首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
《Applied Ocean Research》2004,26(3-4):137-146
A theoretical approach is applied to predict the propagation and transformation of nonlinear water waves. A semi-analytical solution was derived by applying an eigenfunction expansion method. The solution is applied to analyze the effect of wave frequencies and wave steepness on the propagation of nonlinear waves. The main attention is paid to the wave profile, the wave energy spectrum, and the changes of wave profile and energy spectrum due to the interaction of wave components in a wave train. The results show that for waves of low steepness the nonlinear wave effects and effects associated with the interaction of water waves in a wave train are of secondary importance. For waves of moderate steepness and steep waves the effects associated with the interactions between waves in a wave train are becoming significant and a train of initially sinusoidal waves may drastically change its form within a short distance from its original position. The evolution of wave components has substantial effects on the wave spectrum. A train of initially very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short period of time. Laboratory experiments were conducted in a wave flume to verify theoretical approaches. The free-surface elevation recorded by a system of wave gauges was compared with the results provided by the semi-analytical solution. Theoretical results are in a fairly good agreement with experimental data. A reasonable agreement between theoretical results and experimental data is observed often even for relatively steep waves.  相似文献   

2.
A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived semi-analytical solution was employed to study the transformation of wave profile and the evolution of wave spectrum arising from the nonlinear interactions of wave components in a wave train which may lead to the formation of very large waves. The results show that the propagation of wave trains is significantly affected by a current. A relatively small current may substantially affect wave train components and the wave train shape. This is observed for both opposing and following current. The results demonstrate that the application of the nonlinear model has a substantial effect on the shape of a wave spectrum. A train of originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short distance from an initial position. The discrepancies between the wave trains predicted by applying the linear and nonlinear models increase with the increasing wavelength and become significant in shallow water even for waves with low steepness. Laboratory experiments were conducted in a wave flume to verify theoretical results. The free-surface elevations recorded by a system of wave gauges are compared with the results provided by the nonlinear model. Additional verification was achieved by applying a Fourier analysis and comparing wave amplitude spectra obtained from theoretical results with experimental data. A reasonable agreement between theoretical results and experimental data is observed for both amplitudes and phases. The model predicts fairly well multi-peak spectra, including wave spectra with significant nonlinear wave components.  相似文献   

3.
This study investigates the initialization of nonlinear free-surface simulations in a numerical wave flume.Due to the mismatch between the linear input wavemaker motion and the kinematics of fully nonlinear waves,direct numerical simulations of progressive waves,generated by a sinusoidally moving wavemaker,are prone to suffering from high-frequency wave instability unless the flow is given sufficient time to adjust.A time ramp is superimposed on the wavemaker motion at the start that allows nonlinear free-surface simulations to be initialized with linear input.The duration of the ramp is adjusted to test its efficiency for short waves and long waves.Numerical results show that the time ramp scheme is effiective to stabilize the wave instability at the start of the simulation in a wave flume.  相似文献   

4.
Extreme wave is highly nonlinear and may occur due to diverse reasons unexpectedly.The simulated results of extreme wave based on wave focusing,which were generated using high order spectrum method,are presented.The influences of the steepness,frequency bandwidth as well as frequency spectrum on focusing position shift were examined,showing that they can affect the wave focusing significantly.Hence,controlled accurate generation of extreme wave at a predefined position in wave flume is a difficult but important task.In this paper,an iterative adaptive approach is applied using linear dispersion theory to optimize the control signal of the wavemaker.The performance of the proposed approach is numerically investigated for a wide variety of scenarios.The results demonstrate that this approach can reproduce accurate wave focusing effectively.  相似文献   

5.
An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoc unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application.  相似文献   

6.
Zhang  Hao-chen  Liu  Shu-xue  Li  Jin-xuan  Wang  Lei 《中国海洋工程》2019,33(2):160-171
With growing computational power, the first-order wave-maker theory has become well established and is widely used for numerical wave flumes. However, existing numerical models based on the first-order wave-maker theory lose accuracy as nonlinear effects become prominent. Because spurious harmonic waves and primary waves have different propagation velocities, waves simulated by using the first-order wave-maker theory have an unstable wave profile. In this paper, a numerical wave flume with a piston-type wave-maker based on the second-order wave-maker theory has been established. Dynamic mesh technique was developed. The boundary treatment for irregular wave simulation was specially dealt with. Comparisons of the free-surface elevations using the first-order and second-order wave-maker theory prove that second-order wave-maker theory can generate stable wave profiles in both the spatial and time domains. Harmonic analysis and spectral analysis were used to prove the superiority of the second-order wave-maker theory from other two aspects. To simulate irregular waves, the numerical flume was improved to solve the problem of the water depth variation due to low-frequency motion of the wave board. In summary, the new numerical flume using the second-order wave-maker theory can guarantee the accuracy of waves by adding an extra motion of the wave board. The boundary treatment method can provide a reference for the improvement of nonlinear numerical flume.  相似文献   

7.
A higher-order non-hydrostatic model in a σ-coordinate system is developed. The model uses an implicit finite difference scheme on a staggered grid to simultaneously solve the unsteady Navier-Stokes equations (NSE) with the free-surface boundary conditions. An integral method is applied to resolve the top-layer non-hydrostatic pressure, allowing for accurately resolving free-surface wave propagation. In contrast to the previous work, a higher-order spatial discretization is utilized to approximate the large horizontal pressure gradient due to steep surface waves or rapidly varying topographies. An efficient direct solver is developed to solve the resulting block hepta-diagonal matrix system. Accuracy of the new model is validated by linear and nonlinear standing waves and progressive waves. The model is then used to examine freak (extreme) waves. Features of downshifting focusing location and wave asymmetry characteristics are predicted on the temporal and spatial domains of a freak wave.  相似文献   

8.
This paper concerns the propagation of transient wave groups, focused at a point in time and space to produce locally large waves having a range of steepness. The experimental study was carried out in a wave flume at Dalian University of Technology. The numerical simulations were based on a nonlinear boundary integral equation solved by a higher-order boundary element method (HOBEM). Rather than simulate the whole experimental tank, local surface elevation measurements were used to drive the numerical solution from a point less than two wavelengths upstream of the focus position, leading to significant savings in computational time. Excellent agreement is achieved between the water surface elevations and the water particle kinematics measured in the experiments and those predicted numerically at wave group focus, even for near-breaking waves up to a steepness of kA=0.405 for which even locally matched 2nd-order theory is inadequate. Results based on the linear and 2nd-order theory are also presented in the comparisons. When compared with the first- and 2nd-order solutions, the fully nonlinear wave–wave interactions produce a steeper wave envelope in which the central wave crest is higher and narrower, while the adjacent wave troughs are broader and less deep.  相似文献   

9.
The boundary integral equation method (BIEM) is developed as a tool for studying two-dimensional, nonlinear water wave problems, including the phenomena of wave generation, propagation and run-up. The wave motions are described by a potential flow theory. Nonlinear free-surface boundary conditions are incorporated in the numerical formulation. Examples are given for either a solitary wave or two successive solitary waves. Special treatment is developed to trace the run-up and run-down along a shoreline. The accuracy of the present scheme is verified by comparing numerical results with experimental data of maximum run-up.  相似文献   

10.
11.
应用基于势流理论的时域高阶边界元方法,建立一个完全非线性的三维数值波浪水槽,通过实时模拟推板造波运动的方式产生波浪。通过混合欧拉-拉格朗日方法和四阶Runge-Kutta方法更新自由水面和造波板的瞬时位置。利用所建模型分别模拟了有限水深波和浅水波,与试验结果、相关文献结果和浅水理论结果吻合较好,且波浪能够稳定传播。系统地讨论造波板的运动圆频率、振幅和水深等对波浪传播和波浪特性的影响,并对波浪的非线性特性进行分析,研究发现造波板运动频率、运动振幅以及水深均将对波浪形态和波浪非线性产生显著影响。结果为真实水槽造波机的运动控制以及波浪生成试验提供了依据,便于实验室设置更合理的参数来准确模拟不同条件下的波浪。  相似文献   

12.
孤立波与带窄缝双箱相互作用模拟研究   总被引:1,自引:1,他引:0  
针对孤立波与带窄缝双箱的作用问题,应用时域高阶边界元方法建立了二维数值水槽。其中,自由水面满足完全非线性运动学和动力学边界条件,对瞬时自由表面流体质点采用混合欧拉-拉格朗日法追踪,采用四阶龙格库塔法对下一时刻的自由水面的速度势和波面升高进行更新。采用加速度势法求解物体湿表面的瞬时波浪力。采用推板方法生成孤立波。通过模拟孤立波在直墙上的爬高以及施加在直墙上的波浪力,并与已发表的实验和数值结果对比,验证本数值模型的准确性。通过数值模拟计算研究了窄缝宽度、方箱尺寸对波浪在箱体迎浪侧爬高,窄缝内波面升高,箱体背浪侧透射波高及箱体受波浪荷载的影响。同时研究了有一定时间间隔的双孤立波与带窄缝双箱系统作用问题。  相似文献   

13.
A finite-difference scheme and a modified marker-and-cell (MAC) algorithm have been developed to investigate the interactions of fully nonlinear waves with two- or three-dimensional structures of arbitrary shape. The Navier–Stokes (NS) and continuity equations are solved in the computational domain and the boundary values are updated at each time step by the finite-difference time-marching scheme in the framework of a rectangular coordinate system. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique developed for two fluid layers.To demonstrate the capability and accuracy of the present method, the numerical simulation of backstep flows with free-surface, and the numerical tests of the MDF technique with limit functions are conducted. The 3D program was then applied to nonlinear wave interactions with conical gravity platforms of circular and octagonal cross-sections. The numerical prediction of maximum wave run-up on arctic structures is compared with the prediction of the Shore Protection Manual (SPM) method and those of linear and second-order diffraction analyses based on potential theory and boundary element method (BEM). Through this comparison, the effects of non-linearity and viscosity on wave loading and run-up are discussed.  相似文献   

14.
A full second-order theory for coupling numerical and physical wave tanks is presented. The ad hoc unified wave generation approach developed by Zhang et al. [Zhang, H., Schäffer, H.A., Jakobsen, K.P., 2007. Deterministic combination of numerical and physical coastal wave models. Coast. Eng. 54, 171–186] is extended to include the second-order dispersive correction. The new formulation is presented in a unified form that includes both progressive and evanescent modes and covers wavemaker configurations of the piston- and flap-type. The second order paddle stroke correction allows for improved nonlinear wave generation in the physical wave tank based on target numerical solutions. The performance and efficiency of the new model is first evaluated theoretically based on second order Stokes waves. Due to the complexity of the problem, the proposed method has been truncated at 2D and the treatment of regular waves, and the re-reflection control on the wave paddle is also not included. In order to validate the solution methodology further, a series of nonlinear, periodic waves based on stream function theory are generated in a physical wave tank using a piston-type wavemaker. These experiments show that the new second-order coupling theory provides an improvement in the quality of nonlinear wave generation when compared to existing techniques.  相似文献   

15.
Second-order wavemaker theory for irregular waves   总被引:3,自引:0,他引:3  
Through the last decade the theory for second-order irregular wave generation was developed within the framework of Stokes wave theory. This pioneering work, however, is not fully consistent. Furthermore, due to the extensive algebra involved, the derived transfer functions appear in an unnecessarily complicated form. The present paper develops the full second-order wavemaker theory (including superharmonics as well as subharmonics) valid for rotational as well as translatory wave board motion. The primary goal is to obtain the second-order motion of the wave paddle required in order to get a spatially homogeneous wave field correct to second order, i.e. in order to suppress spurious free-wave generation. In addition to the transfer functions developed in the line of references on which the present work is based, some new terms evolve. These are related to the first-order evanescent modes and accordingly they are significant when the wave board motion makes a poor fit to the velocity profile of the desired progressive wave component. This is, for example, the case for the high-frequency part of a primary wave spectrum when using a piston-type wavemaker. The transfer functions are given in a relatively simple form by which the computational effort is reduced substantially. This enhances the practical computation of second-order wavemaker control signals for irregular waves, and no narrow band assumption is needed. The software is conveniently included in a PC-based wave generation system—the DHI Wave Synthesizer. The validity of the theory is demonstrated for a piston type wavemaker in a number of laboratory wave experiments for regular waves, wave groups and irregular waves.  相似文献   

16.
In this work, a combined immersed boundary (IB) and volume of fluid (VOF) methodology is developed to simulate the interactions of free-surface waves and submerged solid bodies. The IB method is used to account for the no-slip boundary condition at solid interfaces and the VOF method, utilizing a piecewise linear interface calculation, is employed to track free surfaces. The combined model is applied in several case studies, including the propagation of small-amplitude progressive waves over a submerged trapezoidal dike, a solitary wave traveling over a submerged rectangular object, and wave generation induced by a moving bed. Numerical results depicting the free-surface evolutions and velocity fields are in good agreement with either experimental data or numerical results obtained by other researchers. In addition, the simplification of the initial free-surface deformation used in most tsunami earthquake source study is justified by the present model application. The methodology presented in the paper serves as a good tool for solving many practical problems involving free surfaces and complex boundaries.  相似文献   

17.
A deterministic combination of numerical and physical models for coastal waves is developed. In the combined model, a Boussinesq model MIKE 21 BW is applied for the numerical wave computations. A piston-type 2D or 3D wavemaker and the associated control system with active wave absorption provides the interface between the numerical and physical models. The link between numerical and physical models is given by an ad hoc unified wave generation theory which is devised in the study. This wave generation theory accounts for linear dispersion and shallow water non-linearity. Local wave phenomena (evanescent modes) near the wavemaker are taken into account. With this approach, the data transfer between the two models is thus on a deterministic level with detailed wave information transmitted along the wavemaker.  相似文献   

18.
The present paper develops the complete second-order wavemaker theory for the generation of multidirectional waves in a semi-infinite basin. The theory includes superharmonics and subharmonics and is valid for a rotational as well as a translatory serpent-type wave-board motion. The primary goal is to obtain the second-order motion of the wave paddles required to get a prescribed multidirectional irregular wave field correct to second order, i.e. to suppress spurious free-wave generation. The wavemaker theory is a 3D extension of the full second-order wavemaker theory for wave flumes by Schäffer (1996).  相似文献   

19.
A method of incorporating pressure forcing into a nonlinear potential flow wave model is presented. A semi-analytical pseudo-spectral method is used to calculate dynamic response of a water body exposed to evolving local pressure distribution. Surface slope coherent and slope proportional pressure functions are directly applied through a pressure term appearing in the dynamic free-surface boundary condition of a formulated initial boundary-value problem. First, a monochromatic pressure distribution is used to generate steady regular waves of permanent form. The pressure-induced wave motion exhibits stable harmonic structure for deepwater, transitional water and shallow water waves. In the next step, a more complex pressure system is used to initiate multi-component wave propagation. It is demonstrated that the proposed method provides well-posed initial conditions for studying various water wave scenarios within a framework of nonlinear potential flow solutions.  相似文献   

20.
A numerical wave tank is established based on two-phase FVM model and VOF method and verified with the physical experiment in Grue et al. (1994). Focusing waves with different wave steepness passing a vertical cylinder are investigated by Numerical simulations. The phenomenon called ‘secondary load cycle’ which may lead to ringing response, is observed and discussed. The presence of secondary load cycle could be related to Froude Number (Fr). The possible transition region of the present and absent secondary load cycle is Fr = 0.4. Sub and super harmonic wave components appear in the propagation of waves, second-order wave theory could give a good prediction. Morison equation with linear wave theory could predict well the wave forces of vertical cylinder with small steepness without the secondary load cycle, but cannot capture the crests/troughs of the wave forces with the secondary load cycle. Crest improvements are achieved by second-order wave theory. A spectral analysis based on wavelet transform is applied to wave loads. The frequency of the secondary load may be up to 13 times the wave frequency, which may cause the ringing response expanding to a higher frequency range. Strong ringing response occurs in steep wave, it could be extended up to 15 times wave trough-to-trough frequency due to the secondary load cycle. The damping has slightly influence on the peak of resonance response, but it will lead to faster decay of subsequent response, if the damping ratio is large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号