴雨出现在云团北侧TBB梯度大值区中,雨强随云顶温度降低快速增强;4号云团缓慢东移造成第二阶段暴雨,降水累积效应使长江口区降水量进一步加大。东北风(偏北风)与东南风(偏东风)形成的地面中尺度辐合线是暴雨的关键触发机制,气旋性辐合中心的形成对雨团增幅具有重要作用。多普勒雷达径向速度场上中气旋的形成提前于强暴雨增幅约30 min,具有良好的先兆性和预报预警意义。(超)低空急流持续的水汽和能量输送、高低空急流耦合及冷空气侵入形成的倾斜上升支和垂直环流圈、上干冷下暖湿的对流不稳定层结有利于中尺度暴雨云团的形成和维持。表征冷暖空气结合的地面辐合线位置是暴雨落区预报的关键,对于秋季台风倒槽暴雨,要特别重视冷空气对暴雨的触发和增幅作用,基于实况资料监测及时订正模式预报结论。  相似文献   

13.
2019年超强台风“利奇马”引发浙江特大暴雨过程分析   总被引:1,自引:0,他引:1  
利用NCEP FNL 0.25°×0.25°的再分析资料和浙江省中尺度气象站降水资料,从产生强降水的条件来对“利奇马”特大暴雨过程进行诊断分析。结果表明:(1)强降水主要集中在近台风中心的西南部分及其稍远的北部,其中近台风中心为眼壁降水,北部为螺旋云带降水;(2)850~925 hPa水汽通量辐合中心与暴雨落区一致,水汽辐合强度差异是造成台风眼壁强降水落区差异的关键;(3)台风强度大时近中心上升运动强烈,正垂直螺旋度中心值的减小和中心下降对应强降水的发生,低层正螺旋度和高层负螺旋度中心的重叠区对对流性降水落区有一定的指示;(4)本次过程地形增益最明显地区在台州北部,在水汽条件处于劣势情况下出现降水副中心。  相似文献   

14.
任丽  关铭  李有缘  王深义 《气象科技》2019,47(6):959-968
本文使用常规观测资料、卫星云图、自动气象站降水量以及0.25°×0.25°的NCEP/NCAR再分析资料,对出现在东北地区北部受不同系统影响的连续2d暴雨过程的热力和动力场结构特征展开研究。结果表明:24日为暖锋锋生暴雨,暴雨范围大;25日为台风暴雨,暴雨出现在台风移动路径上,为狭长带状。暴雨是由MCS活动造成的,每次短时强降水均与TBB低值中心相对应,台风倒槽内的MCS强度比暖锋云系内的MCS弱,但是降水强度却更大。台风安比携带大量暖湿空气,其东侧的低空急流向北输送热量和水汽,水汽辐合集中在边界层内,台风暴雨的水汽辐合强度比暖锋暴雨更强烈,所造成的雨强更大。暖锋暴雨期间,小兴安岭迎风坡地形的辐合抬升作用明显;高层强辐散及地形辐合抬升作用对暴雨有较大贡献。台风暴雨期间,低空辐合,特别是水汽辐合作用对暴雨有较大贡献;辐合区位于台风倒槽附近,倒槽表现为冷锋性质。  相似文献   

15.
基于TRMM卫星降雨资料、MERRA-2卫星位势高度、风速、垂直速度等资料,对1909号台风"利奇马"的移动特征及其引发浙江、江苏、山东等地暴雨进行诊断分析.分析结果发现,台风"利奇马"是北上型台风,移动路径主要受副高与1910号台风"罗莎"等系统影响.在北上的过程中,由于台风倒槽与西风槽携带的冷空气配合,且存在大量不稳定能量,引发了此次强降水过程.此外,低空急流及西风槽为降水提供了良好的动力上升条件,南海西南季风与台风"罗莎"是台风"利奇马"充沛的水汽与能量来源,为暴雨提供了良好的水汽条件.  相似文献   

16.
采用日本气象厅的最佳台风路径及强度资料、NCEP/NCAR逐6 h细网格再分析数据,分析了"利奇马"暴雨影响相关的云水含量、假相当位温、水汽通量散度、Q矢量、湿位涡等物理量;通过苏州雨滴谱资料,分析降雨强度、雨滴数密度、雨滴平均直径、雨滴含水量、雷达反射率因子、雨滴谱宽等微物理量特征。结果表明降水落区位于环境垂直风切变顺切的左侧。暴雨期间能量和水汽条件较好,低层Q矢量梯度使辐合上升增强,且其非对称性对暴雨落区有指示意义,湿位涡的发展也有利于暴雨的加强;另外,微物理分析表明冷云降水机制使降水效率大幅提高,雨滴谱能较好地反映台风降水特征,强降水主要由层状云中嵌入的对流降水引起。强降水时段雨滴谱的相关微物理量等都呈现较大值。  相似文献   

17.
利用自动气象站资料、FY-2G卫星TBB(black body temperature)产品、多普勒雷达组网资料和NCEP FNL分析资料对超强台风利奇马(1909)极端强降雨观测特征、热动力结构演变和水汽输送进行分析。结果表明:此次台风大暴雨覆盖华东大部,极端强降雨区(过程雨量超过350 mm)位于浙江东部和山东中部,21个国家级气象站突破日雨量历史极值;副热带高压、台风和西风槽相互作用以及华东沿海强劲东南风急流为台风利奇马(1909)长时间维持与强降雨发生提供了有利的环境条件。浙江东部极端强降雨主要由发展极为强盛的台风本体产生,垂直深厚涡旋系统强烈的上升运动和台风眼墙区密实的深对流系统导致雨强大且降雨集中;而山东中部极端强降雨则与台风非对称结构演变和冷空气侵入密切相关。倒槽锋生、台风北侧3条螺旋雨带北移汇入及地形迎风坡处的列车效应导致山东中部远距离暴雨发生,随着500 hPa干冷空气从低层不断侵入,在台风西侧118°E附近形成向西倾斜的假相当位温锋区,暖湿气流爬升引发第2阶段稳定性降雨。  相似文献   

18.
台风艾云尼(1804号)第2次登陆广东过程中降水表现出显著的非对称分布,强降水主要位于其路径前进方向的右侧(简称台风右侧)。利用欧洲中期天气预报中心ERA5再分析资料、广东风廓线雷达观测资料以及降水观测资料,对造成非对称降水的环流背景和动力、热力结构演变特征进行了分析。结果表明:艾云尼左右两侧水汽输送及动力、热力条件差异是造成降水非对称的主要原因。加强的低空急流以及台风马力斯(1805号)水汽的输送为台风右侧强降水的产生提供了更好的水汽背景,而低空急流的加强配合高空强的辐散抽吸使得右侧垂直上升运动也明显大于左侧。边界层内强盛的低空急流以及珠江三角洲地区下垫面强摩擦辐合作用导致艾云尼右前侧径向入流强度更强、强入流层厚度更厚、边界层高度更高,且由于距离台风眼墙越近风速越大,上述现象越明显,为强降水的产生提供的动力和水汽条件越好。强降水期间艾云尼右侧低层大气维持不稳定状态,分析表明强低空急流携带的θse平流及其随高度的减弱弥补了强降水造成的能量损耗,是不稳定能量维持的重要原因。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号