首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
井间电磁测井技术测量井间地层电磁波传播特性,通过正反演获得井间电阻率分布信息,由此揭示地层油气水的分布信息.井间电磁接收是井间电磁测井技术中一项重要内容,是开展井间电磁成像测井系统研制中必须攻克的难题之一.本文通过对比磁反馈与无磁反馈两种天线接收幅度与相位特性,发现磁反馈接收天线频带平稳无相位跳变点,相比无反馈天线具有明显优势.在磁反馈天线的基础上,本文分析不同天线磁芯、不同天线缠绕方式对天线幅频特性的响应,发现这些参数均对天线幅频特性有不同影响,为天线设计与研制提供参考设计参数.在接收天线研究的基础上,采用噪声匹配放大、1/f滤波、工频压制、数字锁相放大、相敏检波等软硬件处理技术,进一步降低噪声,提高接收精度和灵敏度.为有效开展井间同步发射与接收采集,采用高精度时间同步技术,提高同步与电磁波相位提取的精度.针对接收线路与系统中存在的误差,采用两距离井间电磁刻度方法进行压制.井间电磁接收样机研制完成后,分别在现场进行井下噪声测试、非金属套管井间、金属套管井间等系列井间电磁接收测量实验,研究与实验结果表明:本文所研究的井间电磁接收技术可实现500 m以上大井距和双层金属套管井间测量.  相似文献   

2.
地面电磁法在实际工作中在很大程度上受到了探测深度和分辨率的限制.为了克服这些缺点,出现了井间电磁法.井间电磁法指的是在两个(或多个)钻孔中分别发射或接收电磁波信号,利用电磁波信号进行成像并探测井间物理性质的地球物理方法.由于发射机和接收机可以分别放置在很深钻孔中,其具有大透距、大探测深度的特点,因而广泛应用于工程环境物探、矿产勘查、石油勘探等中.针对不同的应用,产生了各具特点的一些特殊方法,包括井间无线电波成像、跨孔雷达、井间电磁成像.井间无线电波成像仪目前只测量电场强度数据,工作频率低,一般是单频的电磁波,频率范围通常在1 kHz至10 MHz.由于缺少走时数据修正射线路径,井间无线电波成像主要是进行基于直射线追踪的衰减层析成像.井间无线电波成像既可用于工程与环境地球物理也可用于找矿.跨孔雷达是钻孔雷达的一种探测方式,用高频电磁脉冲探测两个井孔间介电常数和电导率的变化.跨孔雷达层析成像也叫地质雷达CT,既可进行走时成像,还可进行衰减成像.一般来说,地质雷达CT的电磁波工作频率较高,中心频率通常在10 MHz和1 GHz之间,因此在分辨率指标上占有优势,跨孔雷达主要用于工程与环境地球物理.井间电磁成像采用更低的频率,测量复电磁信号,适合油气储集层监测,是一种地球物理前沿技术.经过在多个试验区初步试验表明,井间电磁成像是油藏研究的有效手段,可用于分析剩余油分布,寻找油气富集区,进而达到提高钻探高效井成功率和提高采收率的目的.本文详细介绍对比了这三种方法在理论和实践中的一些特点,并对未来的发展进行了展望.  相似文献   

3.
声电频谱测井的频谱包含实部和虚部,其测井的主要目的之一是获得探头响应的虚部.因为虚部包含着更多的地层参数信息或者与地层参数具有直接的关系.例如感应测井响应的虚部在一阶近似的情况下与地层的电导率成正比;声波测井的传播速度信息在相位上表现,所测量的时差是相位差,也是虚部;井下超声换能器的辐射阻抗与地层参数有关,也包含虚部.用稳态的正弦波或者方波激发时,虚部的信息包含在所测量波形的相位中,虚部的测量就是这些波形幅度和相位的测量,即原始测量信号仍然是正弦波,但是经过探头和地层以后,其幅度和相位会发生比较大的变化,特别是在探头或者响应的谐振频率处,其变化更加剧烈.本文研究用采集到的正弦波处理虚部的方法.包括测量电路:一般测量电路和桥式测量电路,模拟测量方法和数字测量方法等.其中模拟测量方法借助于模拟乘法器和滤波完成虚部的测量,数字测量方法需要借助于信号处理方法获得虚部.模拟测量方法中因为有低通滤波器,因此只对一定频率段有效(大于5kHz),数字方法则可以从很低的频率开始,对大多数频率段有效.桥式测量电路可以增加原始信号的幅度,提高虚部的测量精度.  相似文献   

4.
声、电频谱测井直接测量声和电探头频谱的实部和虚部.通常情况下,实部信号幅度比较大,与地层参数的关系不密切;虚部的信号比较小,与地层声、电参数关系密切.测量时,换能器在井下,地面(或者井下电路)发射频率可调的正弦波或者方波电压于声、电探头,测量其电压和电流波形,处理其幅度和相位可得到探头的阻抗或导纳的实部和虚部.由于位于井下的探头的辐射声阻抗和电阻抗都与地层参数有关,因此,通过测量换能器的阻抗或导纳随频率的变化关系可获得地层的声电参数.与现有的测井方法测量一个频率(感应测井)或者瞬态声波波形(主频附近)不同,声电频谱测井对频率进行扫描,获得一定频率段的频谱.具体的频率区间根据井眼条件和所测量的地层参数以及探头结构确定.声电频谱测井理论建立井眼条件下频谱的实部和虚部与地层参数之间的关系,测井资料处理则利用这些关系从测量的频谱曲线获得所测量地层的声、电参数.该方法可以在裸眼井和套管井中进行,并且还可以像最早的电极测井那样,直接在地面完成测量,井下只放置探头,不设置电路.这时声电频谱测井通过电缆输入到井下探头的是正弦波或者方波,电缆对测量结果影响比较大.本文首先给出声电频谱测井的现场实验结果,然后讨论电缆的频谱特征以及对测量结果的影响.电缆的频谱峰在探头阻抗发生变化的时候变化比较小,容易从频谱测量结果中区分出来.  相似文献   

5.
金属套管井中电磁测井响应的数值计算   总被引:1,自引:1,他引:1       下载免费PDF全文
分析了金属套管井中有限尺寸线圈的电磁响应特征,讨论了井眼泥浆参数、套管参数和不同线圈尺寸对电磁测井响应的影响,考察了金属套管中电磁测井对地层电阻率变化的灵敏度.径向非均匀介质的模拟计算表明,在套管井中井眼泥浆对电磁测井的影响较大,必须进行校正.在低频条件下,井间测量响应中金属套管与地层的电磁响应是非耦合的,两者可以分离.在套管参数一定时,套管响应与地层的响应的比值近似一个常数.电磁响应对地层电阻变化的灵敏度分析显示,井间电磁测量在储层研究尺度对地层电阻率变化响应灵敏,套管引起的衰减稳定.在其它参数相同的前提下,线圈直径的增大有助于有效电磁响应信号的增强,给大井间距测量提供了可能.不同磁导率金属套管的电磁响应分析表明,电磁测井中,采用非磁性或弱磁性套管要优于一般的铁磁性套管.  相似文献   

6.
电成像测井能够直观地获取岩性、沉积以及裂缝等地质信息,在油田勘探开发中得到日益广泛应用.在油基泥浆环境中,电成像装置采用电容耦合原理把交变电流发射到地层中,测量各个钮扣电极的电流或者电位,可以得到钮扣的阻抗,把阻抗信号进行标定,获得反映地层特征的图像.本文提出了一种新成像处理方法,把测量的复数信号经过数据处理,不但能够获取地层电阻率图像,同时也能够获取地层的介电常教图像.运用该方法对地层模型进行了验证,与此同时对试验井测量资料进行成像处理,获得了清晰的电阻率图像和介电常数图像.  相似文献   

7.
控制海底电磁激发脉冲发射的时间同步技术   总被引:6,自引:3,他引:3       下载免费PDF全文
为达到海洋可控源电磁探测和远参考测量的目的,研究控制海底电磁激发脉冲发射的时间同步技术,包括发射前与GPS的对钟技术和发射中的同步技术,保证仪器工作的时间和公共的时间基准GPS信号保持精确一致,为后期的数据处理解释提供统一的时间坐标.对钟技术是指,在海洋调查船上完成仪器内部RTC芯片分频所得的秒脉冲信号RTC_PPS与GPS秒脉冲信号PPS时钟沿的同步;同步技术是指,海底工作过程中,仪器在预定的时钟沿将可控源信号精确发射出去.本论文采用CPLD芯片、RTC芯片、GPS模块和AVR单片机来完成对钟和同步模块的设计.  相似文献   

8.
徐州矿务集团有限公司三河尖煤矿建立了覆盖全矿井的KZ-1型微震监测系统,通过地面监测主机向井下各测站发时间同步校时信号,用GPS秒号起始去同步各个测站下位机时钟,保证了各测站之间相对时间精确度.KZ-1型微震监测系统的拾震器设置了双换能器,且各有一个独立的磁回路,通过地面监测主机向拾震器标定换能器发标定指令信号,信号检测换能器再将输出信号上传至监测主机,实现了即时定量标定.标定信号的应用使KZ-1型微震监测系统具备整个系统检测功能,包括灵敏度、频响特征以及各测站的时间同步误差.  相似文献   

9.
为了探索电磁流动成像测井仪器激发的相位场信号的传播特性,本文根据实际电磁流动成像传感器的阵列电极结构,应用有限元方法进行正演仿真模拟,得到在不同持水率的层流环境下各电极所测量到的电位相位值,以及6种典型的相位敏感场分布.正演仿真结果表明,相位测量值随着持水率的增加而减小,相位敏感场只对靠近接收电极区域的敏感性较强.不同流型下的相位特征区别明显,表明了利用相位场数据进行电磁流动成像是可行的.  相似文献   

10.
张烨  林蔺  陈桂波  李强 《地球物理学报》2018,61(4):1639-1650
本文针对电导率横向同性地层中三轴发射-接收线圈系的井间电磁响应,开展三维正演算法及模拟研究.首先将发射线圈简化为三轴正交磁偶极子源.为克服低频电磁产生的数值迭代收敛缓慢问题,利用低感应数预处理方法将频域Maxwell方程组转化为基于矢势与标势的Helmholtz方程.采用非等间距的Yee氏交错网格、电导率的体积加权平均技术以及积分形式的有限差分格式实现对控制方程的离散化.借助于不完全LU分解预处理的稳定双共轭梯度法计算井间电磁响应的数值解,并通过与有限元软件COMSOL的数值结果对比验证本文模型与算法的有效性.数值计算结果表明:在横向同性地层的垂直井模型中,测井响应横向分量xxyy能反映出地层电导率各向异性信息,但横向探测能力较差.轴向分量zz虽只反映地层水平电阻率信息,但具有较好的横向探测能力,且对地层中异常体非常敏感,而交叉分量xz、zx则具备较强的层边界识别能力.  相似文献   

11.
陈凯  金胜  魏文博  邓明  叶高峰 《地球物理学报》2019,62(10):3803-3818
坑(井)-地多参数电磁接收系统在地面、坑道、井中三维空间观测天然场源及人工源电磁信号,观测装置接近或穿过矿体,借助动源、大功率发射可获得更加明显的异常值,旨在加大探测深度的基础上提高深部分辨率,同时获取电阻率、极化率、复阻抗等参数.为坑(井)-地电磁成像方法现场数据采集提供硬件设备支持,针对坑道、井中电磁观测的特殊需求,开发了由不极化电极、非接触电极、小型感应式线圈、微型三分量音频磁传感器、地面-坑道电磁接收机、井中电磁接收机等组成的坑(井)-地多参数电磁接收系统,解决了传统不极化电极坑道硬岩表面接地困难和传统感应式磁传感器难以适应坑道狭窄空间的问题;通过多层次的室内、弱干扰条件下野外测试验证了接收系统的各项技术指标,接收机通道全频段噪声水平接近10 nV/rt(Hz),微型三分量音频磁传感器体积压缩至32 cm×32 cm×32 cm;强干扰条件下的矿山试验验证了接收系统的可靠性、适用性及先进性.  相似文献   

12.
大功率井-地电磁同步发射技术分析与系统实现   总被引:1,自引:0,他引:1       下载免费PDF全文
王猛  金胜  魏文博  邓明 《地球物理学报》2019,62(10):3794-3802
为了提高勘探深度和分辨率,对于地球物理传统可控源电磁法的人工激励场源而言,主要通过提高其发射功率和更换激发方位的途径来实现,但是单套的发射系统会因为功率的增加而变得笨重、复杂和可靠性降低,且不适用于金属矿复杂的探测环境.本文采用分布于勘探目标区周边多个方位的中功率同步发射系统来组合成一套大功率发射系统,该系统可以显著提高探测区接收信号的信噪比,有望克服传统可控源类方法的探测盲区和获取可靠性更高的异常体反演结果.每个单套发射系统由发电机、开关供电电源、发射电缆、发射电极、发射机及其外控同步激发控制器构成.利用此发射系统可以在地面或井下的多个位置布设多个人工激励场源,同时对异常体进行扫频激发,频率范围覆盖10 kHz~0.01 Hz,单套发射系统的最大发射功率为48 kW,发射电流大于60 A,同时,在地面、井道、巷道或已有的探测井中采集电磁场信号.通过对均匀半空间理论场值的叠加计算以及实际数据的对比研究发现,多方位场源同时激发能够提高目标区信噪比,并初步验证了其可行性.该方法对可控源电磁法系统提出了一种全新的研发方向,为金属矿勘探提供了一种新的探测手段.  相似文献   

13.
魏宝君  田坤  张旭  刘坤 《地球物理学报》2010,53(10):2507-2515
采用水平层状各向异性介质中的磁流源并矢Green函数计算定向电磁波传播随钻测量的幅度衰减和相位移.分析了定向电磁测量的探测范围和对地层界面的灵敏性,研究了地层各向异性、地层相对倾角和接收天线倾角对定向测量的影响.计算结果表明,频率越低、线圈距越大、目的层和围岩层电阻率对比度越大,定向电磁测量的探测范围越大.随着接收天线倾角的增加,定向幅度衰减在接近地层界面时的变化更加明显,对地层界面的灵敏性增加.采用对称天线结构可消除定向测量信号在远离地层界面处对地层各向异性和地层相对倾角的依赖,实现对地层界面的准确预测.  相似文献   

14.
井中地震是井中激发地面接收的一种新型地震采集方法,与地面地震相比,具有采集成本低,作业效率高的优点.此外,井中地震资料信噪比高、频带宽、波场丰富,可实现井周小尺度构造精细成像.在油藏开发中,井中地震可实现油藏描述与监测.鉴于上述原因,近年来,井中地震受到业内越来越多的关注.然而,井中地震震源能量弱,地层吸收衰减效应的影响强于地面地震.因此,需要发展针对性的井中地震衰减补偿偏移成像方法.本文基于Kelvin-Voigt模型推导新的振幅衰减和相位频散解耦的黏声波动方程,通过改进激发振幅成像条件,实现高效的井中三维地震黏声逆时偏移成像方法.此外,本文采用时变低通滤波器压制高波数噪声,提升黏声逆时偏移方法的稳定性.数值算例及实际资料应用表明,本文提出的井中三维黏声逆时偏移成像方法计算效率高、稳定性好,实用化潜力大.  相似文献   

15.
本文介绍一种采用大功率稳流发射、低噪声测量、宽频带接收以及分布式同步等技术,自主研制的分布式多功能电磁法仪器系统.系统包括大功率电磁法发射机、分布式电磁法接收机、磁场传感器、整流源等设备.采用ARM芯片和FPGA芯片进行发射机的整机控制和信号整形发射,采用PC104工控机和FPGA芯片进行接收机的整机控制和信号处理.在人工场源模式下实现了可控源音频大地电磁法(CSAMT)、谱激电法(SIP)和时域激电法(TDIP)等测量功能;在天然场源模式下实现了大地电磁法(MT)、音频大地电磁法(AMT)的测量功能.发射机在满功率发射的情况下连续可靠运行时间大于12 h,接收机的动态范围大于120 dB,接收机可接收信号频率范围是0.001 Hz~32 kHz.通过典型矿区的野外实验和应用,表明本系统的性能总体上达到了国际先进水平.  相似文献   

16.
中心回线式直升机航空瞬变电磁法中因其发射源与接收线圈相对位置不变,故在电导率深度成像(Conductivity Depth Imaging,CDI)中无需考虑偏移距带来的影响,但半航空瞬变电磁法的工作方式是利用长导线源在地面发射,无人机搭载接收线圈在空中采集电磁响应数据,发射源与接收线圈相对位置一直变化,存在偏移距的问题,无法像航空瞬变电磁一样实现CDI快速成像.本文提出建立"库"的思想,根据不同实际情况建立不同的电导率-电磁响应数据网,利用分段二分搜索算法来消除"二值性"带来的问题,使得半航空瞬变电磁电导率深度快速成像(Semi-Airborne Transient Electromagnetic-Conductivity Depth Imaging,SATEM-CDI)方法得以实现.通过正演模拟及实测数据成像分析,表明SATEM-CDI理论简单、处理过程中无需迭代,计算速度快,可对大量半航空瞬变电磁数据进行实时成像,且成像结果可靠,可为反演模型和初步地质结构判断提供重要资料.  相似文献   

17.
依据瞬变电磁全空间响应的传播特征,本文提出了一种井间勘探方法.在井内用线圈激发,在本井和邻近井接收瞬态响应波形.基于Maxwell方程分析了位移电流和传导电流所引起的两种传播特征,明确了在邻井接收到的波形中包含界面的电导率信息.详细研究了线圈在无限大均匀介质中激发的瞬变电磁响应波形以及电场在不同时刻的空间分布.瞬变电磁近源距响应波形幅度随源距的增大衰减很快,响应持续时间短;远源距对应的响应波形上升速度快,达到峰值之后缓慢下降.随着源距的增加,响应波形上升和下降的速度均减慢,峰值向后移动,能够看到明显的传播特征(与位移电流引起的电磁波形态不变差异很大).与此对应,瞬变电场的空间分布也随着波形幅度的上升迅速扩大,随着幅度的减小快速收缩.在电磁能量向外传播的过程中,遇到界面时会发生透射和反射,使得测量得到的波形形状会在无界面条件下波形基础上发生改变.界面信息隐含在这种波形形状改变中,需要通过瞬变电磁反射和透射模型进行提取,实现井间勘探.  相似文献   

18.
应用有限元法研究了充液井孔中的相控线阵声波辐射器在井外地层中产生的声场,探讨了增强声源向地层的某一特定方向辐射的声波能量的方法. 采用相控线阵声波辐射器并调节其参数可以控制由充液井孔向地层中辐射的声波能量的方向,使声源向地层中的某个特定方向辐射的纵波能量得到明显提高. 在井间地震勘探和反射声波成像测井等领域中应用相控线阵声波辐射器,将有利于增大探测深度、提高探测分辨率和接收信号的信噪比.  相似文献   

19.
采集系统是电磁法仪器的重要组成部分,设计出高精度、低功耗的分布式采集系统是电磁法仪器研制的重点和难点.本文设计的采集系统集成了6个采集通道,每个采集通道的A/D转换器都选用了32位的ADS1282,并通过DAC1282来提供ADS1282校准和自检所需要的外部信号.采集部分的控制中心选用了MachXO2 ZE系列这款功耗极低的CPLD.为了保证同步采集的精度,设计中采用了GPS和OCXO协同授时的方案来提供同步时钟.采集系统具备MT、CSEM、SIP等测量功能.测试结果表明,本采集系统同步精度维持在1E-11以下,待机状态下功耗为0.32 W,运行功耗2.76 W,各通道短路噪声值均在μV级,信噪比在118 dB附近,满足设计要求.  相似文献   

20.
半航空瞬变电磁信号源是调试与验证半航空瞬变电磁接收机的信号灵敏度、频率响应和噪声水平等关键性能指标的重要设备.无人机电磁干扰和线圈运动噪声是半航空瞬变电磁接收系统相对于地面瞬变电磁接收系统"特有"的噪声,目前通用信号源无法满足半航空瞬变电磁接收机室内调试和标定的需求.首先通过分析半航空瞬变电磁信号模型和无人机电磁干扰及线圈运动噪声模型,建立了输出信号及噪声的产生方法,再基于现场可编程门阵列(FPGA),运用DDS技术和SOPC技术,调用Nios II软核设计了信号产生模块,能够产生瞬变电磁信号并叠加无人机电磁干扰和线圈运动噪声,并在此基础上结合PC机和D/A电路研制了半航空瞬变电磁接收机专用测试装置.测试结果表明:测试装置的信号分辨能力达到100μV,同步触发信号与信号输出时延小于2μs,满足仪器测试与标定需求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号