首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
随着全球气候变暖,海冰厚度逐渐变小,海冰面积逐渐缩小,开阔海域的面积越来越大,北极地区海冰也越来越容易受到海浪的侵袭导致浮冰发生破碎,加速海冰融化。因此在全球气候变暖的环境下,分析浮冰大小分布特征,对于研究北极海区的动量和热量收支有着重要意义,同时有助于改进现有的海冰模型。文中基于3种不同空间分辨率的卫星图像,利用限制增长法分析了2014年夏秋季转化季节波弗特海和楚科奇海的浮冰大小分布特征,所用的卫星图像包括Medea图像,RADARSAT-2图像以及Landsat 8图像,3种图像的空间分辨率分别为1 m,15 m和100 m。不同的空间分辨率为研究浮冰大小总体分布特征提供了一个广泛的数据基础,能够更充分地研究不同尺寸的浮冰大小分布。采用的限制增长法,能够自动识别并提取出浮冰,最终得到浮冰大小分布特征满足幂律分布形式,幂指数的范围在0.8~1.91之间,较大的浮冰对应的幂指数也相应较大,且随着远离海冰边界的距离,幂指数有增大的趋势。处于在夏秋转换季节,部分浮冰开始发生冻结,小尺度浮冰数量逐渐减少。  相似文献   

2.
随着北极地区气候变暖的加剧,北极海冰正在急剧消融,海冰的减少增加了北极地区航道的适航性。本文利用遥感数据反演得到的海冰运动产品对北极海冰输出区域以及东北航道以北区域的海冰运动特征进行了量化。结果显示,从北极中央海域向弗拉姆海峡以及格陵兰海流出海冰的南向位移量呈现出显著增长趋势,海冰的平均南向位移量在2007-2014年间达到1511 km,是2007年之前(617 km)的两倍以上,反映了北极穿极流(TDS)强度在不断增强。通过长时间序列分析发现,春季东北航道以北区域的海冰北向漂移速度在喀拉海呈现+0.04 厘米/秒/年的显著增长趋势(P<0.05)。海冰北向漂移对于东北航道的开通具有显著的影响,在拉普捷夫海与喀拉海,海冰北向运动速度与航道适航期的决定系数分别达到0.33(P<0.001)和0.15(P<0.05)。东西伯利亚海、拉普捷夫海以及喀拉海存在冰间湖区域的春季海冰面积变化与航道的适航期密切相关,海冰的北向漂移对拉普捷夫海和喀拉海的海冰面积减少也有显著影响,这说明北向漂移促进了海冰的离岸输送,造成海冰面积减少的同时形成冰间水道或冰间湖促使航道开通。为探究大气环流指数对海冰运动以及东北航道适航期的影响,本文利用大气再分析数据计算了中央北极指数(CAI)和北极大气偶极子异常(DA)指数。相关性分析表明,CAI比DA更能解释东北航道的适航期,而且CAI能够解释北极海冰输出区域海冰南向位移量变化的45%。最近10年,夏季正相位的CAI进一步加强,通过加强海冰离岸输运和冰间湖活动加剧了东北航道区域海冰变薄及其强度变弱,从而促进了东北航道的开通。  相似文献   

3.
北极东北航道海冰变化特征分析研究   总被引:3,自引:0,他引:3  
21世纪以来,北极海冰正在发生快速变化,海冰覆盖范围明显减小,厚度显著变薄,在此背景下,东北航道的提前开通成为可能.本文对多年来北极东北航道内的海冰变化特征和近几年东北航道的开通情况进行了分析研究,认为东北航道在9月份开通的可能性最大,8月份次之,10月份通航的困难较大;历年的航道开通起始时间变化较大,俄罗斯新西伯利亚群岛和北地群岛,与大陆之间的海冰对东北航道的开通起着关键作用.东北航道的海冰年际变化较大,这给未来东北航道使用带来了较大挑战.  相似文献   

4.
全球变暖的背景下,北极航线的常规通航甚至商业运营有望实现,而海雾会严重影响航道上船只的航行安全。海冰的存在使海气之间相互作用变得更为复杂,是研究北极海雾不可忽略的因素。船载观测发现,与中纬度常见平流冷却雾形成时气温下降速度往往超过海水降温速度不同,北极海雾发生时海冰的存在还会使海水降温速度超过空气降温速度。然而目前海冰分布是否会影响模式模拟海雾的准确性还不得而知,因此本文利用Polar WRF(Polar Weather Research and Forecasting)模式模拟了中国第七次北极考察中观测到的一次海雾过程,并进行海冰密集度敏感性试验。通过与船载观测和欧洲中期天气预报中心再分析数据比对发现,在低浮冰区内(海冰密集度小于50%)考虑海冰分布时可以更加准确地刻画潜热通量与水汽通量,模拟出与观测事实相符的表层空气降温与增湿过程以及相对湿度的变化,因此能够更好地刻画海雾的三维结构及其生消演变。  相似文献   

5.
西北航道是指从北大西洋经加拿大北极群岛进入北冰洋,再进入太平洋的航道,是连接大西洋和太平洋的捷径。为了探讨西北航道通航期极端天气条件下强风及海冰对波浪场的影响机制,建立并验证了考虑海冰影响下的西北航道风浪演化模型,并以2012年8月北极气旋登陆期间为例探讨西北航道通航期波浪特性及波能流密度的时空演化及其对风和海冰的响应。研究结果表明,北极夏季海冰大多分布于西北航道以北海域,而风向大部分集中在SSW(南偏西22.5°)至SW(南偏西45°),西北航道海冰的存在并不会引起有效风区的明显减少,也不会引起无冰海域波能流的明显减小(不超过5%)。但是,当风向变为北向风时,无冰海域波能流减小幅度最多高达62%。最后,综合海冰和波浪要素的时空分布,提出了极端天气条件下西北航道通航期的最佳适航路线,为西北航道的夏季安全通航提供了科学依据。  相似文献   

6.
全球气候变暖导致北极海冰快速融化,北极航道的全面开通成为可能。受航道内冰情与气象海洋等综合因素影响,航道航行存在较大风险。本文主要基于北极海冰密集度卫星遥感观测结果,综合风速、温度、能见度与水深等数据信息,利用权重和风险等级划分法建立了无破冰能力船只在北极航道航行风险评估体系,计算得到日平均航道航行风险度。通过与“雪龙”号科考船在西北航道航行线路与航道航行风险度比对,发现“雪龙”号科考船均沿低航行风险度航道航行。研究结果表明:利用北极航道航行风险评估体系计算日平均北极航道航行风险度是可行的,可为极地科考或航道选取提供准确的航行风险评估信息,对积极推进“冰上丝绸之路”建设具有重要意义。  相似文献   

7.
基于2017年4月、2018年4月和2019年4月的CryoSat-2 L1B数据,比较分析了UCL13、DTU10、DTU13、DTU15和DTU18 5种不同平均海表面高度(MSS)模型及其反演的北极海冰干舷的多时空尺度差异。以UCL13为基准,对比分析不同MSS模型的差异和所反演的海冰干舷的差异,实验结果表明,不同MSS模型之间的平均绝对偏差范围为0.19~0.26 m,标准差范围为0.55~0.57 m,其中DTU18与UCL13的差异最小。以UCL13为基准,其他4种MSS模型反演的海冰干舷的平均绝对偏差为0.50~0.79 cm,标准差范围为1.17~1.74 cm。通过与冰桥计划(Operation IceBridge,OIB)机载数据相比,5种MSS模型反演的海冰干舷的相关系数范围为0.70~0.71,均方根误差范围为7.7~7.8 cm。故不同MSS模型之间的偏差对整个北极地区的海冰干舷反演的影响较小,偏差以相同的方式影响冰间水道和浮冰高度测量,因此相互抵消,但在冰间水道分布稀疏的区域,如加拿大群岛北部和拉普捷夫海区域,不同MSS模型反演的海冰干舷差异较大。  相似文献   

8.
尽管在全球气候变暖的大背景下北极海冰总体上呈现消融的趋势,"西北航道"和"东北航道"也已分别与2008年和2009年首次被人们在没有破冰船的护航下成功穿越,但由于北极地区位置特殊,资源丰富,军事价值和科研价值突出以及对全球气候变化的独特影响,已成为各国政府和学术界关注的焦点。因而对北极航道的关注也持续升温,航道安全也成为我国学术界关注的重点。本文主要从自然环境、航道的通行权及海事管辖权、航道基础设施及助航技术支持、人员与船舶操纵方面阐述影响北极航道安全的因素,探讨我国在积极应对北极航道安全挑战中的行动。  相似文献   

9.
陈迪  孙启振 《海洋学报》2022,44(12):42-54
本文利用1951?2021年哈德莱中心提供的海冰和海温最新资料以及美国国家海洋和大气管理局气候预报中心提供的NCEP/NCAR再分析资料,分析探讨了北极海冰70余年的长期变化特征,进而研究了其快速减少与热带海温场异常变化之间的联系,揭示了在全球热带海洋海温场变化与北极海冰之间存在密切联系的事实。结果表明,北极海冰异常变化最显著区域出现在格陵兰海、卡拉海和巴伦支海。热带不同海区对北极海冰的影响存在明显时滞时间和强度差异,热带大西洋的影响相比偏早,印度洋次之,太平洋偏晚。热带大西洋、印度洋和中东太平洋海温异常影响北极海冰的最佳时间分别是后者滞后26个月、30个月和34个月,全球热带海洋影响北极海冰的时滞时间为33个月。印度洋SST对北极海冰的影响程度最强,其次是太平洋,最弱是大西洋。全球热带海洋对北极海冰的影响过程中,热带东太平洋和印度洋起主导作用。当全球热带海洋SST出现正(负)距平时,北极海冰会出现偏少(多)的趋势,而AO、PNA、NAO对北极海冰变化起重要作用,是热带海洋与北极海冰相系数的重要“纽带”。而AO、PNA和NAO不仅受热带海洋SST的影响,同时也受太平洋年代际振荡PDO和大西洋多年代际AMO的影响,这一研究为未来北极海冰快速减少和全球气候变暖机理的深入研究提供理论支撑。  相似文献   

10.
在全球变暖背景下,针对北极海冰融化和东北航道开通的航行风险问题,采用风险评估理论,利用海冰密度、风速、能见度、气温和高程等指标数据,构建风险指标体系,开展了对北极东北航道主要航段自然环境危险性风险(以下简称综合风险)的评估与区划等工作,讨论各指标因子对综合风险的贡献度,得到如下结果:1)经验上来看,北极东北航道适宜通航的月份为7~10月,从风险量化角度分析得出东北航道7~10月自然环境风险较其它月份低,对经验结论进行了验证。2)研究区综合风险分布为"东高西低",即巴伦支海的综合风险较低,咯拉海、拉普捷夫海和东西伯利亚海风险较高。3)可通航月内(7~10月),9月份综合风险最低,其次是8、7月份,10月份综合风险最高。4)除去个别年份(2008和2009年),研究区在2004~2015年综合风险呈现下降趋势,2015年达到最低值。5)敏感性分析得:海冰对综合风险的贡献度最大;风速、水深次之;气温对综合风险贡献最小。  相似文献   

11.
Sea-ice physical characteristics were investigated in the Arctic section of 143°-180°W during August and early September 2008. Ship-based observations show that both the sea-ice thickness and concentration recorded during southward navigation from 30 August to 6 September were remarkably less than those recorded during northward navigation from 3 to 30 August, especially at low latitudes. Accordingly, the marginal ice zone moved from about 74.0°N to about 79.5°N from mid-August to early September. Melt-pond coverage increased with increasing latitude, peaking at 84.4°N, where about 27% of ice was covered by melt ponds. Above this latitude, melt-pond coverage decreased evidently as the ice at high latitudes experienced a relatively short melt season and commenced its growth stage by the end of August. Regional mean ice thickness increased from 0.8 (±0.5) m at 75.0°N to 1.5 (±0.4) m at 85.0°N along the northward navigation while it decreased rapidly to 0.6 (±0.3) m at 78.0°N along the southward navigation. Because of relatively low ice concentration and thin ice in the investigated Arctic sector, both the short-term ice stations and ice camp could only be set up over multiyear sea ice. Observations of ice properties based on ice cores collected at the short-term ice stations and the ice camp show that all investigated floes were essentially isothermal with high temperature and porosity, and low density and salinity. Most ices had salinity below 2 and mean density of 800-860 kg/m~3 . Significant ice loss in the investigated Arctic sector during the last 15 a can be identified by comparison with the previous observations.  相似文献   

12.
The tropopause height and the atmospheric boundarylayer (PBL) height as well as the variation of inversion layer above the floating ice surface are presented using GPS (global position system ) radiosonde sounding data and relevant data obtained by Chinas fourth arctic scientific expedition team over the central Arctic Ocean (86°-88°N, 144°-170°W) during the summer of 2010. The tropopause height is from 9.8 to 10.5 km, with a temperature range between -52.2 and -54.10C in the central Arctic Ocean. Two zones of maximum wind (over 12 m/s) are found in the wind profile, namely, low- and upper-level jets, located in the middle troposphere and the tropopause, respectively. The wind direction has a marked variation point in the two jets from the southeast to the southwest. The average PBL height determined by two methods is 341 and 453 m respectively. These two methods can both be used when the inversion layer is very low, but the results vary significantly when the inversion layer is very high. A significant logarithmic relationship exists between the PBL height and the inversion intensity, with a correlation coefficient of 0.66, indicating that the more intense the temperature inversion is, the lower the boundary layer will be. The observation results obviously differ from those of the third arctic expedition zone (800-85° N). The PBL height and the inversion layer thickness are much lower than those at 870-88° N, but the inversion temperature is more intense, meaning a strong ice- atmosphere interaction in the sea near the North Pole. The PBL structure is related to the weather system and the sea ice concentration, which affects the observation station.  相似文献   

13.
北冰洋中心区海冰漂流与大气过程   总被引:3,自引:3,他引:0  
利用北冰洋中心区漂流自动气象站(DAWS)2012年9月—2013年2月的观测数据,分析了北极点周围海冰漂流轨迹和速度及相关大气过程。结果显示,北冰洋中心区海冰具有不稳定漂流过程。2012年9月1日—2013年1月6日,DAWS所在海冰从西向西北方向漂流,2013年1月6日以后稳定地向东南方向漂流,平均移速为0.06m/s,最大达到0.4m/s。海冰漂流方向的突变和加速与穿极气旋和急流的影响有关。净辐射常出现短期突变过程,导致海冰从大气吸收能量,减缓了海冰的辐射冷却。爆发性增温过程的最大幅度达到30℃,是由强穿极气旋和伴随的暖湿气流向北极中心区输送引起,这种现象在中低纬度十分罕见。增温过程的作用是高空大气向冰面输送热量,导致海冰破裂,海冰硬度的脆变,减缓海冰厚度的增长,这种过程可能是北极海冰面积和厚度减少重要过程。  相似文献   

14.
The dramatic decline of summer sea ice extent and thickness has been witnessed in the western Arctic Ocean in recent decades, which hasmotivated scientists to search for possible factors driving the sea ice variability. An eddy-resolving, ice-ocean coupled model covering the entire Arctic Ocean is implemented, with focus on the western Arctic Ocean. Special attention is paid to the summer Alaskan coastal current (ACC), which has a high temperature (up to 5℃ ormore) in the upper layer due to the solar radiation over the open water at the lower latitude. Downstream of the ACC after Barrow Point, a surface-intensified anticyclonic eddy is frequently generated and propagate towards the Canada Basin during the summer season when sea ice has retreated away from the coast. Such an eddy has a warm core, and its source is high-temperature ACC water. A typical warm-core eddy is traced. It is trapped just below summer sea ice melt water and has a thickness about 60 m. Temperature in the eddy core reaches 2-3℃, and most water inside the eddy has a temperature over 1℃. With a definition of the eddy boundary, an eddy heat is calculated, which can melt 1 600 km2 of 1mthick sea ice under extreme conditions.  相似文献   

15.
北极海冰的年代际转型与中国冻雨年代际变化的关系   总被引:1,自引:0,他引:1  
牛璐  黄菲  周晓 《海洋学报》2015,37(11):105-117
基于1961-2013年HadISST海冰密集度资料,定义了北极海冰的季节性融冰指数,结果显示近几十年来北极季节性融冰范围呈显著的上升趋势,并分别在20世纪70年代末和90年代中期存在显著的年代际转型,相应地,中国冻雨发生频数总体上呈现出显著的减少趋势,但也存在显著的年代际转型。在20世纪70年代末之前,北极季节性融冰范围较小但显著增长,中国冻雨频数年际变化振幅较大,且主要受巴伦支海、喀拉海海冰的影响;20世纪70年代末至90年代中期北极季节性融冰范围维持振荡特征,没有显著的线性趋势,中国冻雨频数变化振幅减小,与北极海冰相关较弱,主要相关因子为北大西洋及北太平洋海表温度变化;而90年代中期以后,北极海冰融化加快,特别是2007年以后,季节性融冰范围大大增加,而中国冻雨频数处于低发时段,其变化与太平洋扇区海冰及堪察加半岛附近海温呈显著负相关,季节性融冰的显著区域也从东西伯利亚海逆时针旋转向波弗特海-加拿大群岛北部扩张,同时向北极中央区扩张。不同年代影响冻雨的海温或海冰关键海区不同,产生特定的大气环流异常响应,进而影响到我国冻雨。  相似文献   

16.
北极各海域海冰覆盖范围的变化特征   总被引:2,自引:1,他引:1  
Sea ice in the Arctic has been reducing rapidly in the past half century due to global warming.This study analyzes the variations of sea ice extent in the entire Arctic Ocean and its sub regions.The results indicate that sea ice extent reduction during 1979–2013 is most significant in summer,following by that in autumn,winter and spring.In years with rich sea ice,sea ice extent anomaly with seasonal cycle removed changes with a period of 4–6 years.The year of 2003–2006 is the ice-rich period with diverse regional difference in this century.In years with poor sea ice,sea ice margin retreats further north in the Arctic.Sea ice in the Fram Strait changes in an opposite way to that in the entire Arctic.Sea ice coverage index in melting-freezing period is an critical indicator for sea ice changes,which shows an coincident change in the Arctic and sub regions.Since 2002,Region C2 in north of the Pacific sector contributes most to sea ice changes in the central Aarctic,followed by C1 and C3.Sea ice changes in different regions show three relationships.The correlation coefficient between sea ice coverage index of the Chukchi Sea and that of the East Siberian Sea is high,suggesting good consistency of ice variation.In the Atlantic sector,sea ice changes are coincided with each other between the Kara Sea and the Barents Sea as a result of warm inflow into the Kara Sea from the Barents Sea.Sea ice changes in the central Arctic are affected by surrounding seas.  相似文献   

17.
海冰消融背景下北极增温的季节差异及其原因探讨   总被引:7,自引:2,他引:5  
运用哈德莱中心第一套海冰覆盖率(HadISST1)、欧洲中心(ERA_Interim)的温度以及NCEP第一套地表感热通量、潜热通量等资料,研究了1979—2011年33a来北极海冰消融的季节特点和空间特征,并从反照率——温度正反馈与地表感热通量、潜热通量等方面分析了海冰减少对北极增温影响的季节差异。结果表明,北极海冰在秋季和夏季的减少范围明显大于冬季和春季,而北极地表升温却在秋季和冬季最显著,夏季最为微弱,且夏季的增温趋势廓线也与秋冬季显著不同。这主要是因为夏季是融冰季,海冰融化将吸收潜热。且此时北极低空大气温度高于海表温度,海水相当于大气的冷源。随着海冰的消融,更多的热量由大气传入海洋用于融冰和加热上层海水,这使得夏季的低空大气不能显著升温。而在秋冬季,海冰凝结释放潜热,且此时低空大气温度远低于海水温度,海冰的减少使得海水将更多热量释放到大气中导致低空大气显著增暖。海水对大气的这种延迟放热机制是北极低空在夏季增温不显著而在秋冬季增温显著的主要原因。此外,秋冬季的海冰减少与北极近地面升温具有非常一致的空间分布,北冰洋东南边缘和巴伦支海北部分别是秋季和冬季海气相互作用的关键区域。  相似文献   

18.
北极中央区海冰低密集度现象研究   总被引:3,自引:3,他引:0  
近年,北极中央密集冰区出现海冰低密集度的异常现象。为了探讨这一现象的成因,本文使用ERA-Interim再分析资料,定义了北极中央区海冰低密集度(LCCA)指数,研究了2009-2016年的6-9月北极中央区发生的海冰低密集度现象。分析表明,研究时段内在北极中央区发生了6次明显的海冰低密集度(LCCA峰值)过程。在这些过程中,局地气温异常并不是导致海冰低密集度现象发生最主要的因素;海冰低密集度区域的形态及冰速场分布均与大气环流场相对应;在LCCA指数峰值发生前均有气旋中心出现在北冰洋70°N以北并伴随向北移动,气旋引起海冰辐散,同时所携带的较低纬度的热量导致海冰迅速融化。在6次过程中,有3次为气旋影响配合北极偶极子(DA)型环流。LCCA指数与84°N平均向北温度平流和北极中央区海冰速度散度呈正相关。在LCCA指数峰值前,温度平流对海冰低密集度区域形成的影响大于海冰辐散的影响。  相似文献   

19.
利用中国第3次北极科学考察所布放海冰物质平衡浮标(Ice Mass-Balance buoy,IMB)的观测数据,分析了北冰洋中心区多年冰2008年8月-2009年7月温度与物质平衡的变化特征.结果表明,冰温廓线呈现明显的季节变化,秋季降温过程从海冰表面开始向冰体内部传播.海冰底部的生长/消融率受海水温度控制,随水温的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号