首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目前,世界气候研究计划(WCRP)组织的国际耦合模式比较计划(CMIP)已经进入到第六阶段(CMIP6),CMIP6试验的开展也已成为国内外地球系统模式工作组的首要工作之一。自然资源部第一海洋研究所地球系统模式FIO-ESM是以耦合自主开发的海浪模式为特色的地球系统模式。在参与CMIP5的FIO-ESM v1.0的基础上,通过升级分量模式、改进海气通量相关物理过程和提高分辨率等,FIO-ESM v2.0现已完成研发,正在开展CMIP6科学计划的相关试验。文中围绕FIO-ESM v2.0的特色和计划参与CMIP6的情况,介绍了FIO-ESM v2.0的模式框架、包含的特色物理过程以及拟参加的CMIP6科学计划情况,以方便气候研究领域的科学家了解和使用。  相似文献   

2.
This study investigates relationships between Atlantic sea surface temperature (SST) and the variability of the characteristics of the South American Monsoon System (SAMS), such as the onset dates and total precipitation over central eastern Brazil. The observed onset and total summer monsoon precipitation are estimated for the period 1979?C2007. SST patterns are obtained from the Empirical Orthogonal Function. It is shown that variations in SST on interannual timescales over the South Atlantic Ocean play an important role in the total summer monsoon precipitation. Negative (positive) SST anomalies over the topical South Atlantic along with positive (negative) SST anomalies over the extratropical South Atlantic are associated with early (late) onsets and wet (dry) summers over southeastern Brazil and late (early) onset and dry (wet) summers over northeastern Brazil. Simulations from Phase 3 of the World Climate Research Programme Coupled Model Intercomparison Project (CMIP-3) are assessed for the 20th century climate scenario (1971?C2000). Most CMIP3 coupled models reproduce the main modes of variability of the South Atlantic Ocean. GFDL2.0 and MIROC-M are the models that best represent the SST variability over the South Atlantic. On the other hand, these models do not succeed in representing the relationship between SST and SAMS variability.  相似文献   

3.
CMIP5/AMIP GCM simulations of East Asian summer monsoon   总被引:1,自引:0,他引:1  
The East Asian summer monsoon (EASM) is a distinctive component of the Asian climate system and critically influences the economy and society of the region.To understand the ability of AGCMs in capturing the major features of EASM,10 models that participated in Coupled Model Intercomparison Project/Atmospheric Model Intercomparison Project (CMIP5/AMIP),which used observational SST and sea ice to drive AGCMs during the period 1979-2008,were evaluated by comparing with observations and AMIP Ⅱ simulations.The results indicated that the multi-model ensemble (MME) of CMIP5/AMIP captures the main characteristics of precipitation and monsoon circulation,and shows the best skill in EASM simulation,better than the AMIP Ⅱ MME.As for the Meiyu/Changma/Baiyu rainbelt,the intensity of rainfall is underestimated in all the models.The biases are caused by a weak western Pacific subtropical high (WPSH) and accompanying eastward southwesterly winds in group Ⅰ models,and by a too strong and west-extended WPSH as well as westerly winds in group Ⅱ models.Considerable systematic errors exist in the simulated seasonal migration of rainfall,and the notable northward jumps and rainfall persistence remain a challenge for all the models.However,the CMIP5/AMIP MME is skillful in simulating the western North Pacific monsoon index (WNPMI).  相似文献   

4.
全球季风模式比较计划(GMMIP)是第六次国际耦合模式比较计划(CMIP6)的重要组成部分。文中首先介绍了GMMIP发起的科学背景,指出发起GMMIP的必要性和历史机遇。进一步扼要描述了GMMIP试验设计的总体思路和方案、试验的用途以及与CMIP6其他模式比较子计划的相关性。最后对GMMIP的科学意义进行了评述,指出其在提升和扩大中国季风模拟和研究领域国际影响力方面的重要作用。  相似文献   

5.
As a member of the Chinese modeling groups,the coupled ocean-ice component of the Chinese Academy of Sciences’Earth System Model,version 2.0(CAS-ESM2.0),is taking part in the Ocean Model Intercomparison Project Phase 1(OMIP1)experiment of phase 6 of the Coupled Model Intercomparison Project(CMIP6).The simulation was conducted,and monthly outputs have been published on the ESGF(Earth System Grid Federation)data server.In this paper,the experimental dataset is introduced,and the preliminary performances of the ocean model in simulating the global ocean temperature,salinity,sea surface temperature,sea surface salinity,sea surface height,sea ice,and Atlantic Meridional Overturning Circulation(AMOC)are evaluated.The results show that the model is at quasi-equilibrium during the integration of 372 years,and performances of the model are reasonable compared with observations.This dataset is ready to be downloaded and used by the community in related research,e.g.,multi-ocean-sea-ice model performance evaluation and interannual variation in oceans driven by prescribed atmospheric forcing.  相似文献   

6.
The second version of the Chinese Academy of Sciences Earth System Model(CAS-ESM2.0)is participating in the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)experiments in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The purpose of FAFMIP is to understand and reduce the uncertainty of ocean climate changes in response to increased CO2 forcing in atmosphere-ocean general circulation models(AOGCMs),including the simulations of ocean heat content(OHC)change,ocean circulation change,and sea level rise due to thermal expansion.FAFMIP experiments(including faf-heat,faf-stress,faf-water,faf-all,faf-passiveheat,faf-heat-NA50pct and faf-heat-NA0pct)have been conducted.All of the experiments were integrated over a 70-year period and the corresponding data have been uploaded to the Earth System Grid Federation data server for CMIP6 users to download.This paper describes the experimental design and model datasets and evaluates the preliminary results of CAS-ESM2.0 simulations of ocean climate changes in the FAFMIP experiments.The simulations of the changes in global ocean temperature,Atlantic Meridional Overturning Circulation(AMOC),OHC,and dynamic sea level(DSL),are all reasonably reproduced.  相似文献   

7.
通用地球系统模式对亚洲夏季风降水的模拟能力评估   总被引:3,自引:1,他引:2  
韩春凤  刘健  王志远 《气象科学》2017,37(2):151-160
通过与观测/再分析资料和参加第五次耦合模式比较计划(CMIP5)的模式模拟结果进行对比,评估了通用地球系统模式(CESM,1.0.3版本)对亚洲夏季风降水的模拟能力。结果表明:CESM能够合理地模拟出亚洲夏季风降水的气候平均态,但与其他CMIP5模式模拟结果类似,对中国东南地区降水模拟偏少,而对中国西部高原地区降水模拟偏多;CESM可以再现亚洲季风区降水冬弱夏强、雨带北进南退的季节变化特征,其模拟偏差具有区域性和季节性差异;从EOF分析结果来看,CESM能够模拟出亚洲夏季风降水的时空变化特征,且能较好地抓住亚洲夏季风降水与厄尔尼诺-南方涛动(El Ni?o-Southern Oscillation,简称ENSO)的相关关系。总的说来,CESM对亚洲夏季风降水的模拟是合理的,模拟水平与4个最好的CMIP5模式相当。  相似文献   

8.
The Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP) is an endorsed Model Intercomparison Project in phase 6 of the Coupled Model Intercomparison Project(CMIP6). The goal of FAFMIP is to investigate the spread in the atmosphere–ocean general circulation model projections of ocean climate change forced by increased CO_2, including the uncertainties in the simulations of ocean heat uptake, global mean sea level rise due to ocean thermal expansion and dynamic sea level change due to ocean circulation and density changes. The FAFMIP experiments have already been conducted with the Flexible Global Ocean–Atmosphere–Land System Model, gridpoint version 3.0(FGOALS-g3). The model datasets have been submitted to the Earth System Grid Federation(ESGF) node. Here, the details of the experiments,the output variables and some baseline results are presented. Compared with the preliminary results of other models, the evolutions of global mean variables can be reproduced well by FGOALS-g3. The simulations of spatial patterns are also consistent with those of other models in most regions except the North Atlantic and the Southern Ocean, indicating large uncertainties in the regional sea level projections of these two regions.  相似文献   

9.
The Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2) was used to simulate realistic climates and to study anthropogenic influences on climate change. Specifically, the FGOALS-s2 was integrated with Coupled Model Intercomparison Project Phase 5 (CMIP5) to conduct coordinated experiments that will provide valuable scientific information to climate research communities. The performances of FGOALS-s2 were assessed in simulating major climate phenomena, and documented both the strengths and weaknesses of the model. The results indicate that FGOALS-s2 successfully overcomes climate drift, and realistically models global and regional climate characteristics, including SST, precipitation, and atmospheric circulation. In particular, the model accurately captures annual and semi-annual SST cycles in the equatorial Pacific Ocean, and the main characteristic features of the Asian summer monsoon, which include a low-level southwestern jet and five monsoon rainfall centers. The simulated climate variability was further examined in terms of teleconnections, leading modes of global SST (namely, ENSO), Pacific Decadal Oscillations (PDO), and changes in 19th–20th century climate. The analysis demonstrates that FGOALS-s2 realistically simulates extra-tropical teleconnection patterns of large-scale climate, and irregular ENSO periods. The model gives fairly reasonable reconstructions of spatial patterns of PDO and global monsoon changes in the 20th century. However, because the indirect effects of aerosols are not included in the model, the simulated global temperature change during the period 1850–2005 is greater than the observed warming, by 0.6°C. Some other shortcomings of the model are also noted.  相似文献   

10.
11.
Recent work has shown the dominance of the Himalaya in supporting the Indian summer monsoon(ISM),perhaps by surface sensible heating along its southern slope and by mechanical blocking acting to separate moist tropical flow from drier midlatitude air.Previous studies have also shown that Indian summer rainfall is largely unaffected in sensitivity experiments that remove only the Tibetan Plateau.However,given the large biases in simulating the monsoon in CMIP5 models,such results may be model dependent.This study investigates the impact of orographic forcing from the Tibetan Plateau,Himalaya and Iranian Plateau on the ISM and East Asian summer monsoon(EASM) in the UK Met Office's Had GEM3-GA6 and China's Institute of Atmospheric Physics FGOALS-FAMIL global climate models.The models chosen feature oppositesigned biases in their simulation of the ISM rainfall and circulation climatology.The changes to ISM and EASM circulation across the sensitivity experiments are similar in both models and consistent with previous studies.However,considerable differences exist in the rainfall responses over India and China,and in the detailed aspects such as onset and retreat dates.In particular,the models show opposing changes in Indian monsoon rainfall when the Himalaya and Tibetan Plateau orography are removed.Our results show that a multi-model approach,as suggested in the forthcoming Global Monsoon Model Intercomparison Project(GMMIP) associated with CMIP6,is needed to clarify the impact of orographic forcing on the Asian monsoon and to fully understand the implications of model systematic error.  相似文献   

12.
The seasonal variations of the Asian monsoon were explored by applying the atmospheric general circulation model R42L9 that was developed recently at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS). The 20-yr (1979-1998) simulation was done using the prescribed 20-yr monthly SST and sea-ice data as required by Atmospheric Model Intercomparison Project (AMIP)Ⅱ in the model. The monthly precipitation and monsoon circulations were analyzed and compared with the observations to validate the model‘s performance in simulating the climatological mean and seasonal variations of the Asian monsoon. The results show that the model can capture the main features of the spatial distribution and the temporal evolution of precipitation in the Indian and East Asian monsoon areas. The model also reproduced the basic patterns of monsoon circulation. However, some biases exis tin this model. The simulation of the heating over the Tibetan Plateau in summer was too strong. The overestimated heating caused a stronger East Asian monsoon and a weaker Indian monsoon than the observations. In the circulation fields, the South Asia high was stronger and located over the Tibetan Plateau. The western Pacific subtropical high was extended westward, which is in accordance with the observational results when the heating over the Tibetan Plateau is stronger. Consequently, the simulated rainfall around this area and in northwest China was heavier than in observations, but in the Indian monsoon area and west Pacific the rainfall was somewhat deficient.  相似文献   

13.
With the twentieth century analysis data (1901–2002) for atmospheric circulation, precipitation, Palmer drought severity index, and sea surface temperature (SST), we show that the Asian-Pacific Oscillation (APO) during boreal summer is a major mode of the earth climate variation linking to global atmospheric circulation and hydroclimate anomalies, especially the Northern Hemisphere (NH) summer land monsoon. Associated with a positive APO phase are the warm troposphere over the Eurasian land and the relatively cool troposphere over the North Pacific, the North Atlantic, and the Indian Ocean. Such an amplified land–ocean thermal contrast between the Eurasian land and its adjacent oceans signifies a stronger than normal NH summer monsoon, with the strengthened southerly or southwesterly monsoon prevailing over tropical Africa, South Asia, and East Asia. A positive APO implies an enhanced summer monsoon rainfall over all major NH land monsoon regions: West Africa, South Asia, East Asia, and Mexico. Thus, APO is a sensible measure of the NH land monsoon rainfall intensity. Meanwhile, reduced precipitation appears over the arid and semiarid regions of northern Africa, the Middle East, and West Asia, manifesting the monsoon-desert coupling. On the other hand, surrounded by the cool troposphere over the North Pacific and North Atlantic, the extratropical North America has weakened low-level continental low and upper-level ridge, hence a deficient summer rainfall. Corresponding to a high APO index, the African and South Asian monsoon regions are wet and cool, the East Asian monsoon region is wet and hot, and the extratropical North America is dry and hot. Wet and dry climates correspond to wet and dry soil conditions, respectively. The APO is also associated with significant variations of SST in the entire Pacific and the extratropical North Atlantic during boreal summer, which resembles the Interdecadal Pacific Oscillation in SST. Of note is that the Pacific SST anomalies are not present throughout the year, rather, mainly occur in late spring, peak at late summer, and are nearly absent during boreal winter. The season-dependent APO–SST relationship and the origin of the APO remain elusive.  相似文献   

14.
Using model results from the first phase of the Pliocene Model Intercomparison Project (PlioMIP) and four experiments with CAM4, the intensified African summer monsoon (ASM) in the mid-Piacenzian and corresponding mechanisms are analyzed. The results from PlioMIP show that the ASM intensified and summer precipitation increased in North Africa during the mid-Piacenzian, which can be explained by the increased net energy in the atmospheric column above North Africa. Further experiments with CAM4 indicated that the combined changes in the mid-Piacenzian of atmospheric CO2 concentration and SST, as well as the vegetation change, could have substantially increased the net energy in the atmospheric column over North Africa and further intensified the ASM. The experiments also demonstrated that topography change had a weak effect. Overall, the combined changes of atmospheric CO2 concentration and SST were the most important factor that brought about the intensified ASM in the mid-Piacenzian.  相似文献   

15.
世界气候研究计划(WCRP)组织开展的耦合模式比较计划已实施到第六阶段(CMIP6),中国气象科学研究院发展的气候系统模式CAMS-CSM是注册参加CMIP6的模式之一。除CMIP6要求的气候诊断、评估和描述试验(DECK)以及历史气候模拟试验(Historical)外,CAMS-CSM还计划参加情景模式比较计划(ScenarioMIP)、云反馈模式比较计划(CFMIP)、全球季风模式比较计划(GMMIP)和高分辨率模式比较计划(HighResMIP)这4个模式比较子计划(MIPs)。文中通过介绍CAMS-CSM的基本情况和模拟性能,以及计划参加的CMIP6试验及MIPs,为模式试验数据使用者提供参考。  相似文献   

16.
评估了耦合气候系统模式FGOALS海洋同化试验对西北太平洋夏季降水和SST相关关系的模拟技巧,并对比了相应的观测海温强迫试验(AMIP)和历史气候模拟试验结果。结果显示,FGOALS海洋同化试验对亚洲季风区大部分海域夏季SST年际变化有较高的模拟技巧,但其对菲律宾以东海域模拟技巧较低。在西北太平洋夏季降水-SST相关关系方面,同化试验部分地再现了南海和菲律宾以东海域降水超前SST变化1个月和同时二者的负相关关系,优于AMIP试验但逊于自由耦合模拟试验。同化试验对SST倾向-降水相关关系的模拟技巧亦介于AMIP试验和自由耦合试验之间。观测中,西北太平洋夏季降水与环流异常受日界线附近和赤道东印度洋海洋大陆地区海温异常的遥强迫,并通过改变到达海表的净短波辐射通量影响局地SST异常,导致局地海温-降水和局地海温倾向-降水的负相关关系。在AMIP试验中,遥强迫导致的西北太平洋地区环流异常较之观测偏弱,由于缺少局地海气耦合过程,在西北太平洋多数地区表现为海温对大气的强迫作用,即SST-降水正相关关系。FGOALS同化试验和自由耦合试验考虑了局地海气耦合过程,虽然低估了遥强迫对西北太平洋地区夏季环流异常的影响,依然部分模拟出局地降水-SST负相关关系但较之观测偏弱。同时,自由耦合试验高估了西北太平洋20°N以南地区海温异常对大气环流异常的强迫,使得其对中国南海和日本岛以南海域SST-降水负相关关系的模拟稍优于同化试验。  相似文献   

17.
The seasonal prediction skill of the Asian summer monsoon is assessed using retrospective predictions (1982–2009) from the ECMWF System 4 (SYS4) and NCEP CFS version 2 (CFSv2) seasonal prediction systems. In both SYS4 and CFSv2, a cold bias of sea-surface temperature (SST) is found over the equatorial Pacific, North Atlantic, Indian Oceans and over a broad region in the Southern Hemisphere relative to observations. In contrast, a warm bias is found over the northern part of North Pacific and North Atlantic. Excessive precipitation is found along the ITCZ, equatorial Atlantic, equatorial Indian Ocean and the maritime continent. The southwest monsoon flow and the Somali Jet are stronger in SYS4, while the south-easterly trade winds over the tropical Indian Ocean, the Somali Jet and the subtropical northwestern Pacific high are weaker in CFSv2 relative to the reanalysis. In both systems, the prediction of SST, precipitation and low-level zonal wind has greatest skill in the tropical belt, especially over the central and eastern Pacific where the influence of El Nino-Southern Oscillation (ENSO) is dominant. Both modeling systems capture the global monsoon and the large-scale monsoon wind variability well, while at the same time performing poorly in simulating monsoon precipitation. The Asian monsoon prediction skill increases with the ENSO amplitude, although the models simulate an overly strong impact of ENSO on the monsoon. Overall, the monsoon predictive skill is lower than the ENSO skill in both modeling systems but both systems show greater predictive skill compared to persistence.  相似文献   

18.
Earth System Models (ESMs) are fundamental tools for understanding climate-carbon feedback. An ESM version of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS) was recently developed within the IPCC AR5 Coupled Model Intercomparison Project Phase 5 (CMIP5) modeling framework, and we describe the development of this model through the coupling of a dynamic global vegetation and terrestrial carbon model with FGOALS-s2. The performance of the coupled model is evaluated as follows. The simulated global total terrestrial gross primary production (GPP) is 124.4 PgC yr-I and net pri- mary production (NPP) is 50.9 PgC yr-1. The entire terrestrial carbon pools contain about 2009.9 PgC, comprising 628.2 PgC and 1381.6 PgC in vegetation and soil pools, respectively. Spatially, in the tropics, the seasonal cycle of NPP and net ecosystem production (NEP) exhibits a dipole mode across the equator due to migration of the monsoon rainbelt, while the seasonal cycle is not so significant in Leaf Area Index (LAI). In the subtropics, especially in the East Asian monsoon region, the seasonal cycle is obvious due to changes in temperature and precipitation from boreal winter to summer. Vegetation productivity in the northern mid-high latitudes is too low, possibly due to low soil moisture there. On the interannual timescale, the terrestrial ecosystem shows a strong response to ENSO. The model- simulated Nifio3.4 index and total terrestrial NEP are both characterized by a broad spectral peak in the range of 2-7 years. Further analysis indicates their correlation coefficient reaches -0.7 when NEP lags the Nifio3.4 index for about 1-2 months.  相似文献   

19.
A 61-year(1958–2018) global eddy-resolving dataset for phase 2 of the Ocean Model Intercomparison Project has been produced by the version 3 of Chinese Academy of Science, the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics(LASG/IAP) Climate system Ocean Model(CAS-LICOM3). The monthly and a part of the surface daily data in this study can be accessed on the Earth System Grid Federation(ESGF) node. Besides the details of the model and experiments, the evolutions and spatial patterns of large-scale and mesoscale features are also presented. The mesoscale features are reproduced well in the high-resolution simulation, as the mesoscale activities can contribute up to 50% of the total SST variability in eddy-rich regions. Also, the large-scale circulations are remarkably improved compared with the low-resolution simulation, such as the climatological annual mean SST(the RMSE is reduced from 0.59°C to 0.47°C, globally) and the evolution of Atlantic Meridional Overturning Circulation. The preliminary evaluation also indicates that there are systematic biases in the salinity, the separation location of the western boundary currents, and the magnitude of eddy kinetic energy. All these biases are worthy of further investigation.  相似文献   

20.
姜大膀  司东  郎咸梅 《气象学报》2020,78(3):379-390
基于气温和降水观测资料以及美国国家环境预报中心/国家大气研究中心(NCEP/NCAR)大气再分析资料,系统评估了大样本初始化十年际预测试验(CESM-DPLE)对1959—2016年东亚夏季气候预测的能力。结果表明,CESM-DPLE能较好地模拟东亚夏季气候以及相关主要大气环流系统的基本态特征,在年际尺度上对东亚气温有很高的预测技巧但对降水几乎没有预测能力。CESM-DPLE再现了北大西洋多年代际振荡(AMO)经由激发遥相关波列所引起的中高纬度大气环流、东亚夏季风和气候的异常。20世纪90年代末之后,北大西洋多年代际振荡由冷位相转为暖位相,遥相关波列位相调整,东亚受异常低压控制,东亚夏季风偏强,夏季气温偏高、降水偏多。总体上,尽管还存在着不足,但CESM-DPLE对东亚夏季温度年际变化以及与20世纪90年代末北大西洋多年代际振荡位相转变相联的东亚夏季气候年代际变化具备一定的预测能力,是目前研究和预测东亚气候变化的一套较好试验数据。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号