首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
富东煤矿井田内及相邻煤矿采(古)空积水对其煤层开采威胁较大,本文从垂向分布与平面分布上对富东煤矿采空区积水特征进行了分析,并估算了矿井内及影响其开采的相邻采空区及采空破坏区的积水量。  相似文献   

2.
为解决胜利煤矿6#煤层老窑采空积水区对本煤层及下部煤层开采造成的重大隐患,运用瞬变电磁法对胜利煤矿6#煤层进行井下物探,按照该方法的理论对探测结果进行解释分析。根据积水采空区电性最低,实体较高,无水采空区视电阻率最高的特性以及视电阻率的大小,得出在侧面沿主斜井方向视电阻率剖面图内,6#煤层与高阻异常区(采空积水区)相交且穿过,可推断出该段交线处中央部分为采空积水区,且采空范围较小,两侧为未采区。经现场井下钻探技术对物探结果进行验证,最终确定了6#煤层采空区积水范围。  相似文献   

3.
为避免山西临汾胜利煤矿10号煤层采动过程中受上覆6号煤层采空区透水的威胁,利用板壳理论、断裂力学理论分别建立导水裂隙带高度和底板破裂深度的力学模型,计算10号煤层Ⅰ—Ⅵ区开采过程中导水裂隙带高度分别为46.77 m、48.86 m、56.05 m、56.14 m、56.33 m和55.20 m,6号煤层Ⅰ—Ⅳ区的破裂带影响深度分别为1.57 m、1.14 m、1.85 m和1.26 m。通过构建上覆煤层采空区积水危险性类型的划分准则,对10号煤层采动过程中受到上覆6号煤层采空区积水的危险性进行判定分析,结果表明:6号煤层Ⅰ—Ⅳ区对10号煤层的积水危险性类型均为突水型,会对10号煤开采过程产生安全威胁;6号煤层的不可采区域对10号煤层Ⅴ区和Ⅵ区的影响类型为原岩渗透型,对10号煤层Ⅴ区和Ⅵ区的回采不会构成危险性。   相似文献   

4.
徐德伟  李海东 《地下水》2019,(1):112-114
近年不断发生的突水事故,给煤矿安全生产带来严重威胁,研究矿区水文地质特征,分析矿井充水因素有重要现实意义。根据东胜煤田乌拉素矿区地质勘探和水文地质资料,对煤层开采导水裂隙带高度进行计算,结果表明:直罗组底部、含煤系地层的裂隙承压水含水层和上部煤层采空区内的积水,是煤层开采时矿井涌水的主要充水水源,矿井充水通道有断层裂隙带、封闭不良钻孔、采动导水裂隙带;其中导水裂隙带会将上部煤层采空区积水导通,使充水强度增大,矿坑涌水量增加。建议开采过程中要做到边探边采,探采结合,预防突水问题。  相似文献   

5.
由人工采矿及天然作用形成的地下空洞是引起地面塌陷、地裂缝等多种环境地质灾害的根源之一。在煤矿开采区,地下空洞主要是煤矿采空区,采空区受水文地质条件和开采时间的影响,呈现积水和不积水状态。利用瞬变电磁法对神东矿区采空区进行了调查勘探,用最原始的归一化二次电位解释采空不积水区及采空积水区,并根据地下空洞发育的时间长短及积水程度的不同,会呈现高阻异常或低阻异常,在视电阻率断面图上呈现出十分显著的特征。给瞬变电磁法勘探应用于采空区及采空积水区的探测提供了实例,对预测和防治采空区引起的塌陷环境地质灾害具有重要意义。   相似文献   

6.
裂隙、离层及冒落带的声波成像识别方法   总被引:9,自引:0,他引:9  
煤层采空形成的冒落带,裂隙带和沉降变形情况的查明对灾害防治及土地利用是非常重要的,在勘察钻孔中进行声波扫描成像测井能提供清晰直观的图像资料,给工程地质的评价分析提供了可靠的依据。  相似文献   

7.
老空区的积水范围、积水量会随时变化,受采动影响其变化更大.本文根据济宁二号煤矿二采区3上、3下煤层4个工作面的探放水情况,分析了上层煤老空区积水原因,总结了动压影响区的积水变化规律,为动压区防治水工作积累了经验.  相似文献   

8.
以山西东南部某大型煤矿为例,采用瞬变电磁和直流电法对该矿采空积水区进行探查,通过对已知采空区视电阻率特征的分析,确定了该区二种方法的解释原则,及高低阻异常的阈值。并以采区100线对数据资料进行对比分析,以验证二种勘探方法的解释结果的一致性。依据测区瞬变电磁三维数据体切出的3煤视电阻率平面图,圈定了3煤采空积水区的范围。经钻孔验证,D异常区为3煤采空积水区。  相似文献   

9.
以探测某地小煤窑遗留的采空区为例,探讨了瞬变电磁法在探测采空积水区的应用效果。选用同一回线装置形式,结合矿区地质条件,具体分析了采空积水区的地球物理异常特征。结果表明,该方法在煤矿水文地质灾害调查方面具有分辨率高、经济快速、准确有效等优势,能够满足煤矿安全生产的要求。  相似文献   

10.
激发极化法对煤层采空区、采空积水区、裂隙富水区等情况的探测,可以取得不同的响应特征,具有良好的区分效果。将该方法的物理-电学特性与土力学理论相结合,从土力学中的"三相"(固体、液体、气体)角度对激发极化法探测煤层采空积水等情况的不同特征进行理论分析,并进行了"三相"相关参数(饱和度、孔隙率)与激发极化特征(视电阻率、极化率)之间的关系实验。理论分析及实验结果表明:煤层采空区激发极化特征表现为"高电阻率、低极化率",采空积水区表现为"低电阻率、中-高极化率",裂隙富水区表现为"低电阻率、高极化率";煤层采空积水等不同情况下的激发极化特征与饱和度、孔隙率的变化密切相关。山西晋城某煤矿的工程实例,验证了理论分析成果。   相似文献   

11.
李源汇 《探矿工程》2018,45(11):83-87
针对双系煤层上覆采空区积水对下部煤层开采构成的威胁,提出在地面布置钻孔,穿越上部多层采空区,施工探放水孔与大直径抽水井的防治水钻探技术。采用该技术在大同矿区上覆侏罗系采空区的积水治理实践表明,地面探放水孔能够实现采空积水区与下部石炭系开采煤层巷道的贯通式放水,大直径抽水井可实现超大流量的采空区积水抽放,施工的9个地面探放水累计疏放采空区积水398.1万m3,5个大直径抽水井累计抽排采空区积水200余万立方米,取得了较好的贯通式放水和抽排效果。介绍了地面探放水孔与大直径抽水井钻探技术在同煤集团同忻矿上覆侏罗系采空区积水治理中的应用,可为其它类似开采条件的矿井上覆采空区积水治理提供参考。  相似文献   

12.
大面积采动矿区水环境灾害特征及防治措施   总被引:1,自引:0,他引:1  
矿山采动前后,相应伴生水系调整和水体污染,产生水环境灾害。以阜新新邱矿区为研究对象,在对环境地质情况调查分析基础上,主要从水资源流失、废旧地下采场和露天矿坑积水、矿区地表和地下水质污染等方面探讨了矿区水环境灾害的形成及特征。大面积的开采,造成矿区水资源流失严重,矿山停采后,地下水位逐渐恢复;废旧地下采场和露天矿坑形成的积水,在入渗过程中,通过运移累积、吸附转化、溶解解析和离子交换等水岩作用对地下水产生污染;矿区矿井抽排水和河流水质污染物不同程度超标。针对矿山水环境灾害,建议采用矿山地质环境治理、修建防排水及净水设施、水环境监测等手段进行防治,以使矿区环境得到根本改善。  相似文献   

13.
地球物理勘探在探测煤矿采空区覆岩“两带”中的应用   总被引:2,自引:0,他引:2  
介绍了地质雷达法、电磁波CT成像法及瞬变电磁法在探测煤矿采空区覆岩“两带”的应用。认为地球物理勘探方法在观测钻孔不足或冲洗液消耗量法不能顺利进行时能有效地探测煤矿采空区覆岩“两带”,特别是瞬变电磁法有分辨率高,抗干扰性强的特点,值得推广。  相似文献   

14.
通过对烟台市牟平区金牛山矿山采矿历史遗留的老采坑硐(井)、塌陷带和采空区等综合恢复治理,详细介绍了采空区充填注浆的设计和施工工艺,消除了地质灾害隐患,改善了地质环境。该工程设计及成功实践对类似金矿塌陷带和采空区治理有很好的指导和借鉴作用。  相似文献   

15.
我国西北干旱半干旱地区水资源总体贫乏,但煤炭储量丰富,且埋藏浅。煤炭开采覆岩土破裂常发育到地表,破坏浅表层水资源,造成潜水水位下降、地表水枯竭,生态地质环境恶化,实施水资源保护性开采(保水采煤)是西北干旱地区煤炭科学开采的唯一选择。本文叙述了保水采煤的历史和现状,分析了采空区储水的基本条件和机理,给出了采空区储水的水量预计方法,并以实例说明了采空区储水水量和水质效果,认为采空区储水是西北干旱区浅埋煤层大规模保水开采的最有效途径。  相似文献   

16.
小煤窑越界开采是我国煤炭行业极为普遍的现象。由于越界开采范围、积水量等条件不明,老空水严重威胁着毗邻大型煤矿的安全采掘工作。为快速准确地探查小煤窑越界开采边界并预防老空水的威胁,运用地面定向钻孔轨迹可控、定位精确的特点,提出了以极软中厚煤层精准钻进、不同岩性钻井液配比和采空区井漏预防与封堵为主的极软中厚煤层中地面顺层孔长距离钻进技术,并提出了越界开采区老空水害防治流程。以华北型煤田某煤矿Ⅲ63采区右翼为研究区,应用越界开采区老空水害防治技术体系,通过工程示范准确查明了越界开采边界与越界开采方向,为合理留设矿界防隔水煤柱提供依据。该方法的成功应用为同类矿井的老空水害防治提供了科学的技术,并且为地面顺层孔在探查越界开采边界与极软煤层抽取瓦斯等领域中的应用提供宝贵经验。   相似文献   

17.
综合利用马坑矿区积累的水位、水温资料,结合前期对矿区水文地质条件的认识,查明了矿区岩溶水在疏干条件下的补给的变化特征。矿区岩溶含水层以石炭系船山组至二叠系栖霞组灰岩为主,大气降水为其主要补给来源。矿区开采过程中由于矿山采石场开采灰岩造成的溶洞出露地表、采空塌陷裂隙、第四系扰动及沟谷堵塞等使大气降水入渗补给量增大;断层破碎带使分布于灰岩含水层上部的二叠系文笔山组泥质砂岩地层具有了良好的含水性及导水性,致使其上部加福组砂岩裂隙水通过小娘坑断层及F3断层等破碎带补给岩溶水;溪马河河水沿河床与F1断层交汇段渗漏补给岩溶水;深部花岗岩低温热水也沿F1及F10断层破碎带进入矿坑。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号