首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Local ozone production and loss rates for the arctic free troposphere (58–85° N, 1–6 km, February–May) during the TroposphericOzone Production about the Spring Equinox (TOPSE) campaign were calculated using a constrained photochemical box model. Estimates were made to assess the importance of local photochemical ozone production relative to transport in accounting for the springtime maximum in arctic free tropospheric ozone. Ozone production and loss rates from our diel steady-state box model constrained by median observations were first compared to two point box models, one run to instantaneous steady-state and the other run to diel steady-state. A consistent picture of local ozone photochemistry was derived by all three box models suggesting that differences between the approaches were not critical. Our model-derived ozone production rates increased by a factor of 28 in the 1–3 km layer and a factor of 7 in the 3–6 kmlayer between February and May. The arctic ozone budget required net import of ozone into the arctic free troposphere throughout the campaign; however, the transport term exceeded the photochemical production only in the lower free troposphere (1–3 km) between February and March. Gross ozone production rates were calculated to increase linearly with NOx mixing ratiosup to 300 pptv in February and for NOx mixing ratios up to 500 pptv in May. These NOx limits are an order of magnitude higher thanmedian NOx levels observed, illustrating the strong dependence ofgross ozone production rates on NOx mixing ratios for the majority of theobservations. The threshold NOx mixing ratio needed for netpositive ozone production was also calculated to increase from NOx 10pptv in February to 25 pptv in May, suggesting that the NOx levels needed to sustain net ozone production are lower in winter than spring. This lower NOx threshold explains how wintertime photochemical ozone production can impact the build-up of ozone over winter and early spring. There is also an altitude dependence as the threshold NOx neededto produce net ozone shifts to higher values at lower altitudes. This partly explains the calculation of net ozone destruction for the 1–3 km layerand net ozone production for the 3–6 km layer throughout the campaign.  相似文献   

2.
The mixing ratios for ozone and NOx (NO+NO2) have been measured at a rural site in the United States. From the seasonal and diurnal trends in the ozone mixing ratio over a wide range of NOx levels, we have drawn certain conclusions concerning the ozone level expected at this site in the absence of local photochemical production of ozone associated with NOx from anthropogenic sources. In the summer (June 1 to September 1), the daily photochemical production of ozone is found to increase in a linear fashion with increasing NOx mixing ratio. For NOx mixing ratios less than 1 part per billion by volume (ppbv), the daily increase is found to be (17±3) [NOx]. In contrast, the winter data (December 1 to March 1) indicate no significant increase in the afternoon ozone level, suggesting that the photochemical production of ozone during the day in winter approximately balances the chemical titration of ozone by NO and other pollutants in the air. The extrapolated intercept corresponding to [NOx]=0 taken from the summer afternoon data is 13% less than that observed from the summer morning data, suggesting a daytime removal mechanism for O3 in summer that is attributed to the effects of both chemistry and surface deposition. No significant difference is observed in the intercepts inferred from the morning and afternoon data taken during the winter.The results contained herein are used to deduce the background ozone level at the measurement site as a function of season. This background is equated with the natural ozone background during winter. However, the summer data suggest that the background ozone level at our site is elevated relative to expected natural ozone levels during the summer even at low NOx levels. Finally, the monthly daytime ozone mixing ratios are reported for 0[NOx]0.2 ppbv, 0.3 ppbv[NOx]0.7 ppbv and 1 ppbv[NOx]. These monthly ozone averages reflect the seasonal ozone dependence on the NOx level.  相似文献   

3.
Abstract

The dependence of ozone formation on the mixing ratios of volatile organic compounds (VOCs) and nitrogen oxides (NOx) has been widely studied. In addition to the atmospheric levels of VOCs and NOx, the extent of photochemical processing of VOCs has a strong impact on ozone levels. Although methods for measuring atmospheric mixing ratios of VOCs and NOx are well established and results of those measurements are widely available, determination of the extent of photochemical processing of VOCs, known as photochemical age (PCA), is difficult. In this article a recently developed methodology for the determination of PCA for individual compounds based on the change in their stable carbon isotope composition is used to investigate the dependence between ozone and VOC or NOx mixing ratios at a rural site in Ontario, Canada, during fall and winter. The results show that under these conditions the variability in VOC mixing ratios is predominantly a result of the varying impact of local emissions and not a result of changes in the extent of atmospheric processing. This explains why the mixing ratio of ozone shows no systematic dependence on the mixing ratios of VOCs or NOx in this environment and at this time of the year.  相似文献   

4.
The seasonal and diurnal variations of ozone mixing ratios have been observed at Niwot Ridge. Colorado. The ozone mixing ratios have been correlated with the NO x (NO+NO2) mixing ratios measured concurrently at the site. The seasonal and diurnal variations in O3 can be reasonably well understood by considering photochemistry and transport. In the winter there is no apparent systematic diurnal variation in the O3 mixing ratio because there is little diurnal change of transport and a slow photochemistry. In the summer, the O3 levels at the site are suppressed at night due to the presence of a nocturnal inversion layer that isolated ozone near the surface, where it is destroyed. Ozone is observed to increase in the summer during the day. The increases in ozone correlate with increasing NO x levels, as well as with the levels of other compounds of anthropogenic origin. We interpret this correlation as in-situ or in-transit photochemical production of ozone from these precursors that are transported to our site. The levels of ozone recorded approach 100 ppbv at NO x mixing ratios of approximately 3 ppbv. Calculations made using a simple clean tropospheric chemical model are consistent with the NO x -related trend observed for the daytime ozone mixing ratio. However, the chemistry, which does not include nonmethane hydrocarbon photochemistry, underestimates the observed O3 production.  相似文献   

5.
Previous zero-dimensional photochemical calculations indicate that multiple tropospheric steady states may exist, in which different NO x (NO+NO2) levels could be supported by the same source of NO x . To investigate this possibility more closely, a one-dimensional photochemical model has been used to estimate the rate of removal of atmospheric NO x compounds at different NO x levels. At low NO x levels NO x is photochemically converted to HNO3, which is removed by either wet or dry deposition. At high NO x levels formation of HNO3 is inhibited, and NO x is removed by a variety of other processes, including rainout of N2O4 and N2O5, surface deposition of NO and NO2, and direct dissolution of NO and NO2 in rainwater. Multiple steady states are possible if surface deposition of NO x is relatively inefficient. The NO x source required to trigger high atmospheric NO x levels is approximately 10 to 15 times the present global emission rate-less than half the source strength predicted by the zero-dimensional model. NO x mixing ratios in excess of 10-7 would cause severe damage to the ozone layer and could result in either a climatic warming or cooling, depending upon the amount of NO2 present.  相似文献   

6.
The objectives of this study were to identify species and levels of volatile organic compounds (VOCs), and determine their oxidation capacity in the rural atmosphere of western Senegal. A field study was conducted to obtain air samples during September 14 and September 15, 2006 for analyses of VOCs. Methanol, acetone, and acetaldehyde were the most abundant detected chemical species and their maximum mixing ratios reached 6 parts per billion on a volume basis (ppbv). Local emission sources such as firewood and charcoal burning strongly influenced VOC concentrations. The VOC concentrations exhibited little temporal variations due to the low reactivity with hydroxyl radicals, with reactivity values ranging from 0.001 to 2.6 s−1. The conditions in this rural site were rather clean. Low ambient NO x levels limited ozone production. Nitrogen oxide (NO x ) levels reached values less than 2 ppbv and maximum VOC/NO x ratios reached 60 ppbvC/ppbv, with an overall average of 2.4 ± 4.5 ppbvC/ppbv. This indicates that the rural western Senegal region is NO x limited in terms of oxidant formation potential. Therefore, during the study period photochemical ozone production became limited due to low ambient NO x levels. The estimated ozone formation reactivity for VOCs was low and ranged between −5.5 mol of ozone/mol of benzaldehyde to 0.6 mol/mol of anthropogenic dienes.  相似文献   

7.
Recent observations suggest that the abundance of ozone between 2 and 8 km in the Northern Hemisphere mid-latitudes has increased by about 12% during the period from 1970 to 1981. Earlier estimates were somewhat more conservative suggesting increases at the rate of 7% per decade since the start of regular observations in 1967. Previous photochemical model studies have indicated that tropospheric ozone concentrations would increase with increases in emissions of CO, CH4 and NO x . This paper presents an analysis of tropospheric ozone which suggests that a significant portion of its increase may be attributed to the increase in global anthropogenic NO x emissions during this period while the contribution of CH4 to the increase is quite small. Two statistical models are presented for estimating annual global anthropogenic emissions of NO x and are used to derive the trend in the emissions for the years 1966–1980. These show steady increase in the emissions during this interval except for brief periods of leveling off after 1973 and 1978. The impact of this increase in emissions on ozone is estimated by calculations with a onedimensional (latitudinal) model which includes coupled tropospheric photochemistry and diffusive meridional transport. Steady-state photochemical calculations with prescribed NO x emissions appropriate for 1966 and 1980 indicate an ozone increase of 8–11% in the Northern Hemisphere, a result which is compatible with the rise in ozone suggested by the observations.  相似文献   

8.
The fluxes of ozone and NOx out of the atmospheric boundary layer (ABL) over Europe are calculated in a mesoscale chemical transport model (MCT) and compared with the net chemical production or destruction of ozone and the emissions of precursors within the ABL for two 10 days' periods which had quite different synoptic situations and levels of photochemical activity (1–10 July 1991 (JUL91) and 26 October–4 November 1994 (ON94)). Over the European continent, about 8% of the NOx emissions were brought from the ABL to the free troposphere as NOx, while about 15% of the NOx emissions were brought to the free troposphere as NOy–NOx, i.e. as PAN or HNO3. The convection dominates over the synoptic scale vertical advection as a transport mechanism both for NOx and NOy out of the boundary layer in the summertime high pressure situation (JUL91), while in the fall situation (ON94) the convective part was calculated to be the smallest. NOx was almost completely transformed to NOy–NOx or removed within the ABL. Also for NOy the major part of the atmospheric cycle is confined to the ABL both for JUL91 and ON94. The vertical transport time out of the ABL is of the order of 100h both for the total model domain and over the European continent. The net convective exchange of ozone from the ABL is not a dominant process for the amount of ozone in the ABL averaged over 10 days and the whole domain, but convection reduces the maximum ozone concentration in episodes significantly. The ozone producing efficiency of NOx is calculated to increase with height to typically 15–20 in the upper half of the troposphere from around 5 in the ABL, but in the middle free troposphere the concentration of NOx is often too low to cause net chemical formation of ozone there.  相似文献   

9.
Measurements of the sum of peroxy radicals [HO2 + RO2],NOx (NO + NO2) and NOy (the sum of oxidisednitrogen species) made at Mace Head, on the Atlantic coast of Ireland in summer 1996 and spring 1997 are presented. Together with a suite of ancillary measurements, including the photolysis frequencies of O3 O(1D)(j(O1D)) and NO2 (j(NO2)), the measured peroxy radicals are used to calculate meandailyozone tendency (defined as the difference of the in-situphotochemical ozone production and loss rates); these values are compared with values derived from the photochemical stationary state (PSS) expression. Although the correlation between the two sets of values is good, the PSS values are found to be significantly larger than those derived from the peroxy radical measurements, on average, in line with previous published work. Possible sources of error in these calculations are discussed in detail. The data are further divided up into five wind sectors, according to the instantaneous wind direction measured at the research station. Calculation of mean ozone tendencies by wind sector shows that ozone productivity was higher during spring (April–May) 1997 than during summer (July–August) 1996across all airmasses, suggesting that tropospheric photochemistry plays an important role in the widely-reported spring ozone maximum in the Northern Hemisphere. Ozone tendencies were close to zero for the relatively unpolluted south-west, west and north-west wind sectors in the summer campaign, whereas ozone productivity was greatest in the polluted south-east sector for both campaigns. Daytime weighted average ozone tendencies were +(0.3± 0.1) ppbv h–1 for summer 1996 and +(1.0± 0.5) ppbvh–1 for spring 1997. These figures reflect the higher mixing ratios of ozone precursors in spring overall, as well as the higher proportion of polluted air masses from the south-east arriving at the site during the spring campaign. The ozone compensation point, where photochemical ozone destruction and production processes are in balance, is calculated to be ca. 14 pptv NO for both campaigns.  相似文献   

10.
By means of a three-dimensional meteorological model (MM5) and a chemical model,the distributions of tropospheric ozone and its precursors over China have been simulated in summer and winter time,16-18 August 1994 and 7-9 January 1995.The distribution of ozone over the Tibetan Plateau in summer time is deeply discussed.The simulated results indicate that thedistributions of surface ozone and NOx are in good agreement with observed results,and human activities and photochemical reactions are the main factors controlling the surface ozone and NOx concentrations.In addition,higher ozone concentrations are coincided with the air convergence,and the lower concentrations are related to the air divergence.In summer,over the Tibetan Plateau the strong flow convergence results in higher ozone concentrations in the lower troposphere:and the strong flow divergence results in lower ozone concentrations in the upper troposphere.In winter time ozone concentrations show large-scale characteristics controlled by westerly flow,and in the jet area they are lower than those outside the jet.  相似文献   

11.
传统的空气质量模型多使用简化的光化学反应机制来模拟大气污染物的形成.这些机制主要基于烟雾箱实验拟合的反应速率和产物来模拟二次产物(如臭氧(O3))前体物的氧化反应,具有一定的不确定性,导致模拟结果产生偏差.针对该问题,本研究将详细的大气化学机理(MCMv3.3.1)与美国国家环境保护局研制的第三代空气质量预报和评估系统CMAQ相结合(CMAQ-MCM),模拟研究长三角地区2015年8月27—9月5日臭氧高发时段的空气质量.CMAQ-MCM模型可以较好地模拟长三角地区6个代表城市O3和其前体物随时间的变化趋势.对模拟的O3日最大8 h平均浓度的统计分析表明,徐州表现最好(标准平均误差=-0.15,标准平均偏差=0.23).在长三角地区,居民源对挥发性有机物(VOCs)的贡献最大,占39.08%,其次是交通运输(33.25%)和工业(25.56%).能源对总VOCs的贡献最小,约为2.11%.对活性氧化氮(NOy)的分析表明,其主要组分是NOx(80%),其次是硝酸(HNO3)(<10%).O3的空间分布与NOy和NOx非常相似.HCHO等其他氧化产物的分布与NOx相似,这很可能是由于在高NOx条件下VOCs氧化产生的产物.甲基乙烯基酮(MVK)和甲基丙烯醛(MACR)的空间分布与自然源VOCs (BVOCs)非常相似,表明长三角地区MVK和MACR主要由BVOCs氧化生成.长三角地区受到人为源和自然源排放相互作用的影响.  相似文献   

12.
Daily, weekly, and seasonal patterns of O3, NOx x and VOCs and their relationship to meteorological conditions were studied in a semi-urban site near Barcelona by means of five-day long campaigns that included weekend and labor days in December, March, June, and October. The plant protection thresholds for ozone and NO2 were exceeded, respectively, on all the studied days in summer and on all the studied days. Ozone formation was predominantly local and relied on photochemical processes with VOCs playing a controlling role. Formaldehyde, acetaldehyde, methanol, toluene, isoprene, and acetone (in this order) presented the highest O3 formation potential during the studied periods. These results highlight the important role in O3 formation played by VOC species such as acetaldehyde, methanol, and acetone, that all have a significant biogenic component. Thus, these VOCs must be taken into account in the discussion of any ozone abatement strategy.  相似文献   

13.
The observational results in Lin;an show the elevated average concentrations of surface ozone and Nitric Oxides(NOx)in the rural area in the eastern mid-latitudes of China.The mechanism of its variations was explained by the theoretical analysis.In the case of breeze,the photochemical reactions controlled by solar radiation is the determined factors affecting the variations of the surface O3 and NOx.A study of the correlation between NOx and SO2 demonstrates that the biomass burning is an important local emission source of NOx.  相似文献   

14.
Measurements of surface ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx=NO+NO2) and meteorological parameters have been made at Agra (North Central India, 27°10??N, 78°05??E) in post monsoon and winter season. The diurnal variation in O3 concentration shows daytime in situ photochemical production with diurnal maximum in noon hours ranging from 51 to 54 ppb in post monsoon and from 76 to 82 ppb in winter, while minimum (16?C24 ppb) during nighttime and early morning hours. Average 8-h O3 concentration varied from 12.4 to 83.9 ppb. The relationship between meteorological parameters (solar radiation intensity, temperature, relative humidity, wind speed and wind direction) and surface O3 variability was studied using principal component analysis (PCA), multiple linear regression (MLR) and correlation analysis (CA). PCA and MLR of daily mean O3 concentrations on meteorological parameters explain up to 80 % of day to day ozone variability. Correlation with meteorology is strongly emphasized on days having strong solar radiation intensity and longer sunshine time.  相似文献   

15.
The relationship between the emission of ozone precursors and the chemical production of tropospheric ozone(O3) in the Pearl River Delta Region(PRD) was studied using numerical simulation.The aim of this study was to examine the volatile organic compound(VOC)-or nitrogen oxide(NOx =NO+NO2)limited conditions at present and when surface temperature is increasing due to global warming,thus to make recommendations for future ozone abatement policies for the PRD region.The model used for this application is the U.S.Environmental Protection Agency’s(EPA’s) third-generation air-quality modeling system;it consists of the mesoscale meteorological model MM5 and the chemical transport model named Community Multi-scale Air Quality(CMAQ).A series of sensitivity tests were conducted to assess the influence of VOC and NOx variations on ozone production.Tropical cyclone was shown to be one of the important synoptic weather patterns leading to ozone pollution.The simulations were based on a tropicalcyclone-related episode that occurred during 14-16 September 2004.The results show that,in the future,the control strategy for emissions should be tightened.To reduce the current level of ozone to meet the Hong Kong Environmental Protection Department(EPD) air-quality objective(hourly average of 120 ppb),emphasis should be put on restricting the increase of NOx emissions.Furthermore,for a wide range of possible changes in precursor emissions,temperature increase will increase the ozone peak in the PRD region;the areas affected by photochemical smog are growing wider,but the locations of the ozone plume are rather invariant.  相似文献   

16.
Measurements of NOx,y were made at Alert, Nunavut, Canada (82.5° N, 62.3° W) during surface layer ozone depletion events. In spring 1998, depletion events were rare and occurred under variable actinic flux, ice fog, and snowfall conditions. NOy changed by less than 10% between normal, partially depleted, and nearly completely depleted ozone air masses. The observation of a diurnal variation in NOx under continuous sunlight supports a source from the snowpack but with rapid conversion to nitrogen reservoirs that are primarily deposited to the surface or airborne ice crystals. It was unclear whether NOx was reduced or enhanced in different stages of the ozone depletion chemistry because of variations in solar and ambient conditions. Because ozone was depleted from 15–20 ppbv to less than 1 ppbv in just over a day in one event it is apparent that the surface source of NOx did not grossly inhibit the removal of ozone. In another case ozone was shown to be destroyed to less than the 0.5 ppbv detection limit of the instrument. However, simple model calculations show that the rate of depletion of ozone and its final steady-state abundance depend sensitively on the strength of the surface source of NOx due to competition from ozone production involving NOx and peroxy radicals. The behavior of the NO/NO2 ratio was qualitatively consistent with enhanced BrO during the period of active ozone destruction. The model is also used to emphasize that the diurnal partitioning of BrOx during ozone depletion events is sensitive to even sub ppbv variations in O3.  相似文献   

17.
A simulated study of mechanism for variations and distributions of ozone and its precursors was made by using the three-dimensional regional Eulerian model.The results showed that the ozone production was controlled by NOx,but there is a complicated nonlinear relation between them.The photochemical reactions controlled by solar radiation are the determinative factors affecting the variations of the surface ozone and its precursors.The relations of ozone and CO,PAN were studied.We compared the simulated and observed results during the PEM-WEST A in order to better understand the photochemical processes of ozone and its precursors.  相似文献   

18.
Measurements of atmospheric composition have been made over a remote rainforest landscape. A box model has previously been demonstrated to model the observed daytime chemistry well. However the box model is unable to explain the nocturnal measurements of relatively high [NO] and [O3], but relatively low observed [NO2]. It is shown that a one-dimensional (1-D) column model with simple O3-NOx chemistry and a simple representation of vertical transport is able to explain the observed nocturnal concentrations and predict the likely vertical profiles of these species in the nocturnal boundary layer (NBL). Concentrations of tracers carried over from the end of the night can affect the atmospheric chemistry of the following day. To ascertain the anomaly introduced by using the box model to represent the NBL, vertically-averaged NBL concentrations at the end of the night are compared between the 1-D model and the box model. It is found that, under low to medium [NOx] conditions (NOx?<?1 ppbv), a simple parametrisation can be used to modify the box model deposition velocity of ozone, in order to achieve good agreement between the box and 1-D models for these end-of-night concentrations of NOx and O3. This parametrisation would could also be used in global climate-chemistry models with limited vertical resolution near the surface. Box-model results for the following day differ substantially if this effective nocturnal deposition velocity for ozone is implemented; for instance, there is a 9% increase in the following days peak ozone concentration. However under medium to high [NOx] conditions (NOx > 1 ppbv), the effect on the chemistry due to the vertical distribution of the species means no box model can adequately represent chemistry in the NBL without modifying reaction rate coefficients.  相似文献   

19.
The response of tropospheric ozone to a change in solar UV penetration due to perturbation on column ozone depends critically on the tropospheric NO x (NO+NO2) concentration. At high NO x or a polluted area where there is net ozone production, a decrease in column ozone will increase the solar UV penetration to the troposphere and thus increase the tropospheric ozone concentration. However, the opposite will occur, for example, at a remote oceanic area where NO x is so low that there is net ozone destruction. This finding may have important implication on the interpretation of the long term trend of tropospheric ozone. A change in column ozone will also induce change in tropospheric OH, HO2, and H2O2 concentrations which are major oxidants in the troposphere. Thus, the oxidation capacity and, in turn, the abundances of many reduced gases will be perturbed. Our model calculations show that the change in OH, HO2, and H2O2 concentrations are essentially independent of the NO x concentration.  相似文献   

20.
The effects of deep convection on the potential for forming ozone (ozone production potential) in the free troposphere have been simulated for regions where the trace gas composition is influenced by biomass burning. Cloud dynamical and photochemical simulations based on observations in 1980 and 1985 Brazilian campaigns form the basis of a sensitivity study of the ozone production potential under differing conditions. The photochemical fate of pollutants actually entrained in a cumulus event of August 1985 during NASA/GTE/ABLE 2A (Case 1) is compared to photochemical ozone production that could have occurred if the same storm had been located closer to regions of savanna burning (Case 2) and forest burning (Case 3). In each case studied, the ozone production potential is calculated for a 24-hour period following convective redistribution of ozone precursors and compared to ozone production in the absence of convection. In all cases there is considerably more ozone formed in the middle and upper troposphere when convection has redistributed NOx, hydrocarbons and CO compared to the case of no convection.In the August 1985 ABLE 2A event, entrainment of a layer polluted with biomass burning into a convective squall line changes the free tropospheric cloud outflow column (5–13 km) ozone production potential from net destruction to net production. If it is assumed that the same cloud dynamics occur directly over regions of savanna burning, ozone production rates in the middle and upper troposphere are much greater. Diurnally averaged ozone production following convection may reach 7 ppbv/day averaged over the layer from 5–13 km-compared to typical free tropospheric concentrations of 25–30 ppbv O3 during nonpolluted conditions in ABLE 2A. Convection over a forested region where isoprene as well as hydrocarbons from combustion can be transported into the free troposphere leads to yet higher amounts of ozone production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号