首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Increasing greenhouse gas emissions are projected to raise global average surface temperatures by 3?–4 °C within this century, dramatically increasing the extinction risk for terrestrial and freshwater species and severely disrupting ecosystems across the globe. Limiting the magnitude of warming and its devastating impacts on biodiversity will require deep emissions reductions that include the rapid, large-scale deployment of low-carbon renewable energy. Concerns about potential adverse impacts to species and ecosystems from the expansion of renewable energy development will play an important role in determining the pace and scale of emissions reductions and hence, the impact of climate change on global biodiversity. Efforts are underway to reduce uncertainty regarding wildlife impacts from renewable energy development, but such uncertainty cannot be eliminated. We argue the need to accept some and perhaps substantial risk of impacts to wildlife from renewable energy development in order to limit the far greater risks to biodiversity loss owing to climate change. We propose a path forward for better reconciling expedited renewable energy development with wildlife conservation in a warming world.  相似文献   

2.
磷是植物生长必需的元素,磷缺乏将限制植被生产力及碳汇功能.为厘清全球大气磷沉降的时空格局,本文收集了 1959-2020年发表的396条观测资料.结果发现,全球大气磷沉降的几何均值为0.32 kg ha-1 yr-1,全球大气磷库约4.4Tg yr-1.与1959-2000年相比,近20年亚洲和欧洲大气磷沉降呈现上升趋势,主要来源是农业活动,沙尘传输和燃烧源排放.碳中和背景下,清洁空气行动是否会改变磷沉降的途径和形态,进而影响到生态系统的结构和功能,是需要回答的科学问题.  相似文献   

3.
The uncertainties and sources of variation in projected impacts of climate change on agriculture and terrestrial ecosystems depend not only on the emission scenarios and climate models used for projecting future climates, but also on the impact models used, and the local soil and climatic conditions of the managed or unmanaged ecosystems under study. We addressed these uncertainties by applying different impact models at site, regional and continental scales, and by separating the variation in simulated relative changes in ecosystem performance into the different sources of uncertainty and variation using analyses of variance. The crop and ecosystem models used output from a range of global and regional climate models (GCMs and RCMs) projecting climate change over Europe between 1961–1990 and 2071–2100 under the IPCC SRES scenarios. The projected impacts on productivity of crops and ecosystems included the direct effects of increased CO2 concentration on photosynthesis. The variation in simulated results attributed to differences between the climate models were, in all cases, smaller than the variation attributed to either emission scenarios or local conditions. The methods used for applying the climate model outputs played a larger role than the choice of the GCM or RCM. The thermal suitability for grain maize cultivation in Europe was estimated to expand by 30–50% across all SRES emissions scenarios. Strong increases in net primary productivity (NPP) (35–54%) were projected in northern European ecosystems as a result of a longer growing season and higher CO2 concentrations. Changing water balance dominated the projected responses of southern European ecosystems, with NPP declining or increasing only slightly relative to present-day conditions. Both site and continental scale models showed large increases in yield of rain-fed winter wheat for northern Europe, with smaller increases or even decreases in southern Europe. Site-based, regional and continental scale models showed large spatial variations in the response of nitrate leaching from winter wheat cultivation to projected climate change due to strong interactions with soils and climate. The variation in simulated impacts was smaller between scenarios based on RCMs nested within the same GCM than between scenarios based on different GCMs or between emission scenarios.  相似文献   

4.
Abatement of particulate matter has traditionally been driven by health concerns rather than its role in global warming. Here we assess future abatement strategies in terms of how much they reduce the climate impact of black carbon (BC) and organic carbon (OC) from contained combustion. We develop global scenarios which take into account regional differences in climate impact, costs of abatement and ability to pay, as well as both the direct and indirect (snow-albedo) climate impact of BC and OC. To represent the climate impact, we estimate consistent region-specific values of direct and indirect global warming potential (GWP) and global temperature potential (GTP). The indirect GWP has been estimated using a physical approach and includes the effect of change in albedo from BC deposited on snow. The indirect GWP is highest in the Middle East followed by Russia, Europe and North America, while the total GWP is highest in the Middle East, Africa and South Asia. We conclude that prioritizing emission reductions in Asia represents the most cost-efficient global abatement strategy for BC because Asia is (1) responsible for a large share of total emissions, (2) has lower abatement costs compared to Europe and North America and (3) has large health cobenefits from reduced PM10 emissions.  相似文献   

5.
During the negotiations on the Kyoto Protocol, Brazil proposed allocating the greenhouse gas emission reductions of Annex I Parties according to the relative effect of a country’s historical emissions on global temperature increase. This paper analyses the impact of scientific uncertainties and of different options in policy implementation (policy choices) on the contribution of countries’ historical emissions to indicators of historical responsibility for climate change. The influence of policy choices was found to be at least as large as the impact of the scientific uncertainties analysed here. Building on this, the paper then proceeds to explore the implications of applying the Brazilian Proposal as a climate regime for differentiation of future commitments on the global scale combined with an income threshold for participation of the non-Annex I regions. Under stringent climate targets, such a regime leads to high emission reductions for Annex I regions by 2050, in particular for Europe and Japan. The income threshold assumptions strongly affect the Annex I reductions, even more than the impact of another burden-sharing key. A variant of the Brazilian Proposal, allocating emission reductions on the basis of cumulative emissions since 1990, would lead to a more balanced distribution of emission reductions.  相似文献   

6.
Today's climate policy is based on the assumption that the location of emissions reductions has no impact on the overall climate effect. However, this may not be the case since reductions of greenhouse gases generally will lead to changes in emissions of short-lived gases and aerosols. Abatement measures may be primarily targeted at reducing CO2, but may also simultaneously reduce emissions of NOx, CO, CH4 and SO2 and aerosols. Emissions of these species may cause significant additional radiative forcing. We have used a global 3-D chemical transport model and a radiative transfer model to study the impact on climate in terms of radiative forcing for a realistic change in location of the emissions from large-scale sources. Based on an assumed 10% reduction in CO2 emissions, reductions in the emissions of other species have been estimated. Climate impact for the SRES A1B scenario is compared to two reduction cases, with the main focus on a case with emission reductions between 2010 and 2030, but also a case with sustained emission reductions. The emission reductions are applied to four different regions (Europe, China, South Asia, and South America). In terms of integrated radiative forcing (over 100 yr), the total effect (including only the direct effect of aerosols) is always smaller than for CO2 alone. Large variations between the regions are found (53–86% of the CO2 effect). Inclusion of the indirect effects of sulphate aerosols reduces the net effect of measures towards zero. The global temperature responses, calculated with a simple energy balance model, show an initial additional warming of different magnitude between the regions followed by a more uniform reduction in the warming later. A major part of the regional differences can be attributed to differences related to aerosols, while ozone and changes in methane lifetime make relatively small contributions. Emission reductions in a different sector (e.g. transportation instead of large-scale sources) might change this conclusion since the NOx to SO2 ratio in the emissions is significantly higher for transportation than for large-scale sources. The total climate effect of abatement measures thus depends on (i) which gases and aerosols are affected by the measure, (ii) the lifetime of the measure implemented, (iii) time horizon over which the effects are considered, and (iv) the chemical, physical and meteorological conditions in the region. There are important policy implications of the results. Equal effects of a measure cannot be assumed if the measure is implemented in a different region and if several gases are affected. Thus, the design of emission reduction measures should be considered thoroughly before implementation.  相似文献   

7.
This paper presents an alternative framework to the approach currently embodied in the Kyoto Protocol for managing global climate change post-2012. The framework has two key provisions. The first is that each person in the world would be ‘allowed’ an equal amount of greenhouse gas (GHG) emissions. This is labeled the equity-first provision. The second provision focuses on incorporating risk concepts into the setting of GHG emission reductions. It is proposed that the global climate be managed as to avoid three categories of risks: (I) Substantial regional economic, political, and/or biological impacts; (II) Severe global economic, political, and/or biological impacts; and (III) Extinction of humans. Acceptable risk thresholds are suggested to be one-in-a-million, one-in-one-hundred-million, and one-in-ten-billion, respectively. This equity-first, risk-based framework overcomes many criticisms of the current Kyoto Protocol: it explicitly involves all countries on earth; it avoids several administrative issues that are anticipated to plague a global carbon emissions trading market; and it avoids several contentious issues associated with pegging carbon emission reductions to 1990 levels. Because the framework is risk-based and emissions are tied to population and not historic emission levels, the basic framework would not have to be frequently renegotiated, as will be needed for the Kyoto-style approach to take the world past that agreement's 2012 endpoint.  相似文献   

8.
Exposure of plants to ozone inhibits photosynthesis and therefore reduces vegetation production and carbon sequestration. The reduced carbon storage would then require further reductions in fossil fuel emissions to meet a given CO2 concentration target, thereby increasing the cost of meeting the target. Simulations with the Terrestrial Ecosystem Model (TEM) for the historical period (1860–1995) show the largest damages occur in the Southeast and Midwestern regions of the United States, eastern Europe, and eastern China. The largest reductions in carbon storage for the period 1950–1995, 41%, occur in eastern Europe. Scenarios for the 21st century developed with the MIT Integrated Global Systems Model (IGSM) lead to even greater negative effects on carbon storage in the future. In some regions, current land carbon sinks become carbon sources, and this change leads to carbon sequestration decreases of up to 0.4 Pg C yr−1 due to damage in some regional ozone hot spots. With a climate policy, failing to consider the effects of ozone damage on carbon sequestration would raise the global costs over the next century of stabilizing atmospheric concentrations of CO2 equivalents at 550 ppm by 6 to 21%. Because stabilization at 550 ppm will reduce emission of other gases that cause ozone, these additional benefits are estimated to be between 5 and 25% of the cost of the climate policy. Tropospheric ozone effects on terrestrial ecosystems thus produce a surprisingly large feedback in estimating climate policy costs that, heretofore, has not been included in cost estimates.  相似文献   

9.
基于世界各国年碳排放总量数据和人口密度数据,将人口密度作为一项经济-人口综合指标来对碳排放进行空间分配,运用ArcGIS空间分析工具,做出了1950年、1980年、2014年共3期的全球碳排放空间分布格局图 (0.1?×0.1?),并对各期分布格局及变化进行了比较分析。结果显示:1950年主要碳排放区为美国的东部和欧洲地区,1980年新增中国东部、日本、韩国等为全球碳排放的主要区域,2014年新增印度、东南亚为主要排放区。各碳排放区的排放量总体上大幅增加,少数地区略有减少,这与其工业发展所处的不同阶段有关。该数据能够反映当前全球不同区域的碳排放水平的空间格局,为全球变化研究提供基础数据。  相似文献   

10.
The relationship between long-term climate goals and short/medium-term emission targets forms crucial information for the design of international climate policy. Since IPCC??s 4th Assessment Report (AR4), a large number of new scenario studies have been published. This paper reviews this new literature and finds that there is more flexibility in the timing of short-term emission reductions compared to the earlier scenarios assessed by the AR4. For instance, the current literature suggests that a peak of emissions in 2020 and even 2030 would be consistent with limiting temperature change to about 2??C in the long term. The timing when emissions peak depends on whether negative emissions in the long-term can be achieved. The recent scenarios further indicate that global emissions by 2050 should be 40?C80% below 2000 levels. Above all, the paper argues that there is no clear, single ??law?? that would directly determine the required emissions levels in 2020, but that instead policy-makers need to consider trade-offs between the likelihood of achieving long-term targets, the short-term costs, and their expectation with respect to future technologies (and their possible failure). The higher flexibility might be important in finding acceptable agreements on international climate policy.  相似文献   

11.
土地是人类赖以生存的重要资源,在受气候变化影响的同时其状况变化也在气候系统中起着关键作用。IPCC最新发布的气候变化与土地特别报告(SRCCL)系统反映了关于荒漠化、土地退化、可持续土地管理、粮食安全和陆地生态系统碳通量方面的最新科学认知,并探讨了如何进行更加可持续性的土地利用和管理以应对与土地相关的气候变化问题。文中从极端事件变化及其影响的角度,结合SRCCL与其他相关文献,予以分析和总结。结果表明,在全球变暖的背景下,极端天气气候事件的变化已经并将继续影响荒漠化和土地退化进程并对粮食安全造成冲击;而土地对气候系统的反馈作用,又会加剧气候变化并提高极端事件发生的概率和严重程度。面对气候变化尤其是极端事件给土地带来的巨大压力,必须坚持可持续的土地管理,通过减少包括土地和粮食系统在内的所有行业的排放,才有可能实现到21世纪末将全球平均升温控制在相对工业化前水平2℃以内的目标,以减轻气候变化对土地和粮食系统的负面影响。  相似文献   

12.
The impacts of climate change on river flood risk at the global scale   总被引:6,自引:0,他引:6  
This paper presents an assessment of the implications of climate change for global river flood risk. It is based on the estimation of flood frequency relationships at a grid resolution of 0.5?×?0.5°, using a global hydrological model with climate scenarios derived from 21 climate models, together with projections of future population. Four indicators of the flood hazard are calculated; change in the magnitude and return period of flood peaks, flood-prone population and cropland exposed to substantial change in flood frequency, and a generalised measure of regional flood risk based on combining frequency curves with generic flood damage functions. Under one climate model, emissions and socioeconomic scenario (HadCM3 and SRES A1b), in 2050 the current 100-year flood would occur at least twice as frequently across 40 % of the globe, approximately 450 million flood-prone people and 430 thousand km2 of flood-prone cropland would be exposed to a doubling of flood frequency, and global flood risk would increase by approximately 187 % over the risk in 2050 in the absence of climate change. There is strong regional variability (most adverse impacts would be in Asia), and considerable variability between climate models. In 2050, the range in increased exposure across 21 climate models under SRES A1b is 31–450 million people and 59 to 430 thousand km2 of cropland, and the change in risk varies between ?9 and +376 %. The paper presents impacts by region, and also presents relationships between change in global mean surface temperature and impacts on the global flood hazard. There are a number of caveats with the analysis; it is based on one global hydrological model only, the climate scenarios are constructed using pattern-scaling, and the precise impacts are sensitive to some of the assumptions in the definition and application.  相似文献   

13.
IPCC特别报告SRCCL关于气候变化与粮食安全的新认知与启示   总被引:3,自引:0,他引:3  
气候变化对粮食安全的影响是广泛的,不但影响粮食产量和品质,还会影响到农户的生计以及农业相关的产业发展等;而粮食系统在保障粮食安全的同时,又会产生一系列的环境问题,其中农业源温室气体(GHG)的排放加剧全球变暖。IPCC在2019年8月份发布的《气候变化与土地特别报告》(SRCCL),从粮食生产、加工、储存、运输及消费的各个环节评估气候变化对粮食安全的影响及粮食系统的温室气体排放对气候系统的影响;系统梳理粮食系统供给侧和需求侧的适应与减缓措施、适应与减缓的协同和权衡问题,以及气候变化条件下保障粮食安全的政策环境等。SRCCL评估结论认为,由于大量施用氮肥和消耗水资源,目前粮食系统GHG排放占全球总排放的21%~37%;农业和粮食系统是全球应对气候变化的重要方面,供给侧和需求侧的综合措施可以减少食物浪费、减少GHG排放、增加粮食系统的恢复力。未来工作的重点应丰富和扩展气候变化影响评估内容,量化适应效果,加深对适应、减缓及其协同和权衡的科学认知,大力加强应对气候变化能力建设。  相似文献   

14.
Impacts of thermohaline circulation shutdown in the twenty-first century   总被引:4,自引:1,他引:3  
We discuss climate impacts of a hypothetical shutdown of the thermohaline circulation (‘THC’) in the 2050s, using the climate model HadCM3. Previous studies have generally focussed on the effects on pre-industrial climate. Here we take into account increased greenhouse gas concentrations according to an IS92a emissions scenario. THC shutdown causes cooling of the Northern Hemisphere of -1.7?C, locally stronger. Over western Europe cooling is strong enough for a return to pre-industrial conditions and a significant increase in the occurrence of frost and snow cover. Global warming restricts the increase in sea ice cover after THC shutdown. This lessens the amount of cooling over NW Europe, but increases it over North America, compared to pre-industrial shutdown. This reflects a non-linearity in the local temperature response to THC shutdown. Precipitation change after THC shutdown is generally opposite to that caused by global warming, except in western and southern Europe, where summer drying is enhanced, and in Central America and southeast Asia, where precipitation is also further reduced. Local rise in sea level after THC shutdown can be large along Atlantic coasts (pm; 25,cm), which would add to the rise caused by global warming. Potentially rapid THC shutdown adds to the range of uncertainty of projected future climate change.  相似文献   

15.
In the debate on the timing of greenhouse gas emissions reductions the aspect of political feasibility has often been missing. We introduce this aspect and show that, if we decide to delay emissions reductions, and the environmental effectiveness of global mitigation efforts is to remain the same in terms of temperature change, we must be willing and able to undertake much more substantial emission reductions than with early action. Even under conservative assumptions on initial political feasibility (maximum 0.25% year-on-year reductions), a 20-year delay means that we must reduce emissions at an annual rate that is 5 to 11 times greater than with early climate action. Our capacity for technological progress, political change and the inertia of the socio-economic system gives us reason to be concerned about our ability to achieve such higher rates of emission reductions. If we are not able to achieve such higher rates, delaying action will inevitably result in higher temperatures in 2100. Unless we are willing to accept higher temperatures, choosing to delay climate action is a gamble that political feasibility will increase over time as a result of the delay itself.  相似文献   

16.
Emissions of air pollutants such as sulfur and nitrogen oxides and particulates have significant health impacts as well as effects on natural and anthropogenic ecosystems. These same emissions also can change atmospheric chemistry and the planetary energy balance, thereby impacting global and regional climate. Long-term scenarios for air pollutant emissions are needed as inputs to global climate and chemistry models, and for analysis linking air pollutant impacts across sectors. In this paper we present methodology and results for air pollutant emissions in Shared Socioeconomic Pathways (SSP) scenarios. We first present a set of three air pollution narratives that describe high, central, and low pollution control ambitions over the 21st century. These narratives are then translated into quantitative guidance for use in integrated assessment models. The resulting pollutant emission trajectories under the SSP scenarios cover a wider range than the scenarios used in previous international climate model comparisons. In the SSP3 and SSP4 scenarios, where economic, institutional and technological limitations slow air quality improvements, global pollutant emissions over the 21st century can be comparable to current levels. Pollutant emissions in the SSP1 scenarios fall to low levels due to the assumption of technological advances and successful global action to control emissions.  相似文献   

17.
A rational global strategy with respect to greenhouse-gas emissions would seek to minimize total risk, which is the sum of the risk of negative impacts due to climatic change associated with a given level of emissions, and the risks associated with the process of achieving that emission level. Given the existence of reducible uncertainties in estimating these risks, and the possibility that an emission target thought to minimize total risk is later found to be not strict enough, a risk-hedging strategy is a more realistic policy objective. This paper is Part I of a two-part series in which these risks are reviewed and an interim risk-hedging emission level is proposed. Here, the risks associated with unrestrained greenhouse-gas emissions are reviewed. In particular, the carbon-cycle response to continuing CO2 emissions; the heat trapping of projected greenhouse gas increases in comparison to other anthropogenic and natural heating or cooling perturbations; the climatic response to heating perturbations; and the impacts of projected climatic change on global agriculture, forests, coastal regions, coral reefs, water resources, terrestrial species, stratospheric and tropospheric ozone, and human comfort and welfare are critically examined. It is concluded that unrestrained emissions of greenhouse gases pose real and substantial risks to human societies and to ecosystems, and that these risks are likely to grow substantially if the climate warms beyond that associated with a CO2 doubling. These risks clearly justify some action to limit emissions. The magnitude of emission restraint that is justified depends not only on the risks reviewed here, but also on the risks associated with measures to limit greenhouse-gas emissions, which are reviewed in Part II.  相似文献   

18.
Urban areas are pivotal to global adaptation and mitigation efforts. But how do cities actually perform in terms of climate change response? This study sheds light on the state of urban climate change adaptation and mitigation planning across Europe. Europe is an excellent test case given its advanced environmental policies and high urbanization. We performed a detailed analysis of 200 large and medium-sized cities across 11 European countries and analysed the cities’ climate change adaptation and mitigation plans. We investigate the regional distribution of plans, adaptation and mitigation foci and the extent to which planned greenhouse gas (GHG) reductions contribute to national and international climate objectives. To our knowledge, it is the first study of its kind as it does not rely on self-assessment (questionnaires or social surveys). Our results show that 35 % of European cities studied have no dedicated mitigation plan and 72 % have no adaptation plan. No city has an adaptation plan without a mitigation plan. One quarter of the cities have both an adaptation and a mitigation plan and set quantitative GHG reduction targets, but those vary extensively in scope and ambition. Furthermore, we show that if the planned actions within cities are nationally representative the 11 countries investigated would achieve a 37 % reduction in GHG emissions by 2050, translating into a 27 % reduction in GHG emissions for the EU as a whole. However, the actions would often be insufficient to reach national targets and fall short of the 80 % reduction in GHG emissions recommended to avoid global mean temperature rising by 2 °C above pre-industrial levels.  相似文献   

19.
Integrated assessment models (IAMs) have commonly been used to understand the relationship between the economy, the earth’s climate system and climate impacts. We compare the IPCC simulations of CO2 concentration, radiative forcing, and global mean temperature changes associated with five SRES ‘marker’ emissions scenarios with the responses of three IAMs—DICE, FUND and PAGE—to these same emission scenarios. We also compare differences in simulated temperature increase resulting from moving from a high to a low emissions scenario. These IAMs offer a range of climate outcomes, some of which are inconsistent with those of IPCC, due to differing treatments of the carbon cycle and of the temperature response to radiative forcing. In particular, in FUND temperatures up until 2100 are relatively similar for the four emissions scenarios, and temperature reductions upon switching to lower emissions scenarios are small. PAGE incorporates strong carbon cycle feedbacks, leading to higher CO2 concentrations in the twenty-second century than other models. Such IAMs are frequently applied to determine ‘optimal’ climate policy in a cost–benefit approach. Models such as FUND which show smaller temperature responses to reducing emissions than IPCC simulations on comparable timescales will underestimate the benefits of emission reductions and hence the calculated ‘optimal’ level of investment in mitigation.  相似文献   

20.
Carbon dioxide emissions need to be reduced well below current emissions if atmospheric concentrations are to be stabilised at a level likely to avoid dangerous climate change. We investigate how delays in reducing CO2 emissions affect stabilisation scenarios leading to overshooting of a target concentration pathway. We show that if geo-engineering alone is used to compensate for the delay in reducing CO2 emissions, such an option needs to be sustained for centuries even though the period of overshooting emissions may only last for a few decades. If geo-engineering is used for a shorter period, it has to be associated with emission reductions significantly larger than those required to stabilise CO2 without overshooting the target. In the presence of a strong climate–carbon cycle feedback the required emission reductions are even more drastic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号