首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The dependence of ozone formation on the mixing ratios of volatile organic compounds (VOCs) and nitrogen oxides (NOx) has been widely studied. In addition to the atmospheric levels of VOCs and NOx, the extent of photochemical processing of VOCs has a strong impact on ozone levels. Although methods for measuring atmospheric mixing ratios of VOCs and NOx are well established and results of those measurements are widely available, determination of the extent of photochemical processing of VOCs, known as photochemical age (PCA), is difficult. In this article a recently developed methodology for the determination of PCA for individual compounds based on the change in their stable carbon isotope composition is used to investigate the dependence between ozone and VOC or NOx mixing ratios at a rural site in Ontario, Canada, during fall and winter. The results show that under these conditions the variability in VOC mixing ratios is predominantly a result of the varying impact of local emissions and not a result of changes in the extent of atmospheric processing. This explains why the mixing ratio of ozone shows no systematic dependence on the mixing ratios of VOCs or NOx in this environment and at this time of the year.  相似文献   

2.
Measurements of surface O3, CO, NOx and light NMHCs were made during December 2004 at Hissar, a semi-urban site in the state of Haryana in north-west region of the Indo-Gangetic Plain (IGP). The night-time O3 values were higher when levels of CO, NO and NO2 were lower but almost zero values were observed during the episodes of elevated mixing ratios of CO (above 2000 ppbv) and NOx (above 50 ppbv). Slopes derived from linear fits of O3 versus CO and O3 versus NOx scatter plots were also negative. However, elevated levels of O3 were observed when CO and NOx were in the range of 200–300 ppbv and 20–30 ppbv, respectively. Slope of CO-NOx of about 33 ppbv/ppbv is much larger than that observed in the US and Europe indicating significant impact of incomplete combustion processes emitting higher CO and lesser NOx. Correlations and ratios of these trace gases including NMHCs show dominance of recently emitted pollutants mostly from biomass burning at this site.  相似文献   

3.
We have studied long-term changes in tropospheric NO2 over South India using ground-based observations, and GOME and OMI satellite data. We have found that unlike urban regions, the region between Eastern and Western Ghat mountain ranges experiences statistically significant decreasing trend. There are few ground-based observatories to verify satellite based trends for rural regions. However, using a past study and recent measurements we show a statistically significant decrease in NOX and O3 mixing ratio over a rural location (Gadanki; 13.48° N, 79.18° E) in South India. In the ground-based records of surface NOX, the concentration during 2010–11 is found to be lower by 0.9 ppbv which is nearly 60 % of the values observed during 1994–95. Small but statistically significant decrease in noon-time peak ozone concentration is also observed. Noon-time peak ozone concentration has decreased from 34?±?13 ppbv during 1993–96 to 30?±?15 ppbv during 2010–11. NOX mixing ratios are very low over Gadanki. In spite of low NOX values (0.5 to 2 ppbv during 2010–11), ozone mixing ratios are not significantly low compared to many cities with high NOX. The monthly mean ozone mixing ratio varies from 9 ppbv to 37 ppbv with high values during Spring and low values during late Summer. Using a box-model, we show that presence of VOCs is also very important in addition to NOX in determining ozone levels in rural environment and to explain its seasonal cycle.  相似文献   

4.
The mixing ratios for ozone and NOx (NO+NO2) have been measured at a rural site in the United States. From the seasonal and diurnal trends in the ozone mixing ratio over a wide range of NOx levels, we have drawn certain conclusions concerning the ozone level expected at this site in the absence of local photochemical production of ozone associated with NOx from anthropogenic sources. In the summer (June 1 to September 1), the daily photochemical production of ozone is found to increase in a linear fashion with increasing NOx mixing ratio. For NOx mixing ratios less than 1 part per billion by volume (ppbv), the daily increase is found to be (17±3) [NOx]. In contrast, the winter data (December 1 to March 1) indicate no significant increase in the afternoon ozone level, suggesting that the photochemical production of ozone during the day in winter approximately balances the chemical titration of ozone by NO and other pollutants in the air. The extrapolated intercept corresponding to [NOx]=0 taken from the summer afternoon data is 13% less than that observed from the summer morning data, suggesting a daytime removal mechanism for O3 in summer that is attributed to the effects of both chemistry and surface deposition. No significant difference is observed in the intercepts inferred from the morning and afternoon data taken during the winter.The results contained herein are used to deduce the background ozone level at the measurement site as a function of season. This background is equated with the natural ozone background during winter. However, the summer data suggest that the background ozone level at our site is elevated relative to expected natural ozone levels during the summer even at low NOx levels. Finally, the monthly daytime ozone mixing ratios are reported for 0[NOx]0.2 ppbv, 0.3 ppbv[NOx]0.7 ppbv and 1 ppbv[NOx]. These monthly ozone averages reflect the seasonal ozone dependence on the NOx level.  相似文献   

5.
Ozone Concentrations in Rural Regions of the Yangtze Delta in China   总被引:4,自引:0,他引:4  
Elevated concentrations of ozone have been observed at six non-urban, surface monitoring sites in the Yangtze Delta of China during a 16-month field experiment carried out in 1999 and 2000 as part of the joint Chinese-American China-MAP Project (the Yangtze Delta of china as an Evolving Metro-Agro-Plex). The average daytime (0900–1600 h) ozone levels for the monitoring period at sites ranged from 35 to 47 ppbv (parts per billion by volume) and the mean ozone levels from 26 to 35 ppbv. Observed data show seasonal variation obviously, with highest mixing ratios of ozone in May. Average daytime ozone levels in May at sites were between 60 and 79 ppbv. High ozone concentrations were most prevalent during the late spring. Frequency counts of hourly mean ozone concentration over 60 ppbv and 40 ppbv appeared peak values of 22–39% and 42–74% in May at sites. Even higher daytime ozone levels were observed during two regional episodes, in which average daytime (0900–1600 h) ozone concentrations during 10 May and 23 May 2000 were 68 to 81 ppbv, during Oct. 18 and Oct. 28, 1999 were 59 to 67 ppbv at sites. Peak value of ozone mixing ratio appearing in late spring, instead of in summer, was attributed to summer monsoon. Backward trajectories showed that ozone episodes associated with meteorological conditions. Also many high ozone levels associated with high CO levels and high CO to NO x ratios, which suggests a contribution from sources of emission involving incomplete combustion.  相似文献   

6.
The seasonal and diurnal variations of ozone mixing ratios have been observed at Niwot Ridge. Colorado. The ozone mixing ratios have been correlated with the NO x (NO+NO2) mixing ratios measured concurrently at the site. The seasonal and diurnal variations in O3 can be reasonably well understood by considering photochemistry and transport. In the winter there is no apparent systematic diurnal variation in the O3 mixing ratio because there is little diurnal change of transport and a slow photochemistry. In the summer, the O3 levels at the site are suppressed at night due to the presence of a nocturnal inversion layer that isolated ozone near the surface, where it is destroyed. Ozone is observed to increase in the summer during the day. The increases in ozone correlate with increasing NO x levels, as well as with the levels of other compounds of anthropogenic origin. We interpret this correlation as in-situ or in-transit photochemical production of ozone from these precursors that are transported to our site. The levels of ozone recorded approach 100 ppbv at NO x mixing ratios of approximately 3 ppbv. Calculations made using a simple clean tropospheric chemical model are consistent with the NO x -related trend observed for the daytime ozone mixing ratio. However, the chemistry, which does not include nonmethane hydrocarbon photochemistry, underestimates the observed O3 production.  相似文献   

7.
Measurements of NOx,y were made at Alert, Nunavut, Canada (82.5° N, 62.3° W) during surface layer ozone depletion events. In spring 1998, depletion events were rare and occurred under variable actinic flux, ice fog, and snowfall conditions. NOy changed by less than 10% between normal, partially depleted, and nearly completely depleted ozone air masses. The observation of a diurnal variation in NOx under continuous sunlight supports a source from the snowpack but with rapid conversion to nitrogen reservoirs that are primarily deposited to the surface or airborne ice crystals. It was unclear whether NOx was reduced or enhanced in different stages of the ozone depletion chemistry because of variations in solar and ambient conditions. Because ozone was depleted from 15–20 ppbv to less than 1 ppbv in just over a day in one event it is apparent that the surface source of NOx did not grossly inhibit the removal of ozone. In another case ozone was shown to be destroyed to less than the 0.5 ppbv detection limit of the instrument. However, simple model calculations show that the rate of depletion of ozone and its final steady-state abundance depend sensitively on the strength of the surface source of NOx due to competition from ozone production involving NOx and peroxy radicals. The behavior of the NO/NO2 ratio was qualitatively consistent with enhanced BrO during the period of active ozone destruction. The model is also used to emphasize that the diurnal partitioning of BrOx during ozone depletion events is sensitive to even sub ppbv variations in O3.  相似文献   

8.
近年来武汉市臭氧污染日益严峻,成为影响空气质量达标的瓶颈,弄清臭氧及其前体物非线性关系是臭氧防控的关键和基础.本研究基于武汉中心城区2018年4—9月臭氧及其前体物在线观测数据,分析出武汉市臭氧浓度受前体物和气象条件等因素的共同影响,呈较为明显的季节变化和日变化特征.观测期间武汉市大气挥发性有机物(VOCs)平均体积分数为32.5×10-9,烷烃是武汉市VOCs的主要组分,其次是含氧VOCs (OVOCs)和卤代烃.利用基于观测的模型定量分析臭氧与前体物之间的关系,发现削减VOCs会引起臭氧生成潜势的显著下降,而削减氮氧化物则会使臭氧生成潜势升高,说明武汉市臭氧生成处于VOCs控制区.在人为源VOCs中,间/对二甲苯和邻二甲苯的相对增量反应活性(RIR)最高,是影响臭氧生成的关键组分.  相似文献   

9.
The ozone forming potential of VOCs and NOx for plumes observed from several cities and a power plant in eastern Germany was investigated. A closed box model with a gas phase photochemical reaction mechanism was employed to simulate several scenarios based upon aircraft observations. In several of the scenarios, the initial concentrations of NOx, VOCs, and SO2, were reduced to study the factors limiting the O3 production. Ozone production was limited by the initial VOC concentrations for all of the simulated plumes. Higher O3 concentrations were produced with reduced initial NOx. In one sample with high SO2 mixing ratios (>100 ppb), SO2 was also identified as a significant contributor to the production of O3.  相似文献   

10.
Daily, weekly, and seasonal patterns of O3, NOx x and VOCs and their relationship to meteorological conditions were studied in a semi-urban site near Barcelona by means of five-day long campaigns that included weekend and labor days in December, March, June, and October. The plant protection thresholds for ozone and NO2 were exceeded, respectively, on all the studied days in summer and on all the studied days. Ozone formation was predominantly local and relied on photochemical processes with VOCs playing a controlling role. Formaldehyde, acetaldehyde, methanol, toluene, isoprene, and acetone (in this order) presented the highest O3 formation potential during the studied periods. These results highlight the important role in O3 formation played by VOC species such as acetaldehyde, methanol, and acetone, that all have a significant biogenic component. Thus, these VOCs must be taken into account in the discussion of any ozone abatement strategy.  相似文献   

11.
In the present study, an attempt has been made to examine the governing photochemical processes of surface ozone (O3) formation in rural site. For this purpose, measurements of surface ozone and selected meteorological parameters have been made at Anantapur (14.62°N, 77.65°E, 331 m asl), a semi-arid zone in India from January 2002 to December 2003. The annual average diurnal variation of O3 shows maximum concentration 46 ppbv at noon and minimum 25 ppbv in the morning with 1σ standard deviation. The average seasonal variation of ozone mixing ratios are observed to be maximum (about 60 ppbv) during summer and minimum (about 22 ppbv) in the monsoon period. The monthly daytime and nighttime average surface ozone concentration shows a maximum (55 ± 7 ppbv; 37 ± 7.3 ppbv) in March and minimum (28 ± 3.4 ppbv; 22 ± 2.3 ppbv) in August during the study period. The monthly average high (low) O3 48.9 ± 7.7 ppbv (26.2 ± 3.5 ppbv) observed at noon in March (August) is due to the possible increase in precursor gas concentration by anthropogenic activity and the influence of meteorological parameters. The rate of increase of surface ozone is high (1.52 ppbv/h) in March and lower (0.40 ppbv/h) in July. The average rate of increase of O3 from midnight to midday is 1 ppbv/h. Surface temperature is highest (43–44°C) during March and April months leading to higher photochemical production. On the other hand, relative humidity, which is higher during the rainy season, shows negative correlation with temperature and ozone mixing ratio. It can be seen that among the two parameters are measured, correlation of surface ozone with wind speed is better (R 2=0.84) in compare with relative humidity (R 2=0.66).  相似文献   

12.
Simultaneous ozone measurements were made at a rural site, 25 km SSW of the city of Jerusalem, and in the center of the city during a period of 28 months. The ozone data were supplemented by SO2, NO/NO x ,and meteorological measurements at both sites. Elevated ozone concentrations were recorded at the rural site, mostly during the spring months (May and June) during which the monthly averages and the monthly averages of the daily 30 min maximum levels equalled those measured in the city. During the summer months, both average and peak levels were lower at the rural site by 20 and 35 ppb. The increased ozone levels at the rural site were accompanied by a parallel increase of SO2 and NO x ,suggesting hat the excess ozone at the rural site is a result of a transformation during transport of air pollutants from coastal sources.  相似文献   

13.
近年来近地面臭氧问题日益凸显,成为影响空气质量持续改善的瓶颈.本研究基于2017年8—9月在湖州市城区开展的为期1个月的臭氧及其前体物挥发性有机物(VOCs)和氮氧化物(NOx)在线观测数据,分析了臭氧及其前体物污染特征,利用正矩阵因子分析(PMF)解析了VOCs来源,并采用基于观测的模型(OBM)对臭氧生成机制进行研究.研究结果表明:1)观测期间湖州市VOCs平均体积分数为(24.78±9.10)×10-9,其中占比最高的组成为烷烃、含氧VOCs (OVOCs)和卤代烃;2)在臭氧非超标时段,湖州市臭氧生成处于VOCs控制区,而在臭氧重污染期间湖州市处于以VOCs控制为主的过渡区;3)在臭氧超标时段,对臭氧生成潜势(OFP)贡献最大的是芳香烃(39.6%),其次是烯烃(21.5%)和OVOCs (19.4%),排名前三的关键组分为甲苯、乙烯和间/对二甲苯;4)源解析结果显示观测期间湖州市VOCs的主要来源是溶剂使用(27.0%)、交通排放(22.7%)、背景+传输(19.3%)、工业排放(16.9%)、汽油挥发(7.7%)和植物排放(6.4%),重污染过程期间对OFP贡献最大的两类源是交通排放源和溶剂使用源,贡献百分比分别为35.1%和30.5%.因此,对交通排放和溶剂使用方面进行控制管理对湖州市大气臭氧污染防控有重要意义.  相似文献   

14.
15.
We present a comprehensive discussion on what cause high ozone episodes at a suburban photochemical observation site of the Seoul Metropolitan Area (population ~23 million). The observational site, Taehwa Research Forest (TRF), is situated ~30 km from the center of Seoul. In June 2011, we observed two very distinctive ozone periods-high ozone (peak up to 120 ppbv) and low ozone (peak up to 60 ppbv) in the mid and early month, respectively. The trace gas measurement dataset, especially CO and NO X clearly indicate that less anthropogenic influences during the high ozone period. Volatile organic compound (VOC) measurement results show that at the observational site, biogenic VOCs (mostly isoprene) contribute most of chemical reactivity towards OH, although toluene from anthropogenic activities was observed in higher concentrations. Back-trajectory analysis indicates that air-masses from the forest part of Korea Peninsula were dominant influences during the high ozone episode event. On the other hand, Aged air masses from China were the dominant influence during the low ozone episode event. Model calculations conducted using the University of Washington Chemical Mechanism (UWCM) box model, also consistently show that BVOC, especially isoprene photochemistry, can be the significantly contribution to local ozone formation in the given photochemical environments of TRF. These research results strongly suggest that ozone control strategy in the Eastern Asian megacities, mostly situated in surrounding forest areas should be based on the comprehensive scientific understanding in BVOC photochemistry and interplays between anthropogenic and biogenic interactions.  相似文献   

16.
17.
Measurements of atmospheric composition have been made over a remote rainforest landscape. A box model has previously been demonstrated to model the observed daytime chemistry well. However the box model is unable to explain the nocturnal measurements of relatively high [NO] and [O3], but relatively low observed [NO2]. It is shown that a one-dimensional (1-D) column model with simple O3-NOx chemistry and a simple representation of vertical transport is able to explain the observed nocturnal concentrations and predict the likely vertical profiles of these species in the nocturnal boundary layer (NBL). Concentrations of tracers carried over from the end of the night can affect the atmospheric chemistry of the following day. To ascertain the anomaly introduced by using the box model to represent the NBL, vertically-averaged NBL concentrations at the end of the night are compared between the 1-D model and the box model. It is found that, under low to medium [NOx] conditions (NOx?<?1 ppbv), a simple parametrisation can be used to modify the box model deposition velocity of ozone, in order to achieve good agreement between the box and 1-D models for these end-of-night concentrations of NOx and O3. This parametrisation would could also be used in global climate-chemistry models with limited vertical resolution near the surface. Box-model results for the following day differ substantially if this effective nocturnal deposition velocity for ozone is implemented; for instance, there is a 9% increase in the following days peak ozone concentration. However under medium to high [NOx] conditions (NOx > 1 ppbv), the effect on the chemistry due to the vertical distribution of the species means no box model can adequately represent chemistry in the NBL without modifying reaction rate coefficients.  相似文献   

18.
This study examines the general characteristics of reactive nitrogen oxides (NOy) at urban and rural sites in terms of measurement- and modeling-based analyses. In this field study, NOx at urban and rural sites were 92 and 89% of NOy on average, respectively. HONO levels (e.g., 1.8 ppbv) at the urban site were significantly higher than those at the rural site by a factor of 4.5. HONO concentrations at the urban site during the night were clearly higher than those during the day, which were likely to result from heterogeneous reactions on the surfaces of airborne aerosols and/or grounds. In contrast, there were no significant differences of PAN concentrations in either the temporal or spatial distributions. The significantly low ratios of NOz/NOy at both sampling sites indicated a more limited chemical aging process in air mass. O3 levels were weakly related to NOx oxidation at both sites, especially at the rural site.  相似文献   

19.
In summer, atmospheric ozone was measured from an aircraft platform simultaneously with nitric oxide (NO), oxides of nitrogen (NO y ), and water vapor over the Pacific Ocean in east Asia from 34° N to 19° N along the longitude of 138±3°E. NO y was measured with the aid of a ferrous sulfate converter. The altitude covered was from 0.5 to 5 km. A good correlation in the smoothed meridional distributions between ozone and NO y was seen. In particular, north of 25° N, ozone and NO y mixing ratios were considerably higher than those observed in tropical marine air south of 25° N. NO y and O3 reached a minimum of 50 pptv and 4 ppbv respectively in the boundary layer at a latitude of 20° N. The NO concentration between 2 and 5 km at the same latitude was 30 pptv. The profiles of ozone and water vapor mixing ratios were highly anti-correlated between 25° N and 20° N. In contrast, it was much poorer at the latitude of 33° N, suggesting a net photochemical production of ozone there.  相似文献   

20.
During the Tropospheric Ozone Production about the Spring Equinox (TOPSE) program, aircraft flights during April 7–11, 2000 revealed a large area air mass capped below ∼500 m altitude over Hudson Bay, Canada in which ozone was reduced from normal levels of 30–40 ppbv to as low as 0.5 ppbv. From some of the in-situ aircraft measurements, back-trajectory calculations, the tropospheric column of BrO derived from GOME satellite measurements, and results from a regional model, we conclude that the event did not originate from triggering of reactive halogen release in the sub-Arctic region of Hudson Bay but resulted from such an event occurring at higher latitudes over the islands of the northern Canada Archipelago and nearby Arctic Ocean with subsequent transport over a distance of 1,000–1,500 km to Hudson Bay. BrO x remained active during this transport despite considerable changes in the conditions of the underlying surface suggesting that chemical recycling during transport dominated any local halogen input from the surface. If all of the tropospheric column density of BrO is distributed uniformly within the surface layer, then the mixing ratio of BrO derived from the satellite measurements is at least a factor of 2–3 larger than derived indirectly from in situ aircraft measurements of the NO/NO2 ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号