首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 708 毫秒
1.
基于新疆2013—2016年地闪定位监测资料,对新疆的地闪活动特征进行分析。结果表明:新疆地闪以负地闪为主,占地闪总数的84.7%。年均正地闪所占比例为15.3%,高于内蒙古高原的9.6%。地闪密度总体值小于0.714次/km2?a,呈现出北疆大于南疆,西部地区大于东部地区,山区大于沙漠戈壁的形式;地闪月和日分布均成单峰型,月分布高发期在6—8月,日变化主要集中在14—20时;地闪强度百分率呈现单峰型分布,且负地闪的分布曲线与总地闪基本一致。正地闪出现频率在强度达到30—40kA时出现峰值,为正地闪次数的16.5%;地闪雷电流强度全年变化幅度较小,均呈现先减小后增大的变化趋势。正地闪的平均雷电流强度达59.7kA,为负地闪的1.8倍;上午的平均雷电流强度皆大于下午。  相似文献   

2.
2007—2015年京津冀地区闪电分布特征   总被引:1,自引:0,他引:1  
利用2007—2015年京津冀地区闪电定位系统地闪监测资料和地面雷暴观测资料,对京津冀地区闪电的分布特征进行了统计和对比分析。结果表明:2007—2015年京津冀地区人工观测的雷暴总数与闪电定位系统观测的总地闪数值不同,但二者时间分布具有较好的一致性;地面人工雷暴观测受观测规范的限制,主要反映雷暴日的概念,对比而言,闪电定位系统观测的地闪更接近实际闪电的分布。2007—2015年京津冀地区正地闪占总地闪的比例为7.8%,不同季节和不同地区正地闪占总地闪的比例不同。各月正地闪分布相对均匀,与总地闪和负地闪不同,但总地闪、正地闪和负地闪的日变化特征无明显区别。京津冀地区地闪高密度区集中出现在山脉与平原过渡带和海陆交界处。  相似文献   

3.
孙丽娜 《山东气象》2016,36(2):48-53
利用泰安地区2007—2014年的地闪资料,研究该区域范围内地闪时空分布特征及其规律。结果表明:泰安地区负地闪比例为98.54%,远大于正地闪比例1.46%;地闪活动的空间分布总体表现为东部多于西部、山地多于平原;地闪夏季发生最多,春季次之,再次秋季,冬季最少;负地闪、总地闪8月份最多,正地闪7月份最多;地闪的日变化曲线总体不具有明显的峰谷型;正地闪平均电流强度为24.15kA,明显大于负地闪平均电流强度9.92kA;正地闪电流强度主要集中分布在10~20kA,其次为20~30kA,负地闪电流强度主要集中分布在-10~0kA,其次为-20~-10kA。  相似文献   

4.
中国内陆高原地闪特征的统计分析   总被引:29,自引:3,他引:29  
利用微秒级时间分辨率的宽带慢天线电场变化仪首次在中国内陆高原地区对雷暴过程中的正、负地闪特征进行了测量和系统分析 ,发现每次雷暴过程中正闪的比例有随总闪频数增大而减少的趋势 ,弱雷暴过程更有利于正地闪的产生。平均来讲 ,正地闪占闪电总数的 16 % ,介于美国夏季雷暴和日本冬季雷暴之间。负地闪闪击间隔的算术平均值和几何平均值分别为 6 4.3ms和 46 .6ms。 5 4%的负地闪有至少一次继后回击强度大于首次回击 ,而且有 2 0 %的继后回击其强度大于首次回击强度。继后回击强度与首次回击强度的比例几何平均值为 0 .46 ,算术平均值为 0 .70 ,平均回击数为 3.76 ,39.8%为单次回击地闪。正地闪的多次回击只占 13.0 % ,且闪击之间的时间间隔也较大 ,算术平均值为 91.7ms。  相似文献   

5.
利用我国中部五省52个闪电监测站2007—2010年闪电定位资料,分析该区域闪电的电流强度、陡度、频数、闪电密度的时空分布特征。结果表明:中部五省云地闪电中负极性闪电数均占总闪数的95%以上;正闪平均强度为66.47 kA,负闪平均强度-44.22 kA;闪电频数日分布曲线呈单峰单谷型,最多时段在14—20时,较少时段...  相似文献   

6.
利用西天山地区14个气象站1960-2010年雷暴资料和新疆雷电监测网2008年观测资料,分析了西天山地区雷暴和闪电变化特征。结果表明:西天山地区年平均雷暴日数分布呈东西多,南北少的形势。该区域年平均雷暴日数在17.3~85.5 d之间,并以2.7 d/10 a的速率减少。西天山地区雷暴日数的年变化呈单峰型,并在6-7月达到最大值。整个区域以正闪为主,正闪占总闪的比例达66%。该区域闪电电流强度在-130~+63 kA之间,负闪强度大于正闪强度。  相似文献   

7.
为研究天津地区雷电流幅值特征,选取2008—2018年ADTD闪电定位数据,研究分析了雷电流幅值时间分布特征和累积概率分布特征。结果表明:天津地区11 a间共计发生闪电106474次,负闪占比89.26%,远高于正闪;雷电流幅值主要集中在2—100 kA,占闪电总数的97.76%,160—200 kA范围内的闪电次数较少,平均正闪电流强度明显大于负闪电流强度;雷电流强度季节特征较为显著,正闪雷电流强度呈双峰分布,负闪雷电流强度分布较为平均,春季正闪活动频繁,秋季次之,夏季负闪频发,冬季雷电活动发生较少,以正闪居多;雷电流高于25 kA时,正闪电流幅值累积概率显著高于负闪,低于25 kA时,负闪电流幅值累积概率高于正闪。负闪电流幅值的累积概率分布与总闪更为接近,与正闪分布差异显著,闪电总数电流累计概率分布主要受负闪影响。通过对比分析发现IEEE工作组(电气与电子工程师协会)推荐的累积概率分布函数更适合于天津地区,特别是雷电流幅值在25—55 kA范围内时,累积概率与推荐公式基本相同。将天津地区雷电流幅值累积概率公式尝试应用于雷电灾害风险评估中,可为精准确定雷电灾害风险评估参数P_(B)取值,精确计算雷击建筑物损失风险提供参考。  相似文献   

8.
基于浙江省ADTD闪电定位系统监测的近十年地闪资料,研究闪电定位系统不同定位方式的探测效率,分析了各定位方式监测到的地闪频次的时空分布以及强度特征。结果表明:2站定位监测的地闪占总地闪的1/3多,4站定位监测的地闪占1/2左右,3站定位监测的地闪最少。各定位方式监测的地闪占比与日地闪数呈近似指数分布特征,日地闪数小于500次,地闪资料以2站定位为主。2站定位监测的正、负地闪强度只有4站定位地闪强度的1/2左右。在空间分布上,2站定位监测的地闪主要集中在各站点周边,且以各站点的连线呈放射状分布,空间分布不合理。多站定位数据的占比一定程度上可用来说明闪电定位数据的质量,为合理使用地闪资料提供了参考依据。  相似文献   

9.
根据2008年闪电定位资料,结合FY2C卫星云图和吉林省高密度自动观测站网的降雨资料,分析强对流天气中正、负地闪变化特征。结果表明:当强对流发展到最旺盛的时候,地闪强度和数量也达到最大值(地闪以负闪为主);地闪主要发生在云团主体的左侧上风区,随着强降水的开始,地闪强度开始减弱;比较密集的地闪发生,通常预示着强对流天气的发生。一般在云团发展和消亡阶段以及降雹过程中,正闪在总地闪中的比例相对较大。在雷暴过程中闪电定位资料比卫星云图资料有1h的提前量,对雷暴天气短时预警工作有较好的参考作用和应用价值。  相似文献   

10.
冀南地区一次强雷暴过程分析   总被引:4,自引:1,他引:3  
利用MTSAT卫星云图、雷达回波、常规天气资料和闪电资料,对2007年7月18日邯郸地区强雷暴天气过程进行了综合分析,结果表明:雷暴云的发展与水汽通量、不稳定区有较好的对应关系.雷暴初始阶段,地闪以负闪为主,正闪较少;随云系发展,闪电密度增大;云系发展成熟阶段,正闪密度变化不大,负闪密度明显减小.雷暴云回波强度>36 dBz,就有闪电发生,且强回波区与闪电区一致.  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

17.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

18.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

19.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号