首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 937 毫秒
1.
周蒂  廖杰  赵忠贤 《地球科学》2011,36(2):227-235
世界上许多张性沉积盆地存在远大于McKenzie模型理论值的裂后异常沉降, 南海北部陆缘的沉积盆地也是如此; 确定裂后异常沉降的特征和分布是认识其成因机制和对油气成藏影响的前提.介绍了估算裂后异常沉降的3种方法: 古水深比较法、应变速率反演法和沉降过程二维正反演法, 并指出了各方法的应用前提和优缺点.对于由作者提出的后一种方法还结合在珠江口盆地的应用实例进行了较详细的讨论, 表明这种方法能在考虑岩石圈挠曲强度的基础上正演模拟出单幕或多幕盆地沉降及相应的岩石圈伸展系数, 从而计算出盆地理论热沉降, 与通过回剥反演得到的实测构造沉降进行对比; 还指出了该方法存在的问题和需进一步研究之处.   相似文献   

2.
珠江口盆地陆架区岩石圈伸展模拟及裂后沉降分析   总被引:7,自引:0,他引:7  
赵中贤 《地质学报》2010,84(8):1135-1145
本文根据伸展盆地发育的挠曲悬臂梁模型,以二维正、反演相结合的方法,计算了珠江口盆地陆架区1530测线北段的岩石圈伸展系数,分析了其裂后沉降规律。由正演模拟,发现盆地1530测线北段的裂陷由北向南逐渐发育,其陆架岩石圈的平均伸展系数为1.2和较大凹陷处的岩石圈理论伸展系数变化在1.08~1.24之间。整条剖面裂后沉降的实测值比理论值大2.5km左右,本文分析造成这一差值的最大可能是裂后异常沉降的存在。由前人成果可知,陆坡区也存在其他大的异常,对于陆架和陆坡区的异常,本文认为它们之间以及它们与其他南海陆缘之间都可能有关联,它们的产生可能是某种共同机制的结果。珠江口盆地陆架区的实测裂后沉降速率明显不同于逐渐减小的理论变化规律,而是存在两期(30~18.5Ma和18.5Ma至今)由快到慢的变化。在30~23.8Ma沉降速率集中在140~190m/Ma,之后23.8~18.5Ma减小至35~65m/Ma。18.5~16Ma的沉降速率迅速增大到300m/Ma,随后16Ma至今又减小至75~110m/Ma。其中18.5~16Ma的沉降速率最大,并与当时陆架坡折的形成和海平面的快速上升相对应,也与前人在陆坡区白云凹陷发现的17.5~15.5Ma裂后重大加速沉积的时间一致,因此本文推测珠江口盆地18.5~17.5Ma可能存在一重大构造事件,引起盆地从陆架到陆坡的裂后快速沉降的发生。但对于构造事件的成因、准确时间及其范围都有待进一步的研究。  相似文献   

3.
为了揭示盆地深水区演化及裂后期大规模沉降的成因机制, 在琼东南盆地典型的、高品质地震剖面地质构造精细解释基础上, 结合岩石圈变形的挠曲悬臂梁模型和挠曲均衡模型, 应用正演和反演模拟技术, 定量恢复了该盆地所处地区的上地壳、地壳以及岩石圈的伸展程度.结果表明, 琼东南盆地自陆架边缘到深水坳陷区, 岩石圈上地壳的伸展系数较小, β值最大为1.23~1.32;整个地壳的伸展系数变化较大, 盆地边缘隆起区的β值在1.1~1.2之间, 向盆地中部β值逐渐增大到3.14;而对整个岩石圈而言, 其伸展系数β值由陆架到陆坡深水盆地也从1.2逐渐增大到4.2.根据对南海地区的构造及岩石圈和地壳的结构分析认为, 与McKenzie的岩石圈均一伸展以及由热控制的裂后期缓慢沉降过程不同的是, 上述与深度相关的岩石圈伸展减薄是由南海西北次海盆扩张过程中深部物质的离散上涌流动所导致的下地壳的快速而强烈的塑性流动所引起的, 并由此建立了琼东南盆地的形成演化模式, 来解释和探讨深水坳陷区及裂后期快速而大规模沉降的成因机制.   相似文献   

4.
琼东南盆地构造沉降的时空分布及裂后期异常沉降机制   总被引:2,自引:0,他引:2  
为考察琼东南盆地构造沉降的时空分布及裂后期异常沉降机制,利用回剥技术计算了盆内68口井的构造沉降史,并选择15口代表井进行拉张应变速率反演及拉张因子计算。结果表明:琼东南盆地构造沉降空间上表现为中央凹陷带和南部凹陷带强于北部凹陷带;时间上在裂陷期出现局部快速沉降-整体慢速沉降—局部快速沉降的阶段特征,进入裂后期逐渐减缓并在15.5~10.5Ma期间减至最低值,但自10.5~5.5Ma以来又明显增大。裂后期异常沉降在盆地东西部都有明显表现,在北部凹陷带较小,在中央凹陷带内往东区有逐渐增大趋势;时间上裂后异常构造沉降随时间增大,增长过程具有快-慢-快的阶段性。分析认为:裂后阶段早期的快速沉降可能是裂陷期非均匀拉张的结果,而晚中新世以后的快速构造沉降主要与岩浆活动有关。  相似文献   

5.
盆地的沉降过程能够反映盆地的演化历史及成盆机制。为深入分析四川盆地构造沉降特征,本文基于最新钻井资料和地震数据,通过回剥反演方法,进行去压实、沉积负载、古水深和海平面变化校正,重建了四川盆地不同构造单元的构造沉降史。同时根据瞬时均匀伸展模型和裂后热坳陷模型进行正演模拟,对盆地成因进行分析。构造沉降史的恢复揭示了四川盆地具有典型的克拉通盆地沉降特征。四川盆地的形成演化可划分为震旦纪—早古生代、石炭纪—三叠纪、侏罗纪—白垩纪3个构造沉降旋回,盆地经历了晚震旦世—早寒武世、早志留世、晚二叠世—早三叠世以及中晚侏罗世4幕快速沉降,第一幕和第三幕快速沉降期为岩石圈伸展减薄引起,另外两幕为前陆盆地发育过程中所引起的快速沉降。构造沉降正演结果表明四川盆地在寒武纪—奥陶纪和晚二叠世—三叠纪经历了两期“快速沉降—缓慢沉降”过程,快速沉降受控于岩石圈的伸展作用,缓慢沉降为岩石圈热冷却作用所主导。盆地在热冷却沉降阶段后进入前陆挠曲沉降,出现不同规模的剩余沉降。  相似文献   

6.
伸展型盆地是与地壳和岩石圈伸展、减薄作用有关的一类裂陷盆地,包含了重要的沉积矿产和能源资源。综合近年来国内外伸展型盆地的研究,包括大西洋被动大陆边缘、澳大利亚被动边缘以及中国大陆东部的新生代盆地,发现不论是被动边缘还是会聚板块背景下的伸展型盆地,其裂后阶段盆地的沉降过程都不是简单的仅仅由岩石圈的热作用所控制的均匀缓慢的沉降过程,而是呈现多幕式的、快速沉降的特征,反映了盆地裂后演化阶段周缘板块的构造活动及其深部岩石圈的动力因素的控制作用。文章正是从这一角度出发,简述了近年来国内外一些典型的伸展盆地区裂后期快速沉降的研究进展情况,并结合琼东南盆地裂后期沉降演化特征的定量模拟研究,对幕式快速沉降的动力学机制进行了探讨。  相似文献   

7.
李超  刘少峰  白玉 《现代地质》2014,28(6):1213-1224
为了研究松辽盆地白垩纪裂后期沉降的动力机制,以松辽盆地南部长岭、十屋凹陷为例,用回剥法和应变速率反演方法对研究区钻井和地层剖面资料进行了研究。结果表明:观测得到的裂后沉降和模拟预测的理论裂后沉降结果存在较大差异,异常沉降量达160~800 m;并且异常沉降经历了两次沉降高峰期,分别出现在裂后期的泉头组及嫩江组沉积时期,平均沉降速率最大值出现在泉头组沉积时期,达16 m/Ma,同期地壳应变速率也达到裂后期最大值,约为6 Ga-1。该异常沉降除受到裂后期基底断裂和盆地小型正断层活动的小部分影响外,可能主要受控于中生代晚期Izanagi俯冲板片在松辽盆地深部的下拽作用及其诱发的深部地幔流动,属动力沉降。  相似文献   

8.
为了探究渤海湾盆地新生代沉降过程与西太平洋板块俯冲过程的对应关系,作者收集整理27口钻孔和1条地震地质 剖面数据,并运用回剥技术和应变速率反演方法,模拟出渤海湾盆地中北部裂陷期地壳应变速率变化,分离出裂后期异常 沉降。模拟获得裂陷期地壳应变速率曲线具有明显的三次大的波动,可指示三次构造沉降事件:裂陷Ⅰ幕(60~42 Ma),对 应于渤海湾盆地孔店组-沙四段沉积过程,平均构造沉降速率为4.6 m/Ma;裂陷Ⅱ幕(42~36 Ma),对应沙三段-沙二段沉 积过程,平均构造沉降速率为5.5~30.5 m/Ma;裂陷Ⅲ幕(36~24.6 Ma),对应于沙一段-东营组沉积过程,平均构造沉降速 率为14.7~54.7 m/Ma。研究区内裂后期观测构造沉降与模拟的理论值存在明显的差异,即存在异常沉降。盆地北部异常沉 降值在100~200 m,中部渤海海域异常沉降值在500~700 m,裂后期异常沉降向海域增大。作者推测渤海湾盆地裂后异常沉 降主要是太平洋板块俯冲诱发的深部地幔物质流动导致向下拖拽力引起的。因此,渤海湾盆地中异常沉降可能是一种动力 沉降。  相似文献   

9.
毛云华  赵中贤  孙珍 《地球科学》2020,45(5):1622-1635
为揭示珠江口盆地西部陆缘伸展-减薄过程,进行盆地断裂构造样式识别、断层活动速率和一维空盆构造沉降定量计算和综合分析.珠江口盆地西部以铲式断层和拆离断层为主并继承性发育.张裂一幕断层活动和构造沉降集中于开平凹陷,最大速率分别达到239 m/myr和108.6 m/myr.张裂二幕断层活动和构造沉降向洋盆迁移,最大速率分别达到192 m/myr和210.7 m/myr.张裂一幕岩石圈减薄集中在开平凹陷,以地壳脆性薄化为主.张裂二幕减薄中心向洋盆迁移,岩石圈地幔可能发生了局部薄化和软流圈上涌,导致陆架和上陆坡区凹陷内部构造沉降减弱;洋陆过渡带处上地壳快速减薄,且薄化速度比下地壳快.对比西北次海盆南侧上地壳较厚及下地壳较薄或缺失的情况,推测西北次海盆在破裂前发生了不对称的单剪薄化.   相似文献   

10.
转换-伸展盆地——莺歌海的演化   总被引:8,自引:0,他引:8       下载免费PDF全文
孙家振  杨士恭 《地球科学》1995,20(3):243-249
在系统研究莺歌海盆地沉降史、变形史、充填史和埋藏史和基础上,确定了莺歌海盆地的演化阶段和分地类型,并建立了转换--伸展盆地的演化模式,莺歌海盆地演可分为4个主要发展阶段;(1)初始断陷;(2)裂陷;(3)拗陷(4)再次裂陷,盆地的沉降机理是:初始断陷为岩石圈刚性体的简单伸展;裂陷为与先期切断裂带重新活动腾的走滑--伸展;拗陷走滑-伸展相对较弱,叠加热沉降;再次裂陷以走滑-伸展为离,叠加重力沉降和压  相似文献   

11.
The stratigraphic and structural evolution of the Pattani Basin, the most prolific petroleum basin in Thailand, reflects the extensional tectonic regime of continental Southeast Asia. E-W extension resulting from the northward collision of India with Eurasia since the Early Tertiary resulted in the formation of a series of N-S-trending sedimentary basins, which include the Pattani Basin. The sedimentary succession in the Pattani Basin is divisible into synrift and post-rift sequences. Deposition of the synrift sequence accompanied rifting and extension, with episodic block faulting and rapid subsidence. The synrift sequence comprises three stratigraphic units: (1) Upper Eocene to Lower Oligocene alluvial-fan, braidedriver, and floodplain deposits; (2) Upper Oligocene to Lower Miocene floodplain and channel deposits; and (3) a Lower Miocene regressive package consisting of marine to nonmarine sediments. Post-rift succession comprises: (1) a Lower to Middle Miocene regressive package of shallow marine sediments through floodplain and channel deposits; (2) an upper Lower Miocene transgressive sequence; and (3) an Upper Miocene to Pleistocene transgressive succession. The post-rift phase is characterized by slower subsidence and decreased sediment influx. The present-day shallow-marine condition in the Gulf of Thailand is the continuation of this latest transgressive phase.

The subsidence and thermal history of the Pattani Basin is consistent with a nonuniform lithospheric-stretching model. The amount of extension as well as surface heat flow generally increases from the margin to the basin center. The crustal stretching factor (β) varies from 1.3 at the basin margin to 2.8 in the center. The subcrustal stretching factor (5) ranges from 1.3 at the basin margin to more than 3.0 in the basin center. The stretching of the lithosphere may have extended the basement rocks by as much as 45 to 90 km and has led to passive upwelling of the aesthenosphere, resulting in high heat flow (1.9 to 2.5 Heat Flow Units [HFU]) and high geothermal gradient (45 to 60° C/km). The validity of nonuniform lithospheric stretching as a mechanism for the formation of the Pattani Basin is confirmed by the good agreement between the level of organic maturation modeled on the basis of the predicted heatflow history and measured vitrinite reflectance at various depths measured in some 30 boreholes.  相似文献   

12.
曾母盆地是南海南部最大的新生代沉积盆地,保留了南海新生代共轭边缘演化历史以及性质的重要信息。岩石圈有效弹性厚度Te是了解大陆地壳张裂时岩石圈强度的一个关键指标。本文选取曾母盆地西部的三条典型地震剖面,在构造解释的基础上,按照挠曲均衡原理,通过对三条剖面的反演模拟,对Te进行了敏感性测试。在此基础上利用弹性梁模型对三条剖面进行了正演模拟,来模拟盆地的形态以及主要地层单元的展布。模拟结果与实测剖面的对比表明,Te值取3~5km较为合理,盆地西部的脆性/韧性地壳转换深度为15km。正演和反演模拟中的拉张因子β具有不同的构造含义,正演模拟拉张因子β代表了脆性上地壳的拉伸程度,反演模拟的拉张因子则表示整个岩石圈的拉张作用,拉张因子同时呈向北增大的趋势。  相似文献   

13.
In contrast to previously published models for the area, the seismic reflection Moho is essentially flat beneath the NE German Basin along the DEKORP deep seismic profile Basin'96. This raises the question, whether the present structure of the crust and flat Moho reflect the initial formation of the basin or modification by more recent processes. A 2D flexural model, developed for a thin elastic plate, is presented together with lithospheric strength profiles calculated along the BASIN 9601 reflection seismic line. The analysis shows a southward decrease of lithospheric strength below the Basin, with a lithospheric decoupling between the crust and the mantle. The modelling supports the hypothesis that the present Moho topography is caused by flexural buckling which caused subsidence of the NE German Basin during the Upper Cretaceous–Early Cenozoic inversion event. This suggests that the basin is in isostatic disequilibrium, and that compressive stresses are required to keep the present basin geometry.  相似文献   

14.
莺歌海盆地异常裂后沉降的动力学机制   总被引:1,自引:0,他引:1  
崔涛  解习农  任建业  张成 《地球科学》2008,33(3):349-356
为了理解莺歌海盆地形成与演化的动力过程, 用回剥法和应变速率反演方法对该区的钻井和地层剖面资料进行了研究.研究结果表明莺歌海盆地观测得到的裂后沉降和模拟预测的理论裂后沉降结果存在较大差异, 其中在西北部为300~500 m, 中部和东南部为900~1200 m, 其异常裂后沉降明显呈现向东南和向海方向递大的趋势.地幔对流模型预测的结果表明, 20 Ma以来南海北部边缘的动力地貌沉降量为300 m, 因此, 莺歌海盆地裂后异常沉降在300 m左右的地区可以用动力地貌沉降机理来解释, 但是盆地中部和东南部的巨厚的异常沉降远大于动力地貌沉降量, 它是自晚中新世以来盆缘断层的右旋走滑作用、裂后热回沉和动力地貌沉降共同作用的结果.   相似文献   

15.
Post-rift fault activities were often observed in deepwater basins, which have great contributions to oil and gas migration and accumulation. The main causes for post-rift fault activities include tectonic events, mud or salt diapirs, and gravitational collapse. In the South China Sea continental margin, post-rift fault activities are widely distributed, especially in Baiyun sag, one of the largest deepwater sag with its main body located beneath present continental slope. During the post-rift stage, large population of faults kept active for a long time from 32 Ma (T70) till 5.5 Ma (T10). Seismic interpretation, fault analysis and analogue modeling experiments indicate that the post-rift fault activities in Baiyun sag between 32 Ma (T70) and 13.8 Ma (T30) was mainly controlled by gravity pointing to the Main Baiyun sag, which caused the faults extensive on the side facing Main Baiyun sag and the back side compressive. Around 32 Ma (T70), the breakup of the continental margin and the spreading of the South China Sea shed a combined effect of weak compression toward Baiyun sag. The gravity during post-rift stage might be caused by discrepant subsidence and sedimentation between strongly thinned sag center and wing areas. This is supported by positive relationship between sedimentation rate and fault growth index. After 13.8 Ma (T30), fault activity shows negative relationship with sedimentation rate. Compressive uplift and erosion in seismic profiles as well as negative tectonic subsiding rates suggest that the fault activity from 13.8 Ma (T30) to 5.5 Ma (T10) might be controlled by the subductive compression from the Philippine plate in the east.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号