首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 112 毫秒
1.
Linella avis, an early to middle Neoproterozoic (Tonian to Cryogenian) stromatolite, occurs in the Eliot Range Dolomite, part of the Ruby Plains Group in the Wolfe Basin, east Kimberley. Previously, this dolomite was assigned to the Mesoproterozoic Bungle Bungle Dolomite in the Osmond Basin, which contains a different suite of stromatolites. Linella avis, which also occurs in the Neoproterozoic Bitter Springs Formation of the Amadeus Basin, central Australia, appears to be restricted to rocks aged around 850 to 800 Ma. The presence of L. avis indicates that the Ruby Plains Group is a probable correlative of the Heavitree Quartzite and Bitter Springs Formation, and is probably much younger than the Bungle Bungle Dolomite. If the correlation suggested here is correct, the Wolfe Basin, together with the Amadeus and Ngalia Basins, formed part of the Centralian Superbasin.  相似文献   

2.
Twenty‐four mineral separates from the Arunta Complex, four from the metamorphosed Heavitree Quartzite (White Range Quartzite), and one whole rock sample of metamorphosed Bitter Springs Formation, all from the western part of the White Range Nappe of the Arltunga Nappe Complex, and two samples from the autochthonous basement west of the nappe have been dated by the K‐Ar method. The samples from the basement rocks form two groups. Those in the southern or frontal part of the nappe are of Middle Proterozoic (Carpentarian) age (1660–1368 m.y.), determined on hornblende, biotite, and muscovite. In the northern or rear part of the nappe, all but one of the muscovite samples and two biotites are of Middle Silurian to Early Carboniferous age (431–345 m.y.); the remainder of the biotite dates range from 1775 to 548 m.y. (including the two samples from the autochthon), and two hornblendes gave dates of 1639 and 2132 m.y. respectively. All the muscovite samples from the Heavitree Quartzite, and the whole rock sample from the Bitter Springs Formation gave Early to Middle Carboniferous dates (358–322 m.y.). The findings support the identification of the White Range Quartzite as the metamorphosed part of the Heavitree Quartzite, which in turn supports the interpretation of the structure of the area as a large, basement‐cored fold nappe. In addition, they date the time of the Alice Springs Orogeny as pre‐Late Carboniferous, which agrees with fossil evidence from elsewhere in the area. The Alice Springs Orogeny was accompanied by widespread greenschist facies meta‐morphism that progressively metamorphosed the Heavitree Quartzite and Bitter Springs Formation, and retrogressively metamorphosed the Arunta Complex. However, the basement rocks in the southern part of the nappe escaped this metamorphism and retain a Middle Proterozoic age, thus dating the time of the Arunta Orogeny in this region as Carpentarian or older.  相似文献   

3.
Abstract Large calcite veins and pods in the Proterozoic Corella Formation of the Mount Isa Inlier provide evidence for kilometre-scale fluid transport during amphibolite facies metamorphism. These 10- to 100-m-scale podiform veins and their surrounding alteration zones have similar oxygen and carbon isotopic ratios throughout the 200 × 10-km Mary Kathleen Fold Belt, despite the isotopic heterogeneity of the surrounding wallrocks. The fluids that formed the pods and veins were not in isotopic equilibrium with the immediately adjacent rocks. The pods have δ13Ccalcite values of –2 to –7% and δ18Ocalcite values of 10.5 to 12.5%. Away from the pods, metadolerite wallrocks have δ18Owhole-rock values of 3.5 to 7%. and unaltered banded calc-silicate and marble wallrocks have δ13Ccalcite of –1.6 to –0.6%, and δ18Ocalcite of 18 to 21%. In the alteration zones adjacent to the pods, the δ18O values of both metadolerite and calc-silicate rocks approach those of the pods. Large calcite pods hosted entirely in calc-silicates show little difference in isotopic composition from pods hosted entirely in metadolerite. Thus, 100- to 500-m-scale isotopic exchange with the surrounding metadolerites and calc-silicates does not explain the observation that the δ18O values of the pods are intermediate between these two rock types. Pods hosted in felsic metavolcanics and metasiltstones are also isotopically indistinguishable from those hosted in the dominant metadolerites and calc-silicates. These data suggest the veins are the product of infiltration of isotopically homogeneous fluids that were not derived from within the Corella Formation at the presently exposed crustal level, although some of the spread in the data may be due to a relatively small contribution from devolatilization reactions in the calc-silicates, or thermal fluctuations attending deformation and metamorphism. The overall L-shaped trend of the data on plots of δ13C vs. δ18O is most consistent with mixing of large volumes of externally derived fluids with small volumes of locally derived fluid produced by devolatilization of calc-silicate rocks. Localization of the vein systems in dilatant sites around metadolerite/calc-silicate boundaries indicates a strong structural control on fluid flow, and the stable isotope data suggest fluid migration must have occurred at scales greater than at least 1 km. The ultimate source for the external fluid is uncertain, but is probably fluid released from crystallizing melts derived from the lower crust or upper mantle. Intrusion of magmas below the exposed crustal level would also explain the high geothermal gradient calculated for the regional metamorphism.  相似文献   

4.

The geology, stable isotopes and fluid inclusions from mineralized and unmineralized Middle Proterozoic sequences of the McArthur Basin, Northern Territory, have been studied at Eastern Creek, Bulman Mines, Beetle Springs, and other localities in the McArthur Basin where disseminated sulphides in unmineralized black shales were available from drill core. At Eastern Creek, galena and minor chalcopyrite (δ34S+3.6 to +11.2%o) occur in an evaporitic sedimentary sequence. Barite (δ34S+18.4 to +24.7%o) also occurs, and saline brines are trapped along healed fractures in the barite. Pressure‐corrected trapping temperatures in the barite (95–138°C), and in vein dolomite (158–168°C) agree with temperature estimates from the degree of maturation of the sedimentary organic matter. The δ18O and δ13CCo2 values of the mineralizing fluid were calculated to be +3.5 to +4.5%o and ‐2.7%o, respectively. Sedimentary dolomite has restricted δ13C and δ18O ranges, within the reported ranges for non‐mineralized Middle Proterozoic dolomite. An ore formation model developed for Eastern Creek, in which a basinal fluid at about 200°C carrying base metals and sulphide was released from underlying sediments during local fault movement, may be applicable to a number of other deposits. The mineralization deposited from these fluids occurs only below the pre‐Roper Group unconformity, implying that it may be older than the basal Roper Group. The δ34S values of iron sulphides in fine grained black dolostones (not associated with mineral deposits) from the McArthur Basin were assessed in the light of the values found for sulphides in modern organic‐rich sedimentary environments. The data so obtained suggest that the considerable concentration of iron sulphide in the mineral deposits formed, at least in part, from heated basinal waters and that disseminated iron sulphides remote from mineralization also formed from a similar source.  相似文献   

5.
Abstract: The disseminated Au‐Ag telluride Bulawan deposit, Negros island, Philippines, is hosted by dacite porphyry breccia pipes which formed in a Middle Miocene dacite porphyry stock. Electrum and Au‐Ag tellurides occur mostly as grains intergrown with or filling voids between sphalerite, pyrite, chalcopyrite, galena and tennantite. Calcite, quartz and rare dolomite are the principal gangue minerals. Four types of alteration were recognized in the deposit, namely; propylitic, K‐feldspar‐sericitic, sericitic and carbonate alteration. Carbonate alteration is correlatable to the gold deposition stage and occurs mostly along fault zones. The δ18O and δ13C compositions of calcite and dolomite in propylite zone and ore‐stage dacite porphyry breccia were determined. The δ18O values of calcite in propylitized andesite range from +12.2 to +14.7%, and their δ13C values range from ‐6.1 to ‐1.0%. The δ18O values of calcite and dolomite in sericite‐ and carbonate‐altered, mineralized dacite porphyry breccia and dacite porphyry rocks range from +15.1 to +23.1%, and the δ13C values of calcite and dolomite range from ‐3.9 to +0.9%. The δ18O and δ13C values of the hydrothermal fluids were estimated from inferred temperatures of formation on the basis of fluid inclusion microthermometry. The δ18O values of hydrothermal fluid for the propylitic alteration were calculated to be +8.5 ‐ +9.5%, assuming 375°C. On the other hand, the δ18O values of ore solutions for base metal and Au mineralization were computed to be +13.6 ‐ +14.6%, assuming 270°C. The hydrothermal fluids that formed the Bulawan deposit are dilute and 18O‐enriched fluids which reacted with 18O‐ and 13C‐rich wallrocks such as limestone.  相似文献   

6.

This study uses carbon isotope chemostratigraphy to propose an age for the Success Creek Group and Crimson Creek Formation in the absence of any direct radiometric dates, palaeomagnetic or reliable palaeontological data. The δ13C values were determined for the least‐altered dolomite samples. Suitable samples were selected on the basis of grainsize, cathodoluminescence petrography, most enriched δ18O values (> 2%o) low Mn/Sr ratios and low Fe and Mn concentrations. The average least‐altered, most 13C‐enriched dolomicrite samples in the youngest (No. 1) dolomite horizon are + 4.6%o. This is typical of Neoproterozoic (but not Cambrian) carbonates. The δ13C values of all dolomite samples in the succession are significantly positive (up to + 7.5%o) and the excursion characteristic of the Proterozoic/Cambrian boundary has not been observed. The lack of negative δ13C values in all dolomite samples studied also suggests an absence of correlatives of Sturtian and Varanger tillites in the dolomite successions. The δ13C values in all three dolomite horizons suggest a Neoproterozoic age between about 820 to 570 Ma (Cryogenian to Neoproterozoic III) on the current global compilation carbon isotope curves. This age for the Success Creek Group and Crimson Creek Formation, inferred from carbon isotope chemostratigraphy, can be substantiated by other evidence. The age of the Renison dolomites is constrained by K‐Ar dates of 708 ± 6 Ma from detrital muscovite in the underlying Oonah Formation and 588 ± 8 and 600 ± 8 Ma from doleritic rock in a lithostratigraphic equivalent of the Crimson Creek Formation from the Smithton Basin. Furthermore, acritarchs and the stromatolite Baicalia cf. B. burra also suggest a Neoproterozoic rather than Cambrian age.  相似文献   

7.
A major, linear, west-trending deformed zone (The Redbank Zone), 350 km long and up to 20 km wide, can be identified in the Arunta Block immediately north of the Amadeus Basin. The marked linearity of this zone and of the coincident gravity anomaly probably result from thrust-fault movement during the Carboniferous Alice Springs Orogeny. However, in the Ormiston area, there is evidence that the zone originated prior to 1070 m.y. and acted as a major crustal feature controlling the later orogenic event.The Alice Springs Orogeny affected the overlying Proterozoic and Lower Palaeozoic cover rocks as well as the Arunta Block basement. During the orogeny, steep north-dipping thrusts within the Redbank Zone were reactivated causing uplift to the north. These faults penetrated the Heavitree Quartzite—the basal unit of the cover sequence—to drive wedges of basement, with attached veneers of Heavitree Quartzite, for up to 20 km southward within the overlying Bitter Springs Formation. The nappes did not reach the surface or penetrate formations above the Bitter Springs. Accompanying nappe emplacement the Basin to the south rapidly deepened to receive a thick wedge of synorogenic molasse sediments.Gravity, sedimentary and structural features combine to suggest that the Alice Springs orogeny movements reached their maximum on the central part of the northern margin of the Amadeus Basin, in the Ormiston area.  相似文献   

8.
The basal unit of the Amadeus Basin sequence is the Heavitree Quartzite, and this formation usually forms a single east‐west ridge along the northern side of the MacDonnell Ranges. However, at Alice Springs there are two such ridges. Basement rocks crop out on the northern side of each ridge, and dolomite and shale of the Bitter Springs Formation crop out on their southern sides. The northern outcrop of dolomite and shale is tightly folded, and is separated from the southern outcrop of basement by a major fault. The bedding of the sediments, the axial plane of the fold, and the fault all dip south at about 45°. Inverted facings on parasitic folds indicate that the northern outcrop of quartzite and dolomite plus shale is an antiform in inverted rocks. Hence the southern outcrop of basement and quartzite is synformal, and is interpreted as the frontal part of a fold nappe. The nappe started as a recumbent anticline whose middle limb of quartzite sheared out as the anticline travelled several kilometres southwards relative to the dolomite and shale below, which formed a tight recumbent syncline. Later monoclinal uplift of the northern half of the area tilted the nappe into its present south‐dipping attitude, thus converting the recumbent anticline into a synform and the recumbent syncline into an antiform.  相似文献   

9.
Mineral stable isotopic and trace element studies in 2 GPa banded eclogites of the Tauern Window, eastern Alps, record mm- to cm-scale heterogeneities that reflect compositional variations in the accompanying metamorphic fluids. A close correlation between dolomite mode and dolomite δ18O is consistent with equilibrium partitioning among coexisting minerals and fluids. Small variations in dolomite δ13C values correspond with δ18O variations, but an overall decrease in dolomite δ13C by c. 1%o across a 12-cm sample is a relict feature that pre-dates eclogite equilibration. Garnet, omphacite, and clinozoisite rims show little systematic mineral-mineral partitioning behaviour for Ti, V, Cr, Y, Sr, or Zr; major elements, however, are well equilibrated among these same minerals. Despite the apparent lack of mineral-mineral trace element equilibration, most of the trace elements vary systematically with water activity calculated in each layer. Trace element behaviour during the eclogite metamorphism thus appears to have been controlled largely by mineral-fluid interactions along grain boundaries. Shallow structural levels in other subduction complexes (c. 10-45 km) typically exhibit fracture-controlled permeability and extensive metasomatism, but there is no field or geochemical evidence for extensive fluid advection during high-pressure metamorphism in the Tauern eclogites. Because most dewatering and devolatilization during tectonic burial occurs prior to eclogite conditions, the volumetric fluid/rock ratio in eclogites should generally be low. Low fluid/rock ratios, coupled with the possible non-wetting nature of the fluids, permits the production and preservation of fine-scale chemical heterogeneities in deeply subducted eclogites and associated fluids. However, the eventual breakdown at greater depth of volatile-bearing dolomite, phengite, clinozoisite, zoisite, or amphibole could lead to renewed fracture-controlled fluid release from the subducted rocks to regions appropriate for arc magma generation.  相似文献   

10.
The Swan Hills Formation (Middle-Upper Devonian) of the Western Canada Basin is host to several NW-SE-trending gas fields developed in massive replacement dolostone. One of these, the Rosevear Field, contains two major dolostone trends along opposing margins of a marine channel that penetrates into a platform-reef complex. Dolostones consist predominantly of branching and bulbous strdmatoporoid floatstones and rudstones with well-developed moldic and vuggy porosity. Replacement dolomite is coarsely crystalline (100-600 μm), inclusion-rich, composed of euhedral through anhedral crystals and has a blotchy to homogeneous red cathodoluminescence. Geochemically, replacement dolomite is characterized by (i) nearly stoichiometric composition (50.1-51.1 mol% CaCO3), (ii) negative δ18O values (mean=-7.5‰, PDB) and (iii) variable 87Sr/86Sr ratios ranging from values similar to Late Devonian-Early Mississippian seawater (~0.7082) to radiogenic compositions comparable to saddle dolomite cements (>0.7100). Dolomitization began after widespread precipitation of early, equant calcite spar and after the onset of pressure solution, implying that replacement dolomite formed in a burial environment. Oxygen isotope data suggest that dolomite formed at 35-75°C, temperatures reached during burial in Late Devonian through Jurassic time, at minimum depths of 450 m. The linear NW-SE orientation of most dolomite fields in the Swan Hills Formation is suggestive of fault control on fluid circulation. Two models are proposed for fault-controlled circulation of dolomitizing fluids at the Rosevear Field. In the first, compaction-driven, updip fluid migration occurred in response to basin tilting commencing in the Late Palaeozoic. Deep basinal fluids migrating updip were focused into channel-margin sediments along fault conduits. The second model calls upon fault-controlled convective circulation of (i) warm Devonian-Mississippian seawater or (ii) Middle Devonian residual evaporitic brines. The overlap in 87Sr/86Sr and δ18O compositions, and similar cathodoluminescence properties between replacement and saddle dolomites provide evidence for neomorphism of some replacement dolomite. Quantitative modelling of Sr and O isotopes and Sr abundances suggests partial equilibration of some replacement dolomite with hot radiogenic brines derived during deep burial of the Swan Hills Formation in the Late Cretaceous-Palaeocene. Interaction of replacement dolomite with deep brines led to enrichment in 87Sr while leaving δ18O similar to pre-neomorphism values.  相似文献   

11.
The Gordon Group carbonates consist of biota of the Chlorozoan assemblage, diverse non‐skeletal grains and abundant micrite and dolomite, similar to those of modern warm water carbonates. Cathodoluminescence studies indicate marine, meteoric and some burial cements. Dolomites replacing burrows, mudcracks and micrite formed during early diagenesis.

δ18O values (‐5 to ‐7%ō PDB) of the non‐luminescent fauna and marine cement are lighter than those of modern counterparts but are similar to those existing within low latitudes during the Ordovician because of the light δ18O values of Ordovician seawater (‐3 to ‐5%o SMOW). The δ18O difference (2%o) between marine and meteoric calcite indicates that Ordovician meteoric water was similar to that in modern subtropics. Values of δ13C relative to δ18O indicate that during the Early Ordovician there were higher atmospheric CO2 levels than at present but during the Middle and Late Ordovician they became comparable with the present because of a change from ‘Greenhouse’ to glacial conditions. δ18O values of Late Ordovician seawater were heavier than in the Middle Ordovician mainly because of glaciation.

Dolomitization took place in marine to mixed‐marine waters while the original calcium carbonate was undergoing marine to meteoric diagenesis.  相似文献   

12.
Post-Variscan hydrothermal base-metal mineralization of the Taunus ore district, SE Rhenish Massif (Germany), has been studied through combination of stable (S, C, O) and radiogenic (Pb) isotope geochemistry. Based on field and textural observations, five hydrothermal mineralization types can be distinguished. These are (1) tetrahedrite–tennantite bearing quartz–ankerite veins, (2) quartz veins with Pb–Zn–Cu ores, (3) giant quartz veins, (4) metasomatic dolomite in Devonian reef complexes, and (5) calcite–(quartz) mineralization in Devonian reefs. The δ18OV-SMOW quartz values of base-metal veins are in the range of 18.0–21.5‰, whereas those of giant quartz veins have lower values of 15.9–18.6‰. This difference reflects the higher fluid fluxes and smaller extent of rock-buffering for the giant quartz veins. Hydrothermal carbonates from the tetrahedrite and Pb–Zn–Cu veins have variable but distinctly negative δ13CV-PDB values. They can be explained by contributions from fluids that had picked up low δ13CV-PDB carbon via oxidation of organic matter and from fluids that interacted with Devonian reef carbonate having positive δ13CV-PDB. Metasomatic dolomite has positive δ13CV-PDB values that closely reflect those of the precursor limestone. By contrast, carbonates of calcite–(quartz) mineralization have negative δ13CV-PDB values which are negatively correlated with the δ18O values. This pattern is explained by fluid mixing processes where contributions from descending cooler fluids with rather low salinity were dominant. The isotope data suggest that tetrahedrite veins, Pb–Zn–Cu veins, and giant quartz veins formed from fluid mixing involving two end-members with contrasting chemical features. This is supported by fluid inclusion data (Adeyemi, 1982) that show repeated alternation between two different types of fluid inclusions, which are hotter intermediate- to high-salinity NaCl–CaCl2 fluids and cooler low-salinity NaCl-dominated fluids. The metal-rich saline fluids were likely generated at the boundary between the pre-Devonian basement and the overlying Devonian–Carboniferous nappe pile. Fault activation resulted in strong fluid focusing and upward migration of large volumes of hot Na–Ca brines, which mixed with cooler and more dilute fluids at shallower crustal levels. Variable contributions from both fluid types, local fluid fluxes, temperature variations, and variations in pH and oxidation state have then controlled the vein mineralogy and metal inventory.  相似文献   

13.
Detailed mapping and C and O stable isotopic data from sedimentary carbonate in units both above and below the paleo-erosion surface on the Bitter Springs Formation (BSF) in the northeastern Amadeus Basin, Australia, have clarified the stratigraphy of the area. Isotopic data indicate that the top of the Loves Creek Member of the Bitter Springs Formation is preserved near Corroboree Rock, and is overlain by fenestrate-carbonate-clast breccia, and dolomitic quartz sandstone and chert-pebble conglomerate of the Pioneer Sandstone. The isotopic data, as well as lithologic data, indicate the presence of a 1–2 m-thick cap carbonate preserved between Corroboree Rock and areas 10 km to the northeast. In many places the cap carbonate layer is mostly a syn-sedimentary dolomite-clast breccia, consistent with deposition and disturbance in shallow water. C and O isotopic data also indicate that thin-bedded sandstone and dolomite above the Bitter Springs Formation at Ellery Creek, and a newly discovered massive chert-bearing dolomite at Ross River could both belong to the glaciogenic Olympic Formation. Detailed mapping also provides a more detailed context for the famous black chert microfossil locality in the Bitter Springs Formation at Ross River.  相似文献   

14.
The Precambrian Dengying Formation is a set of large-scale, extensively dolomitized, carbonate reservoirs occurring within the Sichuan Basin. Petrographic and geochemical studies reveal dolomitization was a direct result of precipitation by chemically distinct fluids occurring at different times and at different intensities. Based on this evidence, dolomitization and multiple fluid flow events are analyzed, and three types of fluid evolution models are proposed. Results of analysis show that Precambrian Dengying Formation carbonates were deposited in a restricted peritidal environment(630–542 Ma). A high temperature and high Mg~(2+) concentration seawater was a direct result of dolomitization for the micrite matrix, and for fibrous aragonite in primary pores. Geochemical evidence shows low δ~(18)O values of micritic dolomite varying from-1.29‰ to-4.52‰ PDB, abundant light rare earth elements(REEs), and low dolomite order degrees. Microbes and meteoric water significantly altered dolomite original chemical signatures, resulting in algal micritic dolomite and the fine-grained, granular, dolosparite dolomite having very negative δ~(18)O values. Finely crystalline cement dolomite(536.3–280 Ma) and coarsely crystalline cement dolomite have a higher crystallization degree and higher order degree. The diagenetic sequence and fluid inclusion evidence imply a linear correlation between their burial depth and homogenization temperatures, which closely resemble the temperature of generated hydrocarbon. Compared with finely crystalline dolomite, precipitation of coarsely crystalline dolomite was more affected by restricted basinal fluids. In addition, there is a trend toward a more negative δ~(18)O value, higher salinity, higher Fe and Mn concentrations, REE-rich. Two periods of hydrothermal fluids are identified, as the exceptionally high temperatures as opposed to the temperatures of burial history, in addition to the presence of high salinity fluid inclusions. The early hydrothermal fluid flow event was characterized by hot magnesium-and silicon-rich fluids, as demonstrated by the recrystallized matrix dolomite that is intimately associated with flint, opal, and microcrystalline quartz in intergranular or intercrystalline pores. This event was likely the result of a seafloor hydrothermal chimney eruption during Episode I of the Tongwan Movement(536.3±5.5 Ma). In contrast, later hydrothermal fluids, which caused precipitation of saddle dolomite, were characterized by high salinity(15–16.05 wt% NaCl equivalent) and homogenization temperatures(250 to 265°C), δ~(18)O values that were more enriched, and REE signatures. Geochemical data and the paragenetic sequence indicate that this hydrothermal fluid was related to extensive Permian large igneous province activity(360–280 Ma). This study demonstrates the presence of complicated dolomitization processes occurring during various paleoclimates, tectonic cycles, and basinal fluids flow; results are a useful reference for these dolomitized Precambrian carbonates reservoirs.  相似文献   

15.
REE-fluorocarbonates as major REE minerals in the Bayan Obo deposit,the largest REE deposit in the world,were analyzed for their stable isotopic compositions,The δ^13 C and δ^18 O values of huanghoite,cebaite and bastnaesite from late-stage veins vary in the ranges of 7.8--4.0‰ and 6.7-9.4‰,respectively,These data are relatively similar to those of bastnaesites from banded ores:δ^13C-5.6--5.2‰ andδ^18O3.6-5.5‰.The REE fluorocarbonates from both late-staege veins and banded ores are characterized by lower δ^13 C and δ^18O values,especially the δ^18O values of bastnaesites from banded ores.Compared with them,the disseminated bastnaesits the dolomite-type ores possess rather highδ^13 C and δ^18O values,i.e.,-2.1-0.4‰ and 8.6-12.9‰ respectively.The high values are typical of the sedimentary host dolomite rocks as well as of the dolomite-type-ores.The carbon and oxygen isotopic characteristics of REE fluorocarbonate minerals provide new evidence for the hypothesis on the origin of Bayan Obo deposit-epigenetic hydrothermal metasomatism.  相似文献   

16.
Dolomites from the productive Osa horizon (upper subformation of the Lower Cambrian Bilir Formation) in the Talakan petroleum field show a prominent 1–2‰ decrease in δ18O (from 23–24 to 21–22‰), which presumably marks a zone of relatively high water/rock ratios. Productive boreholes are characterized by moderate δ34S values (from 25.1 to 30.6‰) and negative correlation between δ34S in anhydrite and δ18O in associated dolomite, which points to a partial sulfate reduction during catagenesis. In nonproductive borehole, δ34S values increase significantly (from 31.4 to 35.6‰) and show positive correlation with δ18O in dolomite. Rocks recovered by nonproductive borehole possibly recrystallized during early diagenesis, and, correspondingly lost their permeability and capacity to form pores. Limestones and dolomites of the Osa horizon have a carbon isotopic composition within the range of normal marine carbonates (δ13C = 0 ± 1 ‰), which does not indicate a significant role of organic matter in postsedimentary recrystallization of carbonate sediments. A positive δ13C excursion up to 4.5‰ recorded in the lower subformation of the Bilir Formation presumably occurred at the sedimentation stage under conditions of high rates of bioproductivity and organic matter burial in sediments.  相似文献   

17.
白云鄂博碳酸岩墙碳氧同位素地球化学   总被引:7,自引:3,他引:7  
对内蒙古白云鄂博 REE- Fe- Nb矿床周围碳酸岩墙中共存的方解石和白云石进行了 C和 O同位素分析。结果表明,方解石和白云石的δ 13C值变化范围一致,均为- 3.5‰~- 7.3‰,落在正常地幔δ 13C值范围 (- 5‰± 2‰ )内;而它们的δ 18O值可分为两组,第Ⅰ 组为 9.5‰~ 18.0‰,第Ⅱ 组为 20.6‰~ 22.6‰,均远大于正常地幔δ 18O值范围 (5.7‰± 1.0‰ )。第Ⅰ 组低δ 18O值样品中共存白云石与方解石之间的 C和 O同位素分馏均为负值,因此处于热力学不平衡状态,指示它们自形成后受到过后期热液蚀变,与先前的岩石学观察一致。相反,第Ⅱ 组高δ 18O值样品中白云石与方解石之间的 C和 O同位素分馏均为正值,处于热力学平衡状态,指示它们自形成后未受到后期热液蚀变,因此可能沉淀于晚期低温高δ 18O值流体。第Ⅰ 组碳酸岩墙中白云石的 C和 O同位素组成不呈线性分布,指示碳酸岩浆并非由幔源碳酸盐与沉积碳酸盐混合形成。应用水-岩交换模型计算得到,第Ⅰ 组碳酸岩在侵位后经历了碳酸岩浆期后热液的不均一蚀变,蚀变温度约在 220~ 800℃之间,蚀变流体的 CO2/H2O比值较小 (1/500),但水 /岩比值变化较大 (10~ 400)。由于低温下方解石与热液之间的碳氧同位素交换速率大于白云石,导致这部分碳酸  相似文献   

18.
A Rb‐Sr age of 897 ± 9 m.y. is obtained for dolerite from the Stuart Dyke Swarm in the southern part of the Arunta Block, Northern Territory. The dyke swarm presents an older age limit for the unconformably overlying Heavitree Quartzite, basal formation of the Amadeus Basin sequence. This limit is consistent with all isotopic data with the exception of previously determined glauconite ages from the Vaughan Springs Quartzite, a correlative of the Heavitree Quartzite in the Ngalia Basin.  相似文献   

19.
One of the main effects of supergene alteration of ore-bearing hydrothermal dolomite in areas surrounding secondary zinc orebodies (Calamine-type nonsulfides) in southwestern Sardinia (Italy) is the formation of a broad halo of Zn dolomite. The characteristics of supergene Zn dolomite have been investigated using scanning electron microscopy and qualitative energy-dispersive X-ray spectroscopy, thermodifferential analysis, and stable isotope geochemistry. The supergene Zn dolomite is characterized by variable amounts of Zn, and low contents of Pb and Cd in the crystal lattice. It is generally depleted in Fe and Mn relative to precursor hydrothermal dolomite (Dolomia Geodica), which occurs in two phases (stoichiometric dolomite followed by Fe-Mn-Zn-rich dolomite), well distinct in geochemistry. Mg-rich smithsonite is commonly associated to Zn dolomite. Characterization of Zn-bearing dolomite using differential thermal analysis shows a drop in temperature of the first endothermic reaction of dolomite decomposition with increasing Zn contents in dolomite. The supergene Zn dolomites have higher δ18O but lower δ13C values than hydrothermal dolomite. In comparison with smithsonite-hydrozincite, the supergene Zn dolomites have higher δ18O, but comparable δ13C values. Formation of Zn dolomite from meteoric waters is indicated by low δ13C values, suggesting the influence of soil-gas CO2 in near-surface environments. The replacement of the dolomite host by supergene Zn dolomite is interpreted as part of a multistep process, starting with a progressive “zincitization” of the dolomite crystals, followed by a patchy dedolomitization s.s. and potentially concluded by the complete replacement of dolomite by smithsonite.  相似文献   

20.
Centimetre‐ to decimetre‐wide quartz+calcite veins in schistes lustrés from Alpine Corsica were formed during exhumation at 30–40 Ma following blueschist facies metamorphism. The δ18O and δ13C values of the veins overlap those of the host schistes lustrés, and the δ18O values of the veins are much higher than those of other rocks on Corsica. These data suggest that the vein‐forming fluids were derived from the schistes lustrés. Fluids were probably generated by reactions that broke down carpholite, lawsonite, chlorite and white mica at 300–350 °C during decompression between c. 1400 and 800 MPa. However, the δ18O values of the veins are locally several per mil higher than expected given those of their host rocks. The magnitude of oxygen isotope disequilibrium between the veins and the host rock is inversely proportional to the δ18O value of the host rock. Additionally, calcite in some schists is in isotopic equilibrium with calcite in adjacent veins, but not with the silicate fraction of the schists. Locally, the schists are calcite bearing only within 1–20 cm of the veins. The vein‐forming fluids may have been preferentially derived from calcite‐bearing, high‐δ18O rocks that are common within the schistes lustrés and that locally contain abundant (>15%) veins. If the fluids were unable to completely isotopically equilibrate with the rocks, due to relatively rapid flow at moderate temperatures or being confined to fractures, they could form veins with higher δ18O values than those of the surrounding rocks. Alteration of the host rocks was probably inhibited by isolation of the fluid in ‘quartz‐armoured’ veins. Overall, the veins represent a metre‐ to hectometre‐scale fluid‐flow system confined to within the schistes lustrés unit, with little input from external sources. This fluid‐flow system is one of several that operated in the western Alps during exhumation following high‐pressure metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号