首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
This paper concerns the propagation of transient wave groups, focused at a point in time and space to produce locally large waves having a range of steepness. The experimental study was carried out in a wave flume at Dalian University of Technology. The numerical simulations were based on a nonlinear boundary integral equation solved by a higher-order boundary element method (HOBEM). Rather than simulate the whole experimental tank, local surface elevation measurements were used to drive the numerical solution from a point less than two wavelengths upstream of the focus position, leading to significant savings in computational time. Excellent agreement is achieved between the water surface elevations and the water particle kinematics measured in the experiments and those predicted numerically at wave group focus, even for near-breaking waves up to a steepness of kA=0.405 for which even locally matched 2nd-order theory is inadequate. Results based on the linear and 2nd-order theory are also presented in the comparisons. When compared with the first- and 2nd-order solutions, the fully nonlinear wave–wave interactions produce a steeper wave envelope in which the central wave crest is higher and narrower, while the adjacent wave troughs are broader and less deep.  相似文献   

2.
An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoc unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application.  相似文献   

3.
A full second-order theory for coupling numerical and physical wave tanks is presented. The ad hoc unified wave generation approach developed by Zhang et al. [Zhang, H., Schäffer, H.A., Jakobsen, K.P., 2007. Deterministic combination of numerical and physical coastal wave models. Coast. Eng. 54, 171–186] is extended to include the second-order dispersive correction. The new formulation is presented in a unified form that includes both progressive and evanescent modes and covers wavemaker configurations of the piston- and flap-type. The second order paddle stroke correction allows for improved nonlinear wave generation in the physical wave tank based on target numerical solutions. The performance and efficiency of the new model is first evaluated theoretically based on second order Stokes waves. Due to the complexity of the problem, the proposed method has been truncated at 2D and the treatment of regular waves, and the re-reflection control on the wave paddle is also not included. In order to validate the solution methodology further, a series of nonlinear, periodic waves based on stream function theory are generated in a physical wave tank using a piston-type wavemaker. These experiments show that the new second-order coupling theory provides an improvement in the quality of nonlinear wave generation when compared to existing techniques.  相似文献   

4.
Second-order wavemaker theory for irregular waves   总被引:3,自引:0,他引:3  
Through the last decade the theory for second-order irregular wave generation was developed within the framework of Stokes wave theory. This pioneering work, however, is not fully consistent. Furthermore, due to the extensive algebra involved, the derived transfer functions appear in an unnecessarily complicated form. The present paper develops the full second-order wavemaker theory (including superharmonics as well as subharmonics) valid for rotational as well as translatory wave board motion. The primary goal is to obtain the second-order motion of the wave paddle required in order to get a spatially homogeneous wave field correct to second order, i.e. in order to suppress spurious free-wave generation. In addition to the transfer functions developed in the line of references on which the present work is based, some new terms evolve. These are related to the first-order evanescent modes and accordingly they are significant when the wave board motion makes a poor fit to the velocity profile of the desired progressive wave component. This is, for example, the case for the high-frequency part of a primary wave spectrum when using a piston-type wavemaker. The transfer functions are given in a relatively simple form by which the computational effort is reduced substantially. This enhances the practical computation of second-order wavemaker control signals for irregular waves, and no narrow band assumption is needed. The software is conveniently included in a PC-based wave generation system—the DHI Wave Synthesizer. The validity of the theory is demonstrated for a piston type wavemaker in a number of laboratory wave experiments for regular waves, wave groups and irregular waves.  相似文献   

5.
The objective of the present work is to discuss the implementation of an active wave generating–absorbing boundary condition for a numerical model based on the Volume Of Fluid (VOF) method for tracking free surfaces. First an overview of the development of VOF type models with special emphasis in the field of coastal engineering is given. A new type of numerical boundary condition for combined wave generation and absorption in the numerical model VOFbreak2 is presented. The numerical boundary condition is based on an active wave absorption system that was first developed in the context of physical wave flume experiments, using a wave paddle. The method applies to regular and irregular waves. Velocities are measured at one location inside the computational domain. The reflected wave train is separated from the incident wave field in front of a structure by means of digital filtering and subsequent superposition of the measured velocity signals. The incident wave signal is corrected, so that the reflected wave is effectively absorbed at the boundary. The digital filters are derived theoretically and their practical design is discussed. The practical use of this numerical boundary condition is compared to the use of the absorption system in a physical wave flume. The effectiveness of the active wave generating–absorbing boundary condition finally is proved using analytical tests and numerical simulations with VOFbreak2.  相似文献   

6.
This paper is focussed on the derivation of a set of general scaling laws valid for both beach and dune erosion volumes based on scaling law analysis, existing and new experimental results. This latter experiments concern beach profile changes in three different laboratory flumes using identical wave conditions based on Froude scaling. The experiments with planar sloping beaches have been done at three scales: large-scale Hannover wave flume experiment (beach slope of 1 to 15), medium scale Barcelona wave flume experiment (beach slope of 1 to 15) and small-scale Delft wave flume experiments (beach slopes of 1 to 10, 15 and 20) using an identical wave train of irregular waves (single topped spectrum).  相似文献   

7.
《Applied Ocean Research》2004,26(3-4):137-146
A theoretical approach is applied to predict the propagation and transformation of nonlinear water waves. A semi-analytical solution was derived by applying an eigenfunction expansion method. The solution is applied to analyze the effect of wave frequencies and wave steepness on the propagation of nonlinear waves. The main attention is paid to the wave profile, the wave energy spectrum, and the changes of wave profile and energy spectrum due to the interaction of wave components in a wave train. The results show that for waves of low steepness the nonlinear wave effects and effects associated with the interaction of water waves in a wave train are of secondary importance. For waves of moderate steepness and steep waves the effects associated with the interactions between waves in a wave train are becoming significant and a train of initially sinusoidal waves may drastically change its form within a short distance from its original position. The evolution of wave components has substantial effects on the wave spectrum. A train of initially very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short period of time. Laboratory experiments were conducted in a wave flume to verify theoretical approaches. The free-surface elevation recorded by a system of wave gauges was compared with the results provided by the semi-analytical solution. Theoretical results are in a fairly good agreement with experimental data. A reasonable agreement between theoretical results and experimental data is observed often even for relatively steep waves.  相似文献   

8.
漂浮于自由水面的污染物的的迁移、扩散会受到天然随机海浪的影响。之前的研究(以Herterich和Hasselmann(1982)为代表)普遍认为,随机波浪作用下的斯托克司漂移速度会引起水面污染物的离散,这个离散甚至有可能跟风和海流引起的离散同一量级。本研究就随机波浪作用下的斯托克司漂移速度是否会引起水面漂移物的离散进行理论和试验探讨。从理论推导可知,随机波浪下的质量输移速度是个定常分量,因此它不会随时间变化而引起水面漂移物的离散。随后我们在实验室水槽中进行了漂移物在随机波浪(P-M谱)作用下的漂移过程的测量。试验结果也印证了随机波浪作用下的斯托克司漂移速度不会引起水面漂移物离散的结论。  相似文献   

9.
The volume of fluid(VOF)method is used to set up a wave flume with an absorbing wavemaker of cnoidal waves.Based on the transfer function between wave surface and paddle velocity obtained bythe shallow water wave theory,the velocity boundary condition of an absorbing wave maker is introduced toabsorb reflected waves that reach the numerical wave maker.For H/d ranging from 0.1 to 0.59 and T(g/d)~(1/2)from 7.9 to 18.3,the parametric studies have been carried out and compared with experiments.  相似文献   

10.
Experimental evidence of the fact that, both in the laboratory and in the field, the largest wave height to water depth ratio realisable for oscillatory waves propagating in water of constant depth is about 0.55, has been published recently (Nelson, 1985); (Nelson, 1987); (Nelson, 1994). This paper presents various theoretical approaches to estimate this maximum value. In particular, the higher approximations of the Stokes and cnoidal theories give a much higher limiting wave height, close to 0.78 h, which is commonly used in engineering practice.However, the inclusion of higher harmonics, generated by a wave-maker paddle, into the analysis provides maximum wave height less than ≈ 0.6 h, which is in good agreement with observations.  相似文献   

11.
Near-bed horizontal (cross-shore) and vertical velocity measurements were acquired in a laboratory wave flume over a 1:8 sloping sand beach of finite depth. Data were acquired using a three-component acoustic Doppler velocimeter to measure the velocity field close to, but at a fixed distance from the bed. The near-bed velocity field is examined as close as 1.5 cm above a trough and crest of a ripple under three different types of wave forcing (Stokes waves, Stokes groups, and irregular waves). Although both horizontal and vertical velocity measurements were made, attention is focused primarily on the vertical velocity. The results clearly indicate that the measured near-bed vertical velocity (which was outside the wave-bottom boundary layer) is distinctly nonzero and not well predicted by linear theory. Spectral and bispectral analysis techniques indicate that the vertical velocity responds differently depending on the location over a ripple, and that ripple-induced effects on the velocity field are present as high as 4–8 cm above the bed (for vortex ripples with wavelengths on the order of 8 cm and amplitudes on the order of 2 cm). At greater heights above the bed, the observed wave-induced motion is adequately predicted by the linear theory.  相似文献   

12.
The vertical acceleration threshold concept has been applied to evaluate the limiting wave height in the train of wind-induced waves propagated over a horizontal bottom. This concept yields very simple computation of the probability of breaking for stochastic sea in deep and finite water depths. The computations confirmed the available field and laboratory observations that the limiting wave steepness in the deep water is lower than the steepness predicted by Stokes. For shallow water depth, the limiting wave height is smaller than 0.55h. This conclusion is consistent with field as well as wave tank observations.  相似文献   

13.
In this paper, the evolution of focused waves using different paddle displacements (piston type) under laboratory conditions is presented. It is well known that in intermediate water depths, linear paddle displacements will generate spurious, free, sub and super harmonics. Thus, a second order correction to suppress these spurious free sub and super harmonics was used to generate the focused waves. The focused waves were generated in the laboratory using a linear superimposition principle, in which the wave paddle displacement is derived based on the sum of a number of sinusoidal components at discrete frequencies, whose phases are accordingly set to focus at a particular location. For this method of generation, the second order wave maker theory proposed by Schäffer [24] can be easily adopted and was used in the present study. Two different centre frequencies (fc = 0.68 Hz and 1.08 Hz) with three different bandwidth ratios (Δf/fc = 0.5, 0.75 and 1.0) were tested in a constant water depth, to consider both narrow and broadband spectra. These test cases correspond to wave focusing packets propagating in intermediate and deep water regions. Further, for each wave packet, two different amplitudes were considered in order to analyze non-breaking and breaking cases. Thus, by systematically generating the wave packets using the linear and second order paddle displacements, the analysis was carried out for the spectral and temporal evolution of selected long waves. The temporal evolution of the selected harmonics was analyzed using the Inverse Fast Fourier Transform (IFFT), to show the propagation of the spurious, free, long waves. Further, the variations in energy for the lower, higher and primary frequency ranges are reported for different wave paddle displacements. The analysis revealed that for the broadband spectrum the differences are more pronounced when using linear paddle displacements. We have also noticed a shift in focusing/breaking location and time (i.e. premature) due to the increase in crest height using linear displacements. The experiment data used in this paper has been provided as a supplementary, which can be used to validate the numerical models.  相似文献   

14.
A numerical wave flume is used to investigate the discharge characteristics of combined overflow and wave overtopping of impermeable seawalls. The numerical procedure computes solutions to the Reynolds-averaged Navier–Stokes equations and includes the generation of an irregular train of waves, the simulation of wave breaking and interaction with a sloping, impermeable wall. The numerical model is first tested against published experimental observations, approximate analytical solutions and empirical design formulae for the cases of pure overflow and pure overtopping. A sequence of numerical experiments simulating combined overflow and overtopping are described. The results are used to determine empirical discharge formulae of the form used in current practice.  相似文献   

15.
A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived semi-analytical solution was employed to study the transformation of wave profile and the evolution of wave spectrum arising from the nonlinear interactions of wave components in a wave train which may lead to the formation of very large waves. The results show that the propagation of wave trains is significantly affected by a current. A relatively small current may substantially affect wave train components and the wave train shape. This is observed for both opposing and following current. The results demonstrate that the application of the nonlinear model has a substantial effect on the shape of a wave spectrum. A train of originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short distance from an initial position. The discrepancies between the wave trains predicted by applying the linear and nonlinear models increase with the increasing wavelength and become significant in shallow water even for waves with low steepness. Laboratory experiments were conducted in a wave flume to verify theoretical results. The free-surface elevations recorded by a system of wave gauges are compared with the results provided by the nonlinear model. Additional verification was achieved by applying a Fourier analysis and comparing wave amplitude spectra obtained from theoretical results with experimental data. A reasonable agreement between theoretical results and experimental data is observed for both amplitudes and phases. The model predicts fairly well multi-peak spectra, including wave spectra with significant nonlinear wave components.  相似文献   

16.
A semi-analytical nonlinear wavemaker model is derived to predict the generation and propagation of transient nonlinear waves in a wave flume. The solution is very efficient and is achieved by applying eigenfunction expansions and FFT. The model is applied to study the effect of the wavemaker and its motion on the generation and propagation of nonlinear waves. The results indicate that the linear wavemaker theory may be applied to predict only the generation of waves of low steepness for which the nonlinear terms in the kinematic wavemaker boundary condition and free-surface boundary conditions are of secondary importance. For waves of moderate steepness and steep waves these nonlinear terms have substantial effects on wave profile and wave spectrum just after the wavemaker. A wave spectrum corresponding to a sinusoidally moving wavemaker possesses a multi-peak form with substantial nonlinear components, which disturbs or may even exclude physical modeling in wave flumes. The analysis shows that the widely recognized weakly nonlinear wavemaker theory may only be applied to describe the generation and propagation of waves of low steepness. This is subject to further restrictions in shallow and deep waters because the kinematic wavemaker boundary condition as well as the nonlinear interaction of wave components and the evolution of wave energy spectrum is not properly described by weakly nonlinear wavemaker theory. Laboratory experiments were conducted in a wave flume to verify the nonlinear wavemaker model. The comparisons show a reasonable agreement between predicted and measured free-surface elevation and the corresponding amplitudes of Fourier series. A reasonable agreement between theoretical results and experimental data is observed even for fairly steep waves.  相似文献   

17.
利用实验室风浪槽内测得的波面序列资料估计风浪外频谱。通过与实测风浪内频谱的比较,研究实测风浪外频谱的谱形特征,探讨海浪外频谱与内频谱的相似性问题。此外,还检验一种理论海浪外频谱。  相似文献   

18.
A series of experiments were conducted in a super-wave flume (300 m×5 m×5.2 m) to examine the low-frequency motion induced by waves with different incident steepness, sloping gradients and normalized frequency (sideband space). Two kinds of waves including initial uniform wave train and modulated wave train (one carrier with a pair of sidebands) are utilized for incident wave conditions. From the experimental results, it is found that for a given slope gradient the infra-gravity wave component decreases as wave nonlinearity increases and frequency downshift is a predominant factor. Furthermore, the magnitude of low-frequency component decreases with slope gradients for a given initial wave condition. In addition, the maximum value of low-frequency motion is found to be close to the normalized frequency, δ=1.0.  相似文献   

19.
20.
A numerical irregular wave flume with active absorption of re-reflected waves is simulated by use of volume of fluid (VOF) method. An active 'absorbing wave-maker based on linear wave theory is set on the left boundary of the wave flume. The progressive waves and the absorbing waves are generated simultaneously at the active wave generating-absorbing boundary. The absorbing waves are generated to eliminate the waves coming back to the generating boundary due to reflection from the outflow boundary and the structures. SIRW method proposed by Frigaard and Brorsen (1995) is used to separate the incident waves and reflected waves. The digital filters are designed based on the surface elevation signals of the two wave gauges. The corrected velocity of the wave-maker paddle is the output from the digital filter in real time. The numerical results of regular and irregular waves by the active absorbing-generating boundary are compared with the numerical results by the ordinary generating boundary to verify the performance of the active absorbing-generator boundary. The differences between the initial incident waves and the estimated incident waves are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号