首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We examine the properties of galaxies in compact groups (CGs) identified in a mock galaxy catalogue based upon the Millennium Run simulation. The overall properties of groups identified in projection are in general agreement with the best available observational constraints. However, only ∼30 per cent of these simulated groups are found to be truly compact in three dimensions, suggesting that interlopers strongly affect our observed understanding of the properties of galaxies in CGs. These simulations predict that genuine CG galaxies are an extremely homogeneous population, confined nearly exclusively to the red sequence: they are best described as 'red and dead' ellipticals. When interlopers are included, the population becomes much more heterogeneous, due to bluer, star-forming, gas-rich, late-type galaxies incorrectly identified as CG members. These models suggest that selection of members by redshift, such that the line-of-sight velocity dispersion of the group is less than 1000 km s−1, significantly reduces contamination to the 30 per cent level. Selection of members by galaxy colour, a technique used frequently for galaxy clusters, is also predicted to dramatically reduce contamination rates for CG studies.  相似文献   

2.
We have compiled a sample of ∼ 9600 bright, i ≤18.95 , red, b J− r >2 , candidate galaxies in an area of 220 deg2. These are luminous, L > L * , field early-type galaxies with redshifts 0.3≲ z ≲0.6 . We present a redshift catalogue of a subsample of 581 targets. The galaxies were selected according to their broad-band b J ri colours from United Kingdom Schmidt Telescope plates, and have a surface density on the sky of only ∼ 50 deg−2. Such luminous field galaxies are virtually absent from published redshift surveys and the catalogue provides a large sample of the most luminous normal galaxies, at cosmological distances. The statistical properties of the galaxy spectra, including absorption-line and emission-line measures, are presented and a composite spectrum constructed. The nature of the sample, combined with the relatively bright apparent magnitudes, makes the galaxies suitable targets for several key investigations in galaxy evolution and cosmology.  相似文献   

3.
We examine the optical emission-line properties of brightest cluster galaxies (BCGs) selected from two large, homogeneous data sets. The first is the X-ray selected National Optical Astronomy Observatory Fundamental Plane Survey (NFPS), and the second is the C4 catalogue of optically selected clusters built from the Sloan Digital Sky Survey Data Release 3 (SDSS DR3). Our goal is to better understand the optical line emission in BCGs with respect to properties of the galaxy and the host cluster. Throughout the analysis we compare the line emission of the BCGs to that of a control sample made of the other bright galaxies near the cluster centre. Overall, both the NFPS and SDSS show a modest fraction of BCGs with emission lines (∼15 per cent). No trend in the fraction of emitting BCGs as a function of galaxy mass or cluster velocity dispersion is found. However, we find that, for those BCGs found in cooling flow clusters,  71+9−14  have optical emission. Furthermore, if we consider only BCGs within 50 kpc of the X-ray centre of a cooling flow cluster, the emission-line fraction rises further to  100+0−15  per cent. Excluding the cooling flow clusters, only ∼10 per cent of BCGs are line emitting, comparable to the control sample of galaxies. We show that the physical origin of the emission-line activity varies: in some cases it has LINER-like line ratios, whereas in others it is a composite of star-formation and LINER-like activity. We conclude that the presence of emission lines in BCGs is directly related to the cooling of X-ray gas at the cluster centre.  相似文献   

4.
We compare deep Magellan spectroscopy of 26 groups at  0.3 ≤ z ≤ 0.55  , selected from the Canadian Network for Observational Cosmology 2 field survey, with a large sample of nearby groups from the 2PIGG catalogue. We find that the fraction of group galaxies with significant [O  ii ]λ3727 emission (≥5 Å) increases strongly with redshift, from ∼29 per cent in 2dFGRS to ∼58 per cent in CNOC2, for all galaxies brighter than  ∼ M *+ 1.75  . This trend is parallel to the evolution of field galaxies, where the equivalent fraction of emission-line galaxies increases from ∼53 to ∼75 per cent. The fraction of emission-line galaxies in groups is lower than in the field, across the full redshift range, indicating that the history of star formation in groups is influenced by their environment. We show that the evolution required to explain the data is inconsistent with a quiescent model of galaxy evolution; instead, discrete events in which galaxies cease forming stars (truncation events) are required. We constrain the probability of truncation ( P trunc) and find that a high value is required in a simple evolutionary scenario neglecting galaxy mergers  ( P trunc≳ 0.3 Gyr−1)  . However, without assuming significant density evolution, P trunc is not required to be larger in groups than in the field, suggesting that the environmental dependence of star formation was embedded at redshifts   z ≳ 0.45  .  相似文献   

5.
We describe the construction of MegaZ-LRG, a photometric redshift catalogue of over one million luminous red galaxies (LRGs) in the redshift range  0.4 < z < 0.7  with limiting magnitude   i < 20  . The catalogue is selected from the imaging data of the Sloan Digital Sky Survey (SDSS) Data Release 4. The 2dF-SDSS LRG and Quasar (2SLAQ) spectroscopic redshift catalogue of 13 000 intermediate-redshift LRGs provides a photometric redshift training set, allowing use of ann z, a neural network-based photometric-redshift estimator. The rms photometric redshift accuracy obtained for an evaluation set selected from the 2SLAQ sample is  σ z = 0.049  averaged over all galaxies, and  σ z = 0.040  for a brighter subsample  ( i < 19.0)  . The catalogue is expected to contain ∼5 per cent stellar contamination. The ann z code is used to compute a refined star/galaxy probability based on a range of photometric parameters; this allows the contamination fraction to be reduced to 2 per cent with negligible loss of genuine galaxies. The MegaZ-LRG catalogue is publicly available on the World Wide Web from http://www.2slaq.info .  相似文献   

6.
We present the multiwavelength properties and catalogue of the 15 μm and 1.4 GHz radio sources detected in the European Large Area ISO Survey ( ELAIS ) areas N1 and N2. Using the optical data from the Wide Field Survey we use a likelihood ratio method to search for the counterparts of the 1056 and 691 sources detected at 15 μm and 1.4 GHz, respectively, down to flux limits of   S 15= 0.5 mJy  and   S 1.4 GHz= 0.135 mJy  . We find that ∼92 per cent of the 15 μm ELAIS sources have an optical counterpart down to   r '= 24  . All mid-infrared (IR) sources with fluxes   S 15≥ 3 mJy  have an optical counterpart. The magnitude distribution of the sources shows a well-defined peak at relatively bright magnitudes   r '∼ 18  . The mid-IR-to-optical and radio-to-optical flux diagrams are presented and discussed in terms of actual galaxy models. About 15 per cent of the sources are bright galactic stars; of the extragalactic objects ∼65 per cent are compatible with being normal or starburst galaxies and ∼25 per cent active galactic nuclei (AGNs). Objects with mid-IR-to-optical fluxes larger than 100 are found, comprising ∼20 per cent of the sample. We suggest that that these sources are highly obscured luminous and ultraluminous starburst galaxies and AGNs.  相似文献   

7.
We determine the underlying shapes of spiral and elliptical galaxies in the Sloan Digital Sky Survey Data Release 6 (SDSS DR6) from the observed distribution of projected galaxy shapes, taking into account the effects of dust extinction and reddening. We assume that the underlying shapes of spirals and ellipticals are well approximated by triaxial ellipsoids. The elliptical galaxy data are consistent with oblate spheroids, with a correlation between luminosity and ellipticity: the mean values of minor to middle axis ratios are 0.41 ± 0.03 for   M r ≈−18  ellipticals and 0.76 ± 0.04 for   M r ≈−22.5  ellipticals. Ellipticals show almost no dependence of axial ratio on galaxy colour, implying a negligible dust optical depth.
There is a strong variation of spiral galaxy shapes with colour indicating the presence of dust. The intrinsic shapes of spiral galaxies in the SDSS DR6 are consistent with flat discs with a mean and dispersion of thickness to diameter ratio of (21 ± 2) per cent, and a face-on ellipticity, e , of  ln( e ) =−2.33 ± 0.79  . Not including the effects of dust in the model leads to discs that are systematically rounder by up to 60 per cent. More luminous spiral galaxies tend to have thicker and rounder discs than lower luminosity spirals. Both elliptical and spiral galaxies tend to be rounder for larger galaxies.
The marginalized value of the edge-on r -band dust extinction E 0 in spiral galaxies is   E 0≃ 0.45  mag for galaxies of median colours, increasing to   E 0= 1  mag for   g − r > 0.9  and   E 0= 1.9  for the luminous and most compact galaxies, with half-light radii  <2  h −1 kpc  .  相似文献   

8.
Using the spectroscopic sample of the Sloan Digital Sky Survey Data Release 1 (SDSS DR1), we measure how gas was transformed into stars as a function of time and stellar mass: the baryonic conversion tree (BCT). There is a clear correlation between early star formation activity and present-day stellar mass: the more massive galaxies have formed approximately 80 per cent of their stars at   z > 1  , while for the less massive ones the value is only approximately 20 per cent. By comparing the BCT with the dark matter merger tree, we find indications that star formation efficiency at   z > 1  had to be approximately a factor of two higher than today (∼10 per cent) in galaxies with present-day stellar mass larger than  2 × 1011 M  , if this early star formation occurred in the main progenitor. Therefore, the λ cold dark matter (LCDM) paradigm can accommodate a large number of red objects. On the other hand, in galaxies with present-day stellar mass less than  1011 M  , efficient star formation seems to have been triggered at   z ∼ 0.2  . We show that there is a characteristic mass  ( M *∼ 1010 M)  for feedback efficiency (or lack of star formation). For galaxies with masses lower than this, feedback (or star formation suppression) is very efficient while for higher masses it is not. The BCT, determined here for the first time, should be an important observable with which to confront theoretical models of galaxy formation.  相似文献   

9.
We have selected and analysed the properties of a sample of  2905 Ks < 21.5  galaxies in  ∼131 arcmin2  of the Great Observatories Origins Deep Survey (GOODS) Chandra Deep Field South (CDFS), to obtain further constraints on the evolution of Ks -selected galaxies with respect to the results already obtained in previous studies. We made use of the public deep multiwavelength imaging from the optical B through the infrared (IR) 4.5-μm bands, in conjunction with available spectroscopic and COMBO17 data in the CDFS, to construct an optimized redshift catalogue for our galaxy sample. We computed the Ks -band luminosity function and determined that its characteristic magnitude has a substantial brightening and a decreasing total density from   z = 0  to  〈 z 〉= 2.5  . We also analysed the colours and number density evolution of galaxies with different stellar masses. Within our sample, and in contrast to what is observed for less massive systems, the vast majority (∼85–90 per cent) of the most massive  ( M > 2.5 × 1011 M)  local galaxies appear to be in place before redshift   z ∼ 1  . Around 65–70 per cent of the total assemble between redshifts   z = 1  and 3 and most of them display extremely red colours, suggesting that plausible star formation in these very massive systems should mainly proceed in obscured, short-time-scale bursts. The remaining fraction (up to ∼20 per cent) could be in place at even higher redshifts   z = 3–4  , pushing the first epoch of formation of massive galaxies beyond the limits of current near-IR surveys.  相似文献   

10.
We present the rest-frame optical and infrared colours of a complete sample of  1114 z < 0.3  galaxies from the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Legacy Survey and the Sloan Digital Sky Survey (SDSS). We discuss the optical and infrared colours of our sample and analyse in detail the contribution of dusty star-forming galaxies and active galactic nuclei (AGN) to optically selected red sequence galaxies.
We propose that the optical  ( g − r )  colour and infrared  log( L 24/ L 3.6)  colour of galaxies in our sample are determined primarily by a bulge-to-disc ratio. The  ( g − r )  colour is found to be sensitive to the bulge-to-disc ratio for disc-dominated galaxies, whereas the  log( L 24/ L 3.6)  colour is more sensitive for bulge-dominated systems.
We identify ∼18 per cent (195 sources) of our sample as having red optical colours and infrared excess. Typically, the infrared luminosities of these galaxies are found to be at the high end of star-forming galaxies with blue optical colours. Using emission-line diagnostic diagrams, 78 are found to have an AGN contribution and 117 are identified as star-forming systems. The red  ( g − r )  colour of the star-forming galaxies could be explained by extinction. However, their high optical luminosities cannot. We conclude that they have a significant bulge component.
The number densities of optically red star-forming galaxies are found to correspond to ∼13 per cent of the total number density of our sample. In addition, these systems contribute ∼13 per cent of the total optical luminosity density, and 28 per cent of the total infrared luminosity density of our SWIRE/SDSS sample. These objects may reduce the need for 'dry mergers'.  相似文献   

11.
We estimate the fraction of star-forming galaxies in a catalogue of groups, constructed from the 2dF Galaxy Redshift Survey by Merchán & Zandivarez. We use the η spectral type parameter of galaxies and subdivide the sample of galaxies in groups into four types depending on the values of the η parameter following Madgwick et al. We obtain a strong correlation between the relative fraction of galaxies with high star formation and the parent group virial mass. We find that even in the environment of groups with low virial mass   M ∼1013 M  the star formation of their member galaxies is significantly suppressed. The relation between the fraction of early-type galaxies and the group virial mass obeys a simple power law spanning over three orders of magnitude in virial mass. Our results show quantitatively the way that the presence of galaxies with high star formation rates is inhibited in massive galaxy systems.  相似文献   

12.
Hubble Space Telescope images of a sample of 285 galaxies with measured redshifts from the Canada–France Redshift Survey (CFRS) and Autofib–Low Dispersion Spectrograph Survey (LDSS) redshift surveys are analysed to derive the evolution of the merger fraction out to redshifts z ∼1. We have performed visual and machine-based merger identifications, as well as counts of bright pairs of galaxies with magnitude differences δm ≤1.5 mag. We find that the pair fraction increases with redshift, with up to ∼20 per cent of the galaxies being in physical pairs at z ∼0.75–1. We derive a merger fraction varying with redshift as ∝(1+ z )3.2±0.6, after correction for line-of-sight contamination, in excellent agreement with the merger fraction derived from the visual classification of mergers for which m =3.4±0.6. After correcting for seeing effects on the ground-based selection of survey galaxies, we conclude that the pair fraction evolves as ∝(1+ z )2.7±0.6. This implies that an average L * galaxy will have undergone 0.8–1.8 merger events from z =1 to z =0, with 0.5 to 1.2 merger events occuring in a 2-Gyr time-span at around z ∼0.9. This result is consistent with predictions from semi-analytical models of galaxy formation. From the simple coaddition of the observed luminosities of the galaxies in pairs, physical mergers are computed to lead to a brightening of 0.5 mag for each pair on average, and a boost in star formation rate of a factor of 2, as derived from the average [O  ii ] equivalent widths. Mergers of galaxies are therefore contributing significantly to the evolution of both the luminosity function and luminosity density of the Universe out to z ∼1.  相似文献   

13.
We have conducted a submillimetre mapping survey of faint, gravitationally lensed sources, where we have targeted 12 galaxy clusters and additionally the New Technology Telescope (NTT) Deep Field. The total area surveyed is 71.5 arcmin2 in the image plane; correcting for gravitational lensing, the total area surveyed is 40 arcmin2 in the source plane for a typical source redshift z ≈ 2.5. In the deepest maps, an image plane depth of 1σ rms ∼0.8 mJy is reached. This survey is the largest survey to date to reach such depths. In total 59 sources were detected, including three multiply imaged sources. The gravitational lensing makes it possible to detect sources with flux density below the blank field confusion limit. The lensing-corrected fluxes range from 0.11 to 19 mJy. After correcting for multiplicity, there are 10 sources with fluxes <2 mJy of which seven have submJy fluxes, doubling the number of such sources known. Number counts are determined below the confusion limit. At 1 mJy, the integrated number count is  ∼104 deg−2  , and at 0.5 mJy it is  ∼2 × 104 deg−2  . Based on the number counts, at a source plan flux limit of 0.1 mJy, essentially all of the 850-μm background emission has been resolved. The dominant contribution (>50 per cent) to the integrated background arises from sources with fluxes S 850 between 0.4 and 2.5 mJy, while the bright sources S 850 > 6 mJy contribute only 10 per cent.  相似文献   

14.
We present measurements of the angular correlation function of galaxies selected from a B J ∼23.5 multicolour survey of two 5°×5° fields located at high galactic latitudes. The galaxy catalogue of ∼4×105 galaxies is comparable in size to catalogues used to determine the galaxy correlation function at low redshift. Measurements of the z ∼0.4 correlation function at large angular scales show no evidence for a break from a power law, although our results are not inconsistent with a break at ≳15 h−1 Mpc. Despite the large fields-of-view, there are large discrepancies between the measurements of the correlation function in each field, possibly caused by dwarf galaxies within z ∼0.11 clusters near the South Galactic Pole.
Colour selection is used to study the clustering of galaxies from z ∼0 to z ∼0.4. The galaxy correlation function is found to depend strongly on colour, with red galaxies more strongly clustered than blue galaxies by a factor of ≳5 at small scales. The slope of the correlation function is also found to vary with colour, with γ∼1.8 for red galaxies and γ∼1.5 for blue galaxies. The clustering of red galaxies is consistently strong over the entire magnitude range studied, although there are large variations between the two fields. The clustering of blue galaxies is extremely weak over the observed magnitude range, with clustering consistent with r 0∼2 h−1 Mpc. This is weaker than the clustering of late-type galaxies in the local Universe, and suggests that galaxy clustering is more strongly correlated with colour than morphology. This may also be the first detection of a substantial low-redshift galaxy population with clustering properties similar to faint blue galaxies.  相似文献   

15.
A sample of 2712 radio-luminous galaxies is defined from the second data release of the Sloan Digital Sky Survey (SDSS) by cross-comparing the main spectroscopic galaxy sample with two radio surveys: the National Radio Astronomy Observatories (NRAO) Very Large Array (VLA) Sky Survey (NVSS) and the Faint Images of the Radio Sky at Twenty centimeters (FIRST) survey. The comparison is carried out in a multistage process and makes optimal use of both radio surveys by exploiting the sensitivity of the NVSS to extended and multicomponent radio sources in addition to the high angular resolution of the FIRST images. A radio source sample with 95 per cent completeness and 98.9 per cent reliability is achieved, far better than would be possible for this sample if only one of the surveys was used. The radio source sample is then divided into two classes: radio-loud active galactic nuclei (AGN) and galaxies in which the radio emission is dominated by star formation. The division is based on the location of a galaxy in the plane of 4000-Å break strength versus radio luminosity per unit stellar mass and provides a sample of 2215 radio-loud AGN and 497 star-forming galaxies brighter than 5 mJy at 1.4 GHz. A full catalogue of positions and radio properties is provided for these sources. The local radio luminosity function is then derived both for radio-loud AGN and for star-forming galaxies and is found to be in agreement with previous studies. By using the radio to far-infrared (FIR) correlation, the radio luminosity function of star-forming galaxies is also compared to the luminosity function derived in the FIR. It is found to agree well at high luminosities but less so at lower luminosities, confirming that the linearity of the radio to FIR correlation breaks down below about 1022 W Hz−1 at 1.4 GHz.  相似文献   

16.
We present the results of Australia Telescope Compact Array (ATCA) H  i line and 20-cm radio continuum observations of the galaxy quartet NGC 6845. The H  i emission extends over all four galaxies but can only be associated clearly with the two spiral galaxies, NGC 6845A and B, which show signs of strong tidal interaction. We derive a total H  i mass of at least  1.8 × 1010 M  , most of which is associated with NGC 6845A, the largest galaxy of the group. We investigate the tidal interaction between NGC 6845A and B by studying the kinematics of distinct H  i components and their relation to the known H  ii regions. No H  i emission is detected from the two lenticular galaxies, NGC 6845C and D. A previously uncatalogued dwarf galaxy, ATCA  J2001−4659  , was detected 4.4 arcmin NE from NGC 6845B and has an H  i mass of  ∼5 × 108 M  . No H  i bridge is visible between the group and its newly detected companion. Extended 20-cm radio continuum emission is detected in NGC 6845A and B as well as in the tidal bridge between the two galaxies. We derive star formation rates of  15–40 M yr−1  .  相似文献   

17.
We present the radial velocities and blue, optical magnitudes for all of the galaxies within the Durham/UKST Galaxy Redshift Survey. This catalogue consists of ∼2500 galaxy redshifts to a limiting apparent magnitude of B J⋍17 mag, covering a ∼1500-deg2 area around the South Galactic Pole. The galaxies in this survey were selected from the Edinburgh/Durham Southern Galaxy Catalogue and were sampled, in order of apparent magnitude, at a rate of one galaxy in every three. The spectroscopy was performed at the 1.2-m UK Schmidt Telescope in Australia using the FLAIR multi-object spectrograph. We show that our radial velocity measurements made with this instrument have an empirical accuracy of ±150 km s−1. The observational techniques and data reduction procedures used in the construction of this survey are also discussed. This survey demonstrates that the UKST can be used to make a three-dimensional map of the large-scale galaxy distribution, via a redshift survey to b J⋍17 mag, over a wide area of the sky.  相似文献   

18.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   

19.
Using high-resolution SPH simulations in a fully cosmological Λ cold dark matter context, we study the formation of a bright disc-dominated galaxy that originates from a 'wet' major merger at   z = 0.8  . The progenitors of the disc galaxy are themselves disc galaxies that formed from early major mergers between galaxies with blue colours. A substantial thin stellar disc grows rapidly following the last major merger and the present-day properties of the final remnant are typical of early-type spiral galaxies, with an i -band bulge-to-disc ratio ∼0.65, a disc scalelength of 7.2 kpc,   g − r = 0.5 mag  , an H  i linewidth ( W 20/2) of 238 km s−1 and total magnitude   i =−22.4  . The key ingredients for the formation of a dominant stellar disc component after a major merger are (i) substantial and rapid accretion of gas through cold flows followed at late times by cooling of gas from the hot phase, (ii) supernova feedback that is able to partially suppress star formation during mergers and (iii) relative fading of the spheroidal component. The gas fraction of the progenitors' discs does not exceed 25 per cent at   z < 3  , emphasizing that the continuous supply of gas from the local environment plays a major role in the regrowth of discs and in keeping the galaxies blue. The results of this simulation alleviate the problem posed for the existence of disc galaxies by the high likelihood of interactions and mergers for galaxy-sized haloes at relatively low z .  相似文献   

20.
Five galaxy groups with properties similar to those of the Local Group have been surveyed for H  i clouds with the Arecibo Telescope. In total 300 pointings have been observed on grids of approximately 2.5×1.5 Mpc2 centred on the groups. The 4.5 σ detection limit on the minimal detectable H  i masses is approximately 7×106 M ( H 0=65 km s−1 Mpc−1) . All detections could be attributed to optical galaxies; no significant detections of H  i clouds have been made. This null result leads to the conclusion that the total H  i mass of intragroup clouds must be less than 10 per cent of the total H  i mass of galaxy groups and less than 0.05 per cent of the dynamical mass. The recent hypothesis that Galactic high-velocity clouds are Local Group satellite galaxies is highly inconsistent with these observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号