首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 562 毫秒
1.
范艾伦卫星-A观测表明内辐射带高能质子通量在磁暴主相期间显著下降,在恢复相时与地磁SYM-H指数同步恢复.磁暴期间内辐射带高能质子通量变化对磁场变化的响应是绝热的吗?基于刘维尔定理和第一和第三绝热不变量守恒,定量地评估了高能质子在内辐射带中的完全绝热效应.两个事件研究表明,理论计算的绝热效应导致的高能质子通量变化与范艾伦卫星观测结果吻合良好.本文进而对2013—2016年期间发生的67次磁暴事件进行了统计研究.结果发现磁暴主相和恢复相期间,内辐射带高能质子通量变化的90%贡献是完全绝热效应.相空间密度的调查结果也支持这一结论.最后通过对比研究磁暴前后高能质子通量的变化,我们发现大部分磁暴(56/67)期间,绝热效应能解释内辐射带高能质子通量的变化;另外11次磁暴事件中非绝热效应可能起着重要作用.  相似文献   

2.
星内粒子探测器观测结果与辐射带模型的比较   总被引:2,自引:0,他引:2       下载免费PDF全文
我们将资源一号卫星星内粒子探测器的观测数据与辐射带模式AE8/AP8的预测结果进行了对比,发现在南大西洋异常区的高能电子和质子的通量与辐射带模型的预测结果基本相同,而在两极极光带的电子通量比AE8模型预测的低得多.根据NOAA卫星的观测结果,可以认为这一差异主要是因为在南大西洋异常区(内辐射带)和两极极光带(外辐射带)的粒子投掷角分布的差异造成的.在南大西洋异常区粒子倾向于各向同性分布,而在极光带粒子各向异性明显,投掷角接近90°的粒子通量比0°投掷角附近的粒子通量大得多.  相似文献   

3.
顶部电离层是低轨道卫星的运行空间,是能量粒子沉降的重要区域,认识这个空间的能量粒子分布特征对研究各种空间天气事件、地震、火山以及其他人类活动引起的扰动具有重要的现实意义.本文利用位于顶部电离层的5颗NOAA系列卫星数据,统计研究了100~300keV的电子和80~2500keV的质子的全球分布特征.研究发现:高能电子和质子主要分布在两极辐射带和南大西洋异常区,两极辐射带观测到的高能电子通量比南大西洋异常区高几倍到一个数量级,而质子则相反;高能电子在两极辐射带地区通量分布具有不对称性,主要表现为在北辐射带西经75°到东经90°存在低值区,相对应的是粒子主要聚集在其磁共轭区,且其边界和南大西洋异常区相交;高能质子两极辐射带对称分布,在南半球东经0°至东经50°存在高值区.利用概率密度统计分析发现,各颗卫星在南大西洋异常区和两极辐射带的高能电子和高能质子通量总体上均呈正态分布.在南大西洋异常区,NOAA-15观测到的高能电子通量比其他卫星的低,NOAA-16观测的高能电子通量比其他卫星的高,各卫星的高能质子观测结果基本相同.在两极辐射带,各卫星观测的高能电子通量结果基本相同,NOAA-18和NOAA-19观测的质子通量最高,NOAA-16和NOAA-17次之,NOAA-15最低,其中NOAA-19比NOAA-15观测到的质子通量要高一个数量级左右.在磁暴期间顶部电离层高能电子的变化表明地磁指数Dst和空间粒子通量变化具有时间同步性.本文的研究成果将为我国下一代电磁卫星设计提供基础依据.  相似文献   

4.
太阳质子事件期间内辐射带质子通量的变化   总被引:1,自引:0,他引:1  
本文介绍风云一号(B)卫星上的宇宙线成份监测器,在1991年1月30日及31目的耀斑期间及其前后几天,对能量在4-23MeV内的内辐射带质子通量的观测结果,并对这些结果做了详细的分析.结果表明,在这两次耀斑及其所产生的太阳质子事件期间,内辐射带质子通量有显著的变化:在磁漂移壳参量L≥1.64的空间,质子通量显著增强,增幅在40%-200%之间;在L=1.30-1.60的空间,质子通量的增强也较为明显,增幅在20%以上;总的变化趋势是,L越大的地方,质子通量的增强就越显著.质子事件之后,内辐射带质子通量又逐渐回复到质子事件之前平衡结构时的水平.  相似文献   

5.
FY 1C星空间粒子成分探测器能够实现对质子能谱、电子积分通量及重离子成分的同时测量.在第23周太阳活动峰年期间,空间粒子成分探测器对860km高度的南大西洋负磁异常区高能粒子辐射进行了长达3年的连续探测.本文根据实测结果,得出了南大西洋负磁异常区粒子辐射特征,分析了太阳质子事件和地磁暴对南大西洋负磁异常区粒子辐射的影响.  相似文献   

6.
地球外辐射带是一个高度动态变化的空间环境,辐射带电子通量的变化在磁暴期间尤为明显.要分析潜在的电子动态变化机制,需要排除绝热效应产生的影响.在以三个绝热不变量组成的相空间坐标中,利用相空间密度(PSD)可以反映电子的真实加速和损失情况.本文详细分析两颗范艾伦卫星和三颗GPS导航卫星在2013年3月的同步电子通量观测数据,发现在3月17日磁暴期间,当太阳风动压增大、行星际磁场南向时,辐射带电子通量会发生骤降.进一步将电子通量转换成电子相空间密度并利用不同第一、第二绝热不变量(μ,K)组合条件下PSD径向分布的差异性,深入探究磁暴期间辐射带电子的动态变化机制.结果表明:磁暴初期由于电子的局地加速导致PSD不断上升;磁暴主相期间,由于磁层顶阴影效应以及伴随的向外径向扩散损失导致PSD快速降低;位于不同空间位置的多颗卫星观测为明晰辐射带电子动态物理过程提供了重要的便利.  相似文献   

7.
地球辐射带中有"杀手"电子之称的相对论电子通量增强和损失过程一直是空间物理学和空间天气学研究的热点.本文通过对20002016年间,地球同步轨道相对论电子通量降低至背景通量水平并持续时间长达3天以上这一特殊现象进行了相关统计研究.从事件的时间分布角度,本文研究了约1.5个太阳活动周内共62例事件随太阳活动水平高低的分布情况,结果表明:在太阳活动周下降期有较少的事件发生,而在峰年、谷年这类事件的发生率与太阳活动水平的高低并没有直接联系.随后,我们对这62例事件在开始、持续、结束三个阶段分别做了一些相关参数的统计,探讨相对论电子通量长期倒空事件的客观规律和产生机制.研究结果表明:事件发生前,太阳风动压、密度的显著增加引起磁层顶向内收缩,等离子体层顶一直维持在高L区域,IMF Bz分量南向和磁暴过程使相对论电子通量通过绝热和非绝热等物理损失机制降至背景通量水平.当这些相对论电子达到背景通量水平后,较弱的太阳风条件和地磁活动水平不足以提供充分的可以使相对论电子通量增长的源;虽然有些相对论电子通量长期倒空事件期间存在中、小磁暴过程,但这些强度较弱的磁暴很可能不会显著地影响同步轨道相对论电子损失和增长的动态平衡,因此相对论电子仍然可以维持在背景通量水平.如果有长时间的亚暴活动和高强度的ULF (Ultra-Low Frequency)波活动发生,太阳风速度显著增加,那么这些物理过程能提供足够的种子电子和持续的加速条件,使得相对论电子通量打破倒空状态,进而呈现显著增长趋势.  相似文献   

8.
本文利用低高度极轨卫星NOAA/POES的观测数据,对2003年Hallowe'en磁暴期间新质子带的形成和损失机制做了细致的研究和分析.结果表明新质子带的形成是诸多因素共同作用的结果.包括强太阳质子事件(Solar Proton Events,SPEs)、大的地磁暴和行星际激波.所有这些因素构成了新质子带形成的前提条件,尤其是行星际激波是形成新质子带不可缺少的因素.此外本文提出了磁暴主相对高能质子注入磁层稳定捕获区起到重要贡献.本文还运用绝热捕获判据分析了新质子带的损失机制,证明了由于磁暴期间环电流积累造成磁场大的扰动,破坏绝热不变量的守恒,导致新质子带粒子的损失.  相似文献   

9.
FY-3B卫星为轨道高度约800 km,倾角98°的极轨气象卫星,星上高能电子探测器可开展宽能谱、高时间分辨的电子辐射长时间连续监测.20112015年极低太阳活动周期内,FY-3B卫星高能电子探测器对0.15~5.7 MeV不同能量高能电子在南大西洋异常区以外的辐射带区域的观测结果显示:在所有的辐射带区域,低能量的电子比高能量的电子更容易出现增强,填充槽区和进入到内带更低L区域的可能性更大.0.15~0.35 MeV的电子长期充斥于外辐射带和槽区,而1 MeV以上的电子大部分时间分布于外辐射带,在太阳风速度、地磁活动极弱的2014年呈现长时间极弱通量水平.2015年频繁增强的扰动导致电子通量水平整体升高,空间分布大范围扩散,1 MeV以上能量的电子在槽区位置也出现了分布.分析2014.5.10-7.30和2015.5.10-7.10两个典型时段内扰动参数对电子通量在不同区域动态分布的影响,结果表明:电子通量在外辐射带外边界区域动态与太阳风起伏变化关联显著.AE<300 nT,Dst>-30 nT,SW<500 km·s-1的持续长时间低水平扰动条件下,电子通量分布内边界出现在不低于L~4的位置,通量峰值出现在靠近L~5的位置;而在太阳风速度和地磁活动显著活跃的时候,电子会穿越外辐射带深入到槽区,在外辐射带的通量峰值则出现在L约3.5~3.9的位置.2015年的3月和6月两起强磁暴使得电子向更低L注入,>1 MeV以上的电子在低至L~2.8的槽区出现显著增长.在极低通量水平下,AE指数短时增加超过300 nT的亚暴活动会导致0.15~0.35 MeV电子超过1个量级的增长变化.上述结果对于准确认识辐射带电子不同时期的基本特性、发现能量电子动态潜在的基本物理过程,构建更准确的辐射带电子模型有着重要的参考意义.  相似文献   

10.
风云3C卫星(简称FY-3C)测量的低地球轨道(Low Earth Orbit,简称LEO)高能粒子(电子、质子和重离子)通量,是空间环境监测预警业务的重要自主数据来源.深入分析风云3C卫星测量的不同种类高能电子的分布特征和变化规律,对辐射带研究和空间天气预报具有重要意义.本文使用FY-3C测量的空间粒子数据,系统分析了2015年3月17日强磁暴期间辐射带捕获、准捕获和沉降电子的演化特征及其主导性物理机制.结果表明,在磁暴主相,外辐射带电子通量(E2:0.35~0.65 MeV, E3:0.65~1.2 MeV)出现快速下降,达到两个数量级,E1能级(E1:0.15~0.35 MeV)电子通量在L<5区域因为亚暴注入先出现增长,之后在L>4的区域出现明显下降.在磁暴恢复相,由于合声波(chorus waves)先加速低能段电子,E1能段电子通量最先(小于五小时)开始增加,在磁暴结束时覆盖25 cm-2·sr-1·s-1.电子能段越高通量增长得越慢...  相似文献   

11.
The losses of radiation belt electrons to the atmosphere due to wave–particle interactions with electromagnetic ion-cyclotron (EMIC) waves during corotating interaction region (CIR) storms compared to coronal mass ejections (CME) storms is investigated. Geomagnetic storms with extended ‘recovery’ phases due to large-amplitude Alfvén waves in the solar wind are associated with relativistic electron flux enhancements in the outer radiation belt. The corotating solar wind streams following a CIR in the solar wind contain large-amplitude Alfvén waves, but also some CME storms with high-speed solar wind can have large-amplitude Alfvén waves and extended ‘recovery’ phases. During both CIR and CME storms the ring current protons are enhanced. In the anisotropic proton zone the protons are unstable for EMIC wave growth. Atmospheric losses of relativistic electrons due to weak to moderate pitch angle scattering by EMIC waves is observed inside the whole anisotropic proton zone. During storms with extended ‘recovery’ phases we observe higher atmospheric loss of relativistic electrons than in storms with fast recovery phases. As the EMIC waves exist in storms with both extended and short recovery phases, the increased loss of relativistic electrons reflects the enhanced source of relativistic electrons in the radiation belt during extended recovery phase storms. The region with the most unstable protons and intense EMIC wave generation, seen as a narrow spike in the proton precipitation, is spatially coincident with the largest loss of relativistic electrons. This region can be observed at all MLTs and is closely connected with the spatial shape of the plasmapause as revealed by simultaneous observations by the IMAGE and the NOAA spacecraft. The observations in and near the atmospheric loss cone show that the CIR and CME storms with extended ‘recovery’ phases produce high atmospheric losses of relativistic electrons, as these storms accelerate electrons to relativistic energies. The CME storm with short recovery phase gives low losses of relativistic electrons due to a reduced level of relativistic electrons in the radiation belt.  相似文献   

12.
One of the key elements of storms and substorms is the injection of energetic particles into the region of near geosynchronous orbit, that is, the sudden flux enhancement in the energy range of tens to hundreds of keV. This paper reports the observational results on how such injection features during storm times are different from those of nonstorm times. We particularly focus on the difference between proton injections and electron injections. Based on a number of storm time injection events that meet our strict selection criteria, we find a notable difference between proton injections and electron injections in the energy-spectral dependence of the flux enhancement averaged over the first 30 min after the injection onset: The average flux enhancement of many protons injections tends to be bigger at higher energy channels than at lower energy channels, but electron injections exhibit the opposite tendency for the energy-spectral dependence of flux enhancement, i.e., average flux enhancement decreasing with increasing energy. We show that this feature is almost unique only for the injection events during the storm main and early recovery phase. It is suggested that any successful scenario intended to model storm time injections should be able to explain this difference between proton injections and electron injections.  相似文献   

13.
哨声模波对高能电子槽区和外辐射带的调节作用   总被引:5,自引:3,他引:2       下载免费PDF全文
本文利用磁层哨声模嘶声和合声波的幅度分布模型、近赤道背景电子(能量在eV量级)的数密度分布模型和IGRF10磁场模型建立了一个高能电子(能量大于50 keV)准线性扩散模型.模型的数值结果表明,在不同的地磁条件下,等离子体层顶位置的变化改变了磁层背景电子数密度的空间分布,从而改变了哨声模嘶声对高能电子有效的投掷角扩散(损失)区域,同时也改变了哨声模合声波对高能电子有效的动量扩散(加速)区域.哨声模嘶声对电子投掷角扩散区域的变化和RRES卫星探测到的高能电子的槽区变化是一致的,而合声波对电子的动量扩散区域的变化和卫星探测到外辐射带的变化相同.这种对应关系说明:在不同的地磁条件下,哨声模波对高能电子扩散区域的变化是造成高能电子槽区和外辐射带的空间位置和大小变化的一个重要因素.在一些强磁暴期间,由于嘶声对部分能量范围电子的投掷角扩散作用消失,这些电子的槽区也随之消失,从而使内外辐射带连接在一起.  相似文献   

14.
The present-day state of the studies of the outer radiation belt relativistic electrons and the boundary of the solar proton penetration into the magnetosphere during magnetic storms is briefly reviewed. The main attention is paid to the results from studying the interrelation between these structural formations and other magnetospheric plasma structures. It has been indicated that the relationship between the position of the maximum of belt of relativistic electrons injected during magnetic storms (L max) and the magnetic storm amplitude (|Dst|max = 2.75 × 104/L max4) can be used to predict the extreme latitudinal position of such magnetospheric plasma formations as a trapped radiation region boundary, the nighttime equatorial boundary of the auroral oval, and westward electrojet center during a storm. Using the examples of still rare studies of the solar proton boundary dynamics in the magnetosphere based on the simultaneous measurements on several polar satellites, it has been demonstrated that a change in the geomagnetic field topology during magnetic storms can be diagnosed.  相似文献   

15.
本文利用低高度极轨卫星NOAA/POES的观测数据,对2003年Hallowe'en磁暴期间新质子带的形成和损失机制做了细致的研究和分析. 结果表明新质子带的形成是诸多因素共同作用的结果,包括强太阳质子事件(Solar Proton Events, SPEs)、大的地磁暴和行星际激波.所有这些因素构成了新质子带形成的前提条件,尤其是行星际激波是形成新质子带不可缺少的因素.此外本文提出了磁暴主相对高能质子注入磁层稳定捕获区起到重要贡献.本文还运用绝热捕获判据分析了新质子带的损失机制,证明了由于磁暴期间环电流积累造成磁场大的扰动, 破坏绝热不变量的守恒,导致新质子带粒子的损失.  相似文献   

16.
The processes of penetration, trapping, and acceleration of solar protons in the Earth’s magneto-sphere during magnetic storms in November 2004 and January 2005 are studied based on the energetic particle measurements on the CORONAS-F and SERVIS-1 satellites. Acceleration of protons by 1–2 orders of magnitude was observed after trapping of solar protons with an energy of 1–15 MeV during the recovery phase of the magnetic storm of November 7–8, 2004. This acceleration was accompanied by an earthward shift of the particle flux maximum for several days, during which the series of magnetic storms continued. The process of relativistic electron acceleration proceeded simultaneously and according to a similar scenario including acceleration of protons. At the end of this period, the intensification was terminated by the process of precipitation, and a new proton belt split with the formation of two maximums at L ~ 2 and 3. In the January 2005 series of moderate storms, solar protons were trapped at L = 3.7 during the storm of January 17–18. However, during the magnetic storm of January 21, these particles fell in the zone of quasi-trapping, or precipitated into the atmosphere, or died in the magnetosheath. At the same time, the belts that were formed in November at L ~ 2 and 3 remained unchanged. Transformations of the proton (and electron) belts during strong magnetic storms change the intensity and structure of belts for a long time. Thus, the consequences of changes during the July 2004 storm did not disappear until November disturbances.  相似文献   

17.
Increases in solar protons and variations in the electron and proton fluxes from the outer radiation belt are studied based on the GLONASS satellite measurements (the circular orbit at an altitude of ~20000 km with an inclination of ~65°) performed in December 2006. Indications in the channels, registered protons with energies of Ep = 3–70 MeV and electrons with energies of Ee > 0.04 and >0.8 MeV, are analyzed. The data on electrons with Ee = 0.8–1.2 MeV, measured on the Express-A3 geostationary satellite, are also presented. Before the strong magnetic storm of December 14 (|Dst|max = 146 nT), the maximum of the outer belt electrons with the energy >0.7 MeV was observed at L ~ 4.5. After the storm, the fluxes of these electrons increased by more than an order of magnitude as compared to the prestorm level, and the maximum of a “new” belt shifted to L < 4 (minimal L reached by the GLONASS orbit). Under quiet geomagnetic conditions, solar protons with the energies >3 MeV fill only high-latitude legs of the GLONASS orbit. During the strong magnetic storm of December 15, the boundary of proton penetration into the magnetosphere almost merged with the orbital maximum of the proton radiation belt.  相似文献   

18.
Experimental proofs of the existence of the formation and destruction mechanisms of solar proton belts in the inner magnetosphere at a rapid change in the penetration boundary of solar protons are presented. An analysis of the measurements of solar protons and alpha-particles on board the Coronas-F low-altitude polar satellite during the magnetic storms in October–November 2003 is performed. During this period, formation and destruction of the belts of solar cosmic rays was observed several times. The compression of the magnetosphere during a storm makes possible the direct penetration of solar protons deep into the inner magnetosphere. The proton trajectories outside the penetration boundary are open, and the preliminary captured particles can easily leave the magnetosphere. During the recovery of the magnetospheric configuration, when the penetration boundary goes away from the Earth, the solar protons and alpha-particles with relatively low velocity of the magnetic drift remain stably captured, whereas the particles of higher energies follow the motion of the penetration boundary. That is why the energy range of the captured protons is limited from above in contrast to the effect of injection during ineffective SC in the low-energy region.  相似文献   

19.
The relativistic electron fluxes of the Earth's outer radiation belt are subjected to strong temporal variations. The most prominent changes are initiated by fast solar wind streams impinging upon the magnetosphere, which often also cause enhanced substorm activity and magnetic storms. Using 4 years of data from the particle detector REM aboard the UK satellite Strv-1b in a GTO, we investigated the relation between these different appearances of geomagnetic activity. A typical sequence is that there is a drop in the relativistic electron intensity during the main phase of the magnetic storm and a successive enhancement during the recovery phase which sometimes leads to much higher than pre-storm fluxes. Whereas the flux drop is well correlated with the magnetic storm intensity and is mainly due to the deceleration and loss of particles caused by the ring-current-induced magnetic field changes, there is only a bad correlation between the post-storm electron flux and Dst. As we show here, it is much more the level of substorm activity during the whole event which determines the size of the flux enhancements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号