首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the effect of urbanization on stream hydrology in hillslope watersheds. Ten streams (seven in hillslope and three in gentle slope watersheds) around Austin, Texas were selected for analysis. For each stream, we compared parameters of transfer function (TF) models estimated from daily rainfall and streamflow data collected in two study periods (October 1988–September 1992 and October 2004–September 2008) representing different degrees of watershed urbanization. As expected, the streams became more intermittent as the watersheds were more urbanized in all the study streams. However, the effect of urbanization on peakflow differs between hillslope and gentle slope watersheds. After watershed urbanization, peakflow increased in gentle slope watersheds, but decreased in hillslope watersheds. Based on the results of the TF models, we found that urbanization made stream not flashier but drier in hillslope watersheds. Overpumpage of aquifer has been recognized as a problem that leads to the stream dryness in the study area. However, the overpumpage alone cannot explain the differences in hydrological changes between the two types of watersheds. We attributed the reduced peakflow and stream dryness in the hillslope watersheds to land grading for construction forming stair‐stepped or terraced landscape. Compared with natural hillslope, a stair‐stepped landscape could infiltrate more stormwater by slowing down surface runoff on tread portions of the stair. Our findings suggest that a watershed management scheme should take into account local hydrogeologic conditions to mitigate the stream dryness resulting from urbanization in hillslope watersheds. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
There is growing interest in rates of nitrate uptake and denitrification in restored streams to better understand the effects of restoration on nitrogen processing. This study quantified nitrate uptake in two restored and two unrestored streams in Baltimore, Maryland, USA using nitrate additions, denitrification enzyme assays, and a 15N isotope tracer addition in one of the urban restored streams, Minebank Run. Restoration included either incorporation of stormwater ponds below a storm drain and catch basins to attenuate flow or hydrologic “reconnection” of a stream channel to its floodplain. Stream restoration was conducted for restoring aging sanitary and bridge infrastructure and introducing some stormwater management in watersheds developed prior to current regulations. Denitrification potential in sediments was variable across streams, whereas nitrate uptake length appeared to be significantly correlated to surface water velocity, which was low in the restored streams during summer baseflow conditions. Uptake length of NO3 –N in Minebank Run estimated by 15N tracer addition was 556 m. Whole stream denitrification rates in Minebank Run were 153 mg NO3 –N m−2 day−1, and approximately 40% of the daily load of nitrate was estimated to be removed via denitrification over a distance of 220.5 m in a stream reach designed to be hydrologically “connected” to its floodplain. Increased hydrologic residence time in Minebank Run during baseflow likely influenced rates of whole stream denitrification, suggesting that hydrologic residence time may be a key factor influencing N uptake and denitrification. Restoration approaches that increase hydrologic “connectivity” with hyporheic sediments and increase hydrologic residence time may be useful for stimulating denitrification. More work is necessary, however, to examine changes in denitrification rates in restored streams across different seasons, variable N loads, and in response to the “flashy” hydrologic flow conditions during storms common in urban streams.  相似文献   

3.
A novel form of urbanization, low impact development (LID), aims to engineer systems that replicate natural hydrologic functioning, in part by infiltrating stormwater close to the impervious surfaces that generate it. We sought to statistically evaluate changes in a base flow regime because of urbanization with LID, specifically changes in base flow magnitude, seasonality, and rate of change. We used a case study watershed in Clarksburg, Maryland, in which streamflow was monitored during whole‐watershed urbanization from forest and agricultural to suburban residential development using LID. The 1.11‐km2 watershed contains 73 infiltration‐focused stormwater facilities, including bioretention facilities, dry wells, and dry swales. We examined annual and monthly flow during and after urbanization (2004–2014) and compared alterations to nearby forested and urban control watersheds. We show that total streamflow and base flow increased in the LID watershed during urbanization as compared with control watersheds. The LID watershed had more gradual storm recessions after urbanization and attenuated seasonality in base flow. These flow regime changes may be because of a reduction in evapotranspiration because of the overall decrease in vegetative cover with urbanization and the increase in point sources of recharge. Precipitation that may once have infiltrated soil, been stored in soil moisture to be eventually transpired in a forested landscape, may now be recharged and become base flow. The transfer of evapotranspiration to base flow is an unintended consequence to the water balance of LID. © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

4.
Deleterious effects of urban stormwater are widely recognized. In several countries, regulations have been put into place to improve the conditions of receiving water bodies, but planning and engineering of stormwater control is typically carried out at smaller scales. Quantifying cumulative effectiveness of many stormwater control measures on a watershed scale is critical to understanding how small‐scale practices translate to urban river health. We review 100 empirical and modelling studies of stormwater management effectiveness at the watershed scale in diverse physiographic settings. Effects of networks with stormwater control measures (SCMs) that promote infiltration and harvest have been more intensively studied than have detention‐based SCM networks. Studies of peak flows and flow volumes are common, whereas baseflow, groundwater recharge, and evapotranspiration have received comparatively little attention. Export of nutrients and suspended sediments have been the primary water quality focus in the United States, whereas metals, particularly those associated with sediments, have received greater attention in Europe and Australia. Often, quantifying cumulative effects of stormwater management is complicated by needing to separate its signal from the signal of urbanization itself, innate watershed characteristics that lead to a range of hydrologic and water quality responses, and the varying functions of multiple types of SCMs. Biases in geographic distribution of study areas, and size and impervious surface cover of watersheds studied also limit our understanding of responses. We propose hysteretic trajectories for how watershed function responds to increasing imperviousness and stormwater management. Even where impervious area is treated with SCMs, watershed function may not be restored to its predevelopment condition because of the lack of treatment of all stormwater generated from impervious surfaces; non‐additive effects of individual SCMs; and persistence of urban effects beyond impervious surfaces. In most cases, pollutant load decreases largely result from run‐off reductions rather than lowered solute or particulate concentrations. Understanding interactions between natural and built landscapes, including stormwater management strategies, is critical for successfully managing detrimental impacts of stormwater at the watershed scale.  相似文献   

5.
For the period from 1958 to 1996, streamflow characteristics of a highly urbanized watershed were compared with less‐urbanized and non‐urbanized watersheds within a 20 000 km2 region in the vicinity of Atlanta, Georgia: in the Piedmont and Blue Ridge physiographic provinces of the southeastern USA. Water levels in several wells completed in surficial and crystalline‐rock aquifers were also evaluated. Data were analysed for seven US Geological Survey (USGS) stream gauges, 17 National Weather Service rain gauges, and five USGS monitoring wells. Annual runoff coefficients (RCs; runoff as a fractional percentage of precipitation) for the urban stream (Peachtree Creek) were not significantly greater than for the less‐urbanized watersheds. The RCs for some streams were similar to others and the similar streams were grouped according to location. The RCs decreased from the higher elevation and higher relief watersheds to the lower elevation and lower relief watersheds: values were 0·54 for the two Blue Ridge streams, 0·37 for the four middle Piedmont streams (near Atlanta), and 0·28 for a southern Piedmont stream. For the 25 largest stormflows, the peak flows for Peachtree Creek were 30% to 100% greater than peak flows for the other streams. The storm recession period for the urban stream was 1–2 days less than that for the other streams and the recession was characterized by a 2‐day storm recession constant that was, on average, 40 to 100% greater, i.e. streamflow decreased more rapidly than for the other streams. Baseflow recession constants ranged from 35 to 40% lower for Peachtree Creek than for the other streams; this is attributed to lower evapotranspiration losses, which result in a smaller change in groundwater storage than in the less‐urbanized watersheds. Low flow of Peachtree Creek ranged from 25 to 35% less than the other streams, possibly the result of decreased infiltration caused by the more efficient routing of stormwater and the paving of groundwater recharge areas. The timing of daily or monthly groundwater‐level fluctuations was similar annually in each well, reflecting the seasonal recharge. Although water‐level monitoring only began in the 1980s for the two urban wells, water levels displayed a notable decline compared with non‐urban wells since then; this is attributed to decreased groundwater recharge in the urban watersheds due to increased imperviousness and related rapid storm runoff. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
Air temperature can be an effective predictor of stream temperature. However, little work has been done in studying urban impacts on air‐stream relationships in groundwater‐fed headwater streams in mountainous watersheds. We applied wavelet coherence analysis to two 13‐month continuous (1 hr interval) stream and air temperature datasets collected at Boone Creek, an urban stream, and Winkler Creek, a forest stream, in northwestern North Carolina. The main advantage of a wavelet coherence analysis approach is the ability to analyse non‐stationary dynamics for the temporal covariance between air and stream temperature over time and at multiple temporal scales (e.g. hours, days, weeks and months). The coherence is both time and scale‐dependent. Our research indicated that air temperature generally co‐varied with stream temperature at time scales greater than 0.5 day. The correlation was poor during the winter at the scales of 1 to 64 days and summer at the scales of 1.5 to 4 days, respectively. The empirical models that relate air temperature to stream temperature failed at these scales and during these periods. Finally, urbanization altered the air‐stream temperature correlation at intermediate time scales ranging from 2 to 12 days. The correlation at the urban creek increased at the 12‐day scale, whereas it decreased at scales of 2 to 7 days as compared with the forested stream, which is probably due to heated surface runoff during summer thunderstorms or leaking stormwater or wastewater collection systems. Our results provide insights into air‐stream temperature relationships over both time and scale domains. Identifying controls over time and scales are needed to predict water temperature to understand the future impacts that interacting climate and land use changes will have on aquatic ecosystem in river networks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Expansion of impervious surface cover results in “flashy” hydrologic response, elevated flood risk, and degraded water quality in urban watersheds. Stormwater management ponds (SWMPs) are often engineered into stream networks to mitigate these issues. A clearer understanding of how water is stored and released from SWMPs and SWMP-treated catchments is required to better represent these engineered systems in hydrological and water quality models of urban and urbanizing watersheds. Stable water isotopes were used to compare water age in SWMPs and SWMP-treated catchments in an urbanizing watershed. We sampled water biweekly from two SWMPs and five stream sites with varying land cover and stormwater control in their catchments. Two inverse transit time proxies (damping ratio and young water fraction) were computed along with the mean transit time (MTT) by sine–wave fitting for each SWMP and stream site using the δ18O and δ2H data. Water entering the SWMPs was consistently older (224 and 177 days) than water in or exiting the ponds (ranging from 46 to 91 days and 39 to 67 days, respectively). This finding is likely due to a combination of groundwater infiltration into broken sewer pipes that transport water into the ponds and a bias toward baseflow sampling. At the catchment scale, detention provided by SWMPs was not found to be more significant than the interactive effects of impervious cover, surficial geology, land use proportions, and catchment size in determining MTT. Overall, surficial geology explained the most variation in MTT among the seven sites. This study illustrates the potential for isotope-based approaches of water age to provide information on individual SWMP functioning and the influence of SWMPs on catchment-scale water movement.  相似文献   

8.
The urban environment modifies the hydrologic cycle resulting in increased runoff rates, volumes, and peak flows. Green infrastructure, which uses best management practices (BMPs), is a natural system approach used to mitigate the impacts of urbanization onto stormwater runoff. Patterns of stormwater runoff from urban environments are complex, and it is unclear how efficiently green infrastructure will improve the urban water cycle. These challenges arise from issues of scale, the merits of BMPs depend on changes to small‐scale hydrologic processes aggregated up from the neighborhood to the urban watershed. Here, we use a hyper‐resolution (1 m), physically based hydrologic model of the urban hydrologic cycle with explicit inclusion of the built environment. This model represents the changes to hydrology at the BMP scale (~1 m) and represents each individual BMP explicitly to represent response over the urban watershed. Our study varies both the percentage of BMP emplacement and their spatial location for storm events of increasing intensity in an urban watershed. We develop a metric of effectiveness that indicates a nonlinear relationship that is seen between percent BMP emplacement and storm intensity. Results indicate that BMP effectiveness varies with spatial location and that type and emplacement within the urban watershed may be more important than overall percent.  相似文献   

9.
Heejun Chang 《水文研究》2007,21(2):211-222
This study investigates changes in streamflow characteristics for urbanizing watersheds in the Portland Metropolitan Area of Oregon for the period from 1951 to 2000. The objective of this study was to assess how mean annual runoff ratio, mean seasonal runoff ratio, annual peak runoff ratio, changes in streamflow in response to storm amount, the fraction of time that the daily mean flow exceeds the annual mean flow, 3‐day recession constants, and dry/wet flow ratio vary among watersheds with different degrees of urban development. There were no statistically significant changes in annual runoff ratio and annual peak runoff ratio for the mixed land‐use watershed (Tualatin River watershed) and the urban watershed (Johnson Creek watershed) during the entire study period. The Tualatin River watershed, where most of the urban development occurred in a lower part of the watershed, showed a statistically significant increase in annual peak runoff ratio during the 1976 and 2000 period. The Upper Tualatin River watershed illustrated a significant decrease in annual peak runoff ratio for the entire study period. With significant differences in seasonal runoff ratio, only Johnson Creek exhibited a significant increase in both wet and dry season runoff ratios. Streamflow during storm events declined rapidly in the urban watershed, with a high 3‐day recession constant. At an event storm scale, streamflow in Fanno Creek, which is the most urbanized watershed, responded quickly to precipitation input. The fraction of time that the daily mean flow exceeded the annual mean flow and dry/wet flow ratio are all lower in Johnson Creek. This suggests a shorter duration of storm runoff and lower baseflow in the urbanized watershed when compared to the mixed land use watershed. The findings of this study demonstrate the importance of spatial and temporal scale, climate variability, and basin physiographic characteristics in detecting the hydrologic effects of urbanization in the Pacific Northwest of the USA. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The effects of land use changes on the ecology and hydrology of natural watersheds have long been debated. However, less attention has been given to the hydrological effects of forest roads. Although less studied, several researchers have claimed that streamflow changes related to forest roads can cause a persistent and pervasive effect on hillslope hydrology and the functioning of the channel system. The main potential direct effects of forest roads on natural watersheds hydrologic response are runoff production on roads surfaces due to reduced infiltration rates, interruption of subsurface flow by road cutslopes and rapid transfer of the produced runoff to the stream network through roadside ditches. The aforementioned effects may significantly modify the total volume and timing of the hillslope flow to the stream network. This study uses detailed field data, spatial data, hydro‐meteorological records, as well as numerical simulation to investigate the effects of forest roads on the hydrological response of a small‐scale mountain experimental watershed, which is situated in the east side of Penteli Mountain, Attica, Greece. The results of this study highlight the possible effects of forest roads on the watersheds hydrological response that may significantly influence direct runoff depths and peak flow rates. It is demonstrated that these effects can be very important in permeable watersheds and that more emphasis should be given on the impact of roads on the watersheds hydrological response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Physiography and land cover determine the hydrologic response of watersheds to climatic events. However, vast differences in climate regimes and variation of landscape attributes among watersheds (including size) have prevented the establishment of general relationships between land cover and runoff patterns across broad scales. This paper addresses these difficulties by using power spectral analysis to characterize area‐normalized runoff patterns and then compare these patterns with landscape features among watersheds within the same physiographic region. We assembled long‐term precipitation and runoff data for 87 watersheds (first to seventh order) within the eastern Piedmont (USA) that contained a wide variety of land cover types, collected environmental data for each watershed, and compared the datasets using a variety of statistical measures. The effect of land cover on runoff patterns was confirmed. Urban‐dominated watersheds were flashier and had less hydrologic memory compared with forest‐dominated watersheds, whereas watersheds with high wetland coverage had greater hydrologic memory. We also detected a 10–15% urban threshold above which urban coverage became the dominant control on runoff patterns. When spectral properties of runoff were compared across stream orders, a threshold after the third order was detected at which watershed processes became dominant over precipitation regime in determining runoff patterns. Finally, we present a matrix that characterizes the hydrologic signatures of rivers based on precipitation versus landscape effects and low‐frequency versus high‐frequency events. The concepts and methods presented can be generally applied to all river systems to characterize multiscale patterns of watershed runoff. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Headwater streams are critical components of drainage systems, directly connecting terrestrial and downstream aquatic ecosystems. The amount of water in a stream can alter hydrologic connectivity between the stream and surrounding landscape and is ultimately an important driver of what constituents headwater streams transport. There is a shortage of studies that explore concentration–discharge (C‐Q) relationships in headwater systems, especially forested watersheds, where the hydrological and ecological processes that control the processing and export of solutes can be directly investigated. We sought to identify the temporal dynamics and spatial patterns of stream chemistry at three points along a forested headwater stream in Northern Michigan and utilize C‐Q relationships to explore transport dynamics and potential sources of solutes in the stream. Along the stream, surface flow was seasonal in the main stem, and perennial flow was spatially discontinuous for all but the lowest reaches. Spring snowmelt was the dominant hydrological event in the year with peak flows an order of magnitude larger at the mouth and upper reaches than annual mean discharge. All three C‐Q shapes (positive, negative, and flat) were observed at all locations along the stream, with a higher proportion of the analytes showing significant relationships at the mouth than at the mid or upper flumes. At the mouth, positive (flushing) C‐Q shapes were observed for dissolved organic carbon and total suspended solids, whereas negative (dilution) C‐Q shapes were observed for most cations (Na+, Mg2+, Ca2+) and biologically cycled anions (NO3?, PO43?, SO42?). Most analytes displayed significant C‐Q relationships at the mouth, indicating that discharge is a significant driving factor controlling stream chemistry. However, the importance of discharge appeared to decrease moving upstream to the headwaters where more localized or temporally dynamic factors may become more important controls on stream solute patterns.  相似文献   

13.
Climate change is expected to affect air temperature and watershed hydrology, but the degree to which these concurrent changes affect stream temperature is not well documented in the tropics. How stream temperature varies over time under changing hydrologic conditions is difficult to isolate from seasonal changes in air temperature. Groundwater and bank storage contributions to stream flow (i.e., base flow [BF]) buffer water temperatures against seasonal and daily fluctuations in solar radiation and air temperature, whereas rainfall‐driven runoff produces flooding events that also influence stream temperature. We used a space‐for‐time substitution to examine how shifts in BF and runoff alter thermal regimes in streams by analyzing hydrological and temperature data collected from similar elevations (400–510 m above sea level) across a 3,500‐mm mean annual rainfall gradient on Hawai'i Island. Sub‐daily water temperature and stream flow gathered for 3 years were analyzed for daily, monthly, and seasonal trends and compared with air temperature measured at multiple elevations. Results indicate that decreases in median BF increased mean, maximum, and minimum water temperatures as well as daily temperature range. Monthly and daily trends in stream temperature among watersheds were more pronounced than air temperature, driven by differences in groundwater inputs and runoff. Stream temperature was strongly negatively correlated to BF during the dry season but not during the wet season due to frequent wet season runoff events contributing to total flow. In addition to projected increases in global air temperature, climate driven shifts in rainfall and runoff are likely to affect stream flow and groundwater recharge, with concurrent influences on BF resulting in shifts in water temperature that are likely to affect aquatic ecosystems.  相似文献   

14.
Green stormwater infrastructure implementation in urban watersheds has outpaced our understanding of practice effectiveness on streamflow response to precipitation events. Long-term monitoring of experimental suburban watersheds in Clarksburg, Maryland, USA, provided an opportunity to examine changes in event-based streamflow metrics in two treatment watersheds that transitioned from agriculture to suburban development with a high density of infiltration-focused stormwater control measures (SCMs). Urban Treatment 1 has predominantly single family detached housing with 33% impervious cover and 126 SCMs. Urban Treatment 2 has a mix of single family detached and attached housing with 44% impervious cover and 219 SCMs. Differences in streamflow-event magnitude and timing were assessed using a before-after-control-reference-impact design to compare urban treatment watersheds with a forested control and an urban control with detention-focused SCMs. Streamflow and precipitation events were identified from 14 years of sub-daily monitoring data with an automated approach to characterize peak streamflow, runoff yield, runoff ratio, streamflow duration, time to peak, rise rate, and precipitation depth for each event. Results indicated that streamflow magnitude and timing were altered by urbanization in the urban treatment watersheds, even with SCMs treating 100% of the impervious area. The largest hydrologic changes were observed in streamflow magnitude metrics, with greater hydrologic change in Urban Treatment 2 compared with Urban Treatment 1. Although streamflow changes were observed in both urban treatment watersheds, SCMs were able to mitigate peak flows and runoff volumes compared with the urban control. The urban control had similar impervious cover to Urban Treatment 2, but Urban Treatment 2 had more than twice the precipitation depth needed to initiate a flow response and lower median peak flow and runoff yield for events less than 20 mm. Differences in impervious cover between the Urban Treatment watersheds appeared to be a large driver of differences in streamflow response, rather than SCM density. Overall, use of infiltration-focused SCMs implemented at a watershed-scale did provide enhanced attenuation of peak flow and runoff volumes compared to centralized-detention SCMs.  相似文献   

15.
Local governmental agencies are increasingly undertaking potentially costly “status‐and‐trends” monitoring to evaluate the effectiveness of stormwater control measures and land‐use planning strategies or to satisfy regulatory requirements. Little guidance is presently available for such efforts, and so we have explored the application, interpretation, and temporal limitations of well‐established hydrologic metrics of runoff changes from urbanization, making use of an unusually long‐duration, high‐quality data set from the Pacific Northwest (USA) with direct applicability to urban and urbanizing watersheds. Three metrics previously identified for their utility in identifying hydrologic conditions with biological importance that respond to watershed urbanization—TQmean (the fraction of time that flows exceed the mean annual discharge), the Richards‐Baker Index (characterizing flashiness relative to the mean discharge), and the annual tally of wet‐season day‐to‐day flow reversals (the total number of days that reverse the prior days' increasing or decreasing trend)—are all successful in stratifying watersheds across a range of urbanization, as measured by total contributing area of urban development. All metrics respond with statistical significance to multidecadal trends in urbanization, but none detect trends in watershed‐scale urbanization over the course of a single decade. This suggests a minimum period over which dependable trends in hydrologic alteration (or improvement) can be detected with confidence. The metrics also prove less well suited to urbanizing watersheds in a semi‐arid climate, with only flow reversals showing a response consistent with prior findings from more humid regions. We also explore the use of stage as a surrogate for discharge in calculating these metrics, recognizing potentially significant agency cost savings in data collection with minimal loss of information. This approach is feasible but cannot be implemented under current data‐reporting practices, requiring measurement of water‐depth values and preservation of the full precision of the original recorded data. With these caveats, however, hydrologic metrics based on stage should prove as or more useful, at least in the context of status‐and‐trends monitoring, as those based on subsequent calculations of discharge.  相似文献   

16.
Analysis of the bankfull cross-sections of headwater streams in Ado-Ekiti region of Southwestern Nigeria and their comparison with data from other tropical environments and temperate latitudes reveal that the channel capacities of streams in the humid tropics are relatively smaller than those of temperate regions, averaging 1.51 m2 with a coefficient of variation of 87 per cent. This is attributed to the small stream discharge, the predominantly low and highly seasonal flows of the streams, the low shear stress of stream load, and the stabilizing and protective influence of riparian vegetation and surface incrustations. The chanel capacities of the urban streams (mean = 1.13m2) are about 47 per cent smaller than those of the natural streams (mean = 2.12 m2) in the same ecological zone. In terms of hydraulic efficiency, the urban streams also have relatively inefficient cross-sections and larger width/depth ratios than their rural or natural counterparts. Resurveys of seventeen monumented cross-sections reveal that while channel shoulder width increased by only 6 per cent over a one-year period, channel depth and capacity decreased by 16 per cent and 4 per cent respectively; the observed decrease in channel size occurs entirely in the channel depth dimension. Thus the response of stream channels to the urbanization of small headwater catchments in the humid tropics is probably more of vertical accretion of channel bed and reduction in channel capacity rather than the widely-reported anomalous enlargement of urban streams through channel widening. The rapid rate of channel aggradation is attributed to excessive rates of sediment production and delivery to streams in urbanized catchments in the humid tropics, rapid deposition of sediments during small runoff events and on the falling stage of storm hydrographs, and the inability of the streams to evacuate the sediments delivered to them despite the increased discharge and peak flow associated with urbanization. The low competence of the urban streams is attributed to the predominance of low flows, very gentle bed slopes, and most importantly the widespread dumping of refuse into the channels thereby reducing flow velocity and promoting backwater flooding, ponding, and sedimentation. The correlations between drainage basin area, a surrogate for stream discharge, and channel capacity are very strong for the rural watersheds, and the regression analysis indicates a tendency towards a steady-state isometric relationship. Urban channels are, to a large extent, in disequilibrium with the urban hydrological state. However, spatial variations in the degree of urbanization of the catchments, and, therefore in runoff volume and velocity, exercise strong control on channel width, depth, and size. A model of the sequence of stream channel adjustment to the urbanization of small headwater catchments in the humid tropics is presented.  相似文献   

17.
Investigating the changes in streamflow regimes in response to various influencing factors contributes to our understanding of the mechanisms of hydrological processes in different watersheds and to water resource management strategies. This study examined streamflow regime changes by applying the indicators of hydrologic alteration method and eco-flow metrics to daily runoff data (1965–2016) from the Sandu, Hulu and Dali Rivers on the Chinese Loess Plateau, and then determined their responses to terracing, afforestation and damming. The Budyko water balance equation and the double mass curve method were used to separate the impacts of climate change and human activities on the mean discharge changes. The results showed that the terraced and dammed watersheds exhibited significant decreases in annual runoff. All hydrologic metrics indicated that the highest degree of hydrologic alteration was in the Sandu River watershed (terraced), where the monthly and extreme flows reduced significantly. In contrast, the annual eco-deficit increased significantly, indicating the highest reduction in streamflow among the three watersheds. The regulation of dams and reservoirs in the Dali River watershed has altered the flow regime, and obvious decreases in the maximum flow and slight increases in the minimum flow and baseflow indices were observed. In the Hulu River watershed (afforested), the monthly flow and extreme flows decreased slightly and were categorized as low-degree alteration, indicating that the long-term delayed effects of afforestation on hydrological processes. The magnitude of the eco-flow metrics varied with the alteration of annual precipitation. Climate change contributed 67.47% to the runoff reduction in the Hulu River watershed, while human activities played predominant roles in reducing runoff in the Sandu and Dali River watersheds. The findings revealed distinct patterns and causes of streamflow regime alteration due to different conservation measures, emphasizing the need to optimize the spatial allocation of measures to control soil erosion and utilize water resources on the Loess Plateau.  相似文献   

18.
Groundwater flow through coarse blocky landforms contributes to streamflow in mountain watersheds, yet its role in the alpine hydrologic cycle has received relatively little attention. This study examines the internal structure and hydrogeological characteristics of an inactive rock glacier in the Canadian Rockies using geophysical imaging techniques, analysis of the discharge hydrograph of the spring draining the rock glacier, and chemical and stable isotopic compositions of source waters. The results show that the coarse blocky sediments forming the rock glacier allow the rapid infiltration of snowmelt and rain water to an unconfined aquifer above the bedrock surface. The water flowing through the aquifer is eventually routed via an internal channel parallel to the front of the rock glacier to a spring, which provides baseflow to a headwater stream designated as a critical habitat for an at‐risk cold‐water fish species. Discharge from the rock glacier spring contributes up to 50% of basin streamflow during summer baseflow periods and up to 100% of basin streamflow over winter, despite draining less than 20% of the watershed area. The rock glacier contains patches of ground ice even though it may have been inactive for thousands of years, suggesting the resiliency of the ground thermal regime under a warming climate.  相似文献   

19.
A hydrological investigation was conducted in a small headwater peatland located in the Experimental Lakes Area, north-western Ontario, Canada, to determine the subsurface and surface flow paths within the peatland, and between the peatland and an adjacent forested upland during baseflow and storm flow conditions. Distinct zones of groundwater recharge and discharge were observed within the peatland. These zones are similar to those found in much larger flow systems even though the peatland was only influenced by local groundwater flow. Groundwater emerging in seeps and flowing beneath the peatland sustained the surface wetness of the peatland and maintained a constant baseflow. The response of the peatland stream to summer rain events was controlled by peatland water table position when the basin was dry and antecedent moisture storage on the uplands when the basin was wet. The magnitude and timing of peak runoff during wet conditions were controlled by the degree of hydrological connectivity between the surrounding upland terrain and the peatland. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Urban stormwater is a major cause of urban flooding and natural water pollution. It is therefore important to assess any hydrologic trends in urban catchments for stormwater management and planning. This study addresses urban hydrological trend analysis by examining trends in variables that characterize hydrological processes. The original and modified Mann‐Kendall methods are applied to trend detection in two French catchments, that is, Chassieu and La Lechere, based on approximately 1 decade of data from local monitoring programs. In both catchments, no trend is found in the major hydrological process driver (i.e., rainfall variables), whereas increasing trends are detected in runoff flow rates. As a consequence, the runoff coefficients tend to increase during the study period, probably due to growing imperviousness with the local urbanization process. In addition, conceptual urban rainfall‐runoff model parameters, which are identified via model calibration with an event based approach, are examined. Trend detection results indicate that there is no trend in the time of concentration in Chassieu, whereas a decreasing trend is present in La Lechere, which, however, needs to be validated with additional data. Sensitivity analysis indicates that the original Mann‐Kendall method is not sensitive to a few noisy values in the data series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号