首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
云南墨江金矿床含金硅质岩的地球化学特征和成因   总被引:22,自引:1,他引:21  
应汉龙  蔡新平 《地球化学》1999,28(4):307-317
中石炭统金厂组(C2j)下部含金硅质岩是云南墨江金矿庆的主要围岩之一,具有沉积结构构造,含热水沉积矿物。岩石的FeO、Fe2O3、Au和Ag含量高;Cr、Ni和Co含量高、变化大;MnO/TiO2和TFe/TiO2比值较大;Au含量与NiCr含量相关性低,Au可能不是后期热液作用带入的。在判别硅质岩形成作用的一系列元素和微量元素关系图上,含金硅质岩位于热水沉积作用的范围内或接近于热水沉积作用。岩石  相似文献   

2.
徐跃通 《地质科学》1998,33(1):39-50
在信江盆地中存在数层和石炭纪海相火山岩及其海底块状硫化物矿层相伴生,与石炭纪地层整合产出的层状硅质岩。由对硅质岩常量元素、微量元素、稀土元素、硅和氧同位素等地球化学特征研究表明,本区硅质岩具有一定的热水沉积硅质岩地球化学特征。在Al-Fe-Mn和Fe-Mn-(Ni+Co+Cu)三角图上,本区硅质岩属热水沉积硅质岩。由硅质岩MnO/TiO2比值、δCe值和δ30Si值分析表明,信江盆地石炭纪硅质岩的沉积环境主要为浅海。  相似文献   

3.
玉峰金矿位于中亚造山带东天山东缘,是近年来新发现的含银高品位金矿床。该矿床目前已探明6个金矿体,均赋存在石英斑岩中。矿区热液蚀变作用发育,与成矿关系最密切的为黄铁绢英岩化和硅化,显示明显的蚀变分带:以石英硫化物脉为中心,黄铁绢英岩化带在其两侧大致对称分布。本文选取矿体上盘和下盘的石英斑岩、黄铁绢英岩进行了全岩的主、微量元素及成矿元素测试,并对其中的长石和绢云母进行电子探针成分分析。测试结果表明,黄铁绢英岩中的Au含量较蚀变前呈指数级增长,Ag、Cu、As等成矿元素大量增加,CaO、Na_2O、P_2O_5、P_2O_5、Sr、Pb、Th、U、Sb等元素显著迁出,而SiO_2、Al_2O_3、TiO_2含量和稀土元素含量变化较小,表现稳定。热液蚀变过程中,石英斑岩中71%~76%的正长石发生绢云母化,导致K_2O大量迁出;而钠长石几乎全部蚀变为绢云母,造成Na_2O大量迁出。热液流体的贡献使得蚀变岩中MgO、Fe_2O_3~T含量成倍增加,并主要富集在绢云母和/或黄铁矿晶格中。综合分析认为,绢英岩化蚀变带,Au、Cu、As和Bi等元素的综合化探异常,低电阻率、高激化率的地球物理特征可以作为玉峰矿区深部和外围找矿的标志。研究区内的石炭纪石英斑岩带,尤其是在构造叠加部位,热液活动使其更有利于矿化富集,是找矿勘探的有利部位。  相似文献   

4.
Turbidite hosted orogenic gold mineralization in the Archean Gadag greenstone belt of the Western Dharwar Craton, forms a major auriferous zone (Central Auriferous Zone) extending over a strike length of about 12 km in the Gadag duplex. The turbidite sequence comprises thick inter-bedded, medium to coarse grained lithic graywacke and thin laminated layers of fine grained carbonaceous phyllite. Gold bearing quartz veins impregnate preferentially along the en-echelon shear planes, fractures and schistosity planes. Auriferous quartz veins are enveloped by the altered wall rocks.Mineralogy of the auriferous zone is dominated by gangue minerals like quartz, ankerite, chlorite, sericite and carbonaceous matter, with subordinate plagioclase. Monazite and xenotime are the important accessory minerals. Arsenopyrite and pyrite are the major sulfide minerals, but pyrrhotite, chalcopyrite, sphalerite, galena and scheelite are also present. Gold in native state occurs within quartz, silicates and arsenopyrite.Notable distinctions in mineral assemblage, texture and in chemical compositions of altered wall rocks compared to the precursor host rock in the study area implies that the metasomatism and wall rock alterations are the results of pervasive infiltration and intense interaction between hydrothermal fluids and the surrounding host rocks over a prolonged period.Sulfides, carbonates, carbonaceous matter, K2O, MgO, CaO, Cr, Ni, Cu, Pb, Zn, As and higher values of gold (0.98–4.72 ppm) are added into the altered wall rocks, immediately enveloping the auriferous quartz vein bodies. The chondrite normalized REE pattern of altered wall rocks exhibits enriched LREE (LaN/YbN = av. 9.54), with prominent negative Eu anomaly. The observed variation in geochemical characteristics and mineral assemblages in the alteration zones indicates differential response of the host rock and intensity of alteration depending on the composition of host rocks and hydrothermal fluids.The auriferous hydrothermal fluids were of low salinity (2.0 to 6.6 wt.% NaCl), dominated by CO2–H2O (about 30 mol% CO2) with moderate densities (0.7 to 1.04 g/cm3), and gold deposition occurred over a wide temperature range between 175 °C and 325 °C. Gold deposition was influenced by fluid mixing, phase separation and redox reactions. Mixing between CO2–H2O fluids and more reduced fluids, which evolved during fluid reaction with adjacent carbonaceous wall rocks, was the key factor causing gold deposition.The formation of the Gadag duplex, deformation, folds and reverse strike slip faults (discontinuities) was caused by the compression associated with subduction related tectonic processes. During the initial period of intrusive magmatism (2,555 ± 6 Ma), regional metamorphism occurred in the entire greenstone belt, while during later period, hydrothermal fluids responsible for gold mineralization probably were derived from metamorphic processes as well as from intrusive granites. Such fluids channeled through the thrust in host turbidite sequence carrying dissolved gold, associated metals and sulfur, ultimately were precipitated in a reducing environment in the splays to the thrust in the Gadag duplex at about 2,522 ± 6 Ma, resulting in retrograde alteration assemblages.  相似文献   

5.
安芳  朱永峰 《岩石学报》2010,26(8):2275-2286
京希-伊尔曼德金矿位于新疆北天山吐拉苏盆地的西北缘,赋存于泥盆纪-早石炭世火山-沉积地层底部的凝灰岩、凝灰质砂岩中,围岩经历了绢云母化、黄铁矿化、多期硅化和角砾化、碳酸盐化和重晶石化,金矿化与硅化围岩紧密伴生。矿体呈透镜状、层状和似层状,产状与围岩基本一致,主要由热液角砾岩型矿石组成,其热液演化期由四个阶段组成:I:硅化及绢云母化——在围岩凝灰岩和凝灰质砂岩中形成大量浸染状石英、绢云母和少量黄铁矿;II:角砾化及硅化——形成含金热液角砾岩a,角砾为早期蚀变围岩,胶结物为烟灰色玉髓状石英、黄铁矿、毒砂和少量金矿物;III:角砾化及硅化——形成含金热液角砾岩b,角砾为热液角砾岩a和蚀变围岩,胶结物为细粒石英、黄铁矿、毒砂和少量金矿物;IV:方解石-重晶石阶段——形成大量粗大的方解石-重晶石脉。京希-伊尔曼德金矿成矿流体本身富集V、Cr、Ni、Cu、Sb,且其中的Mn、Co、Zn、Bi以及大离子亲石元素LILE主要来自火山岩围岩。从成矿早期到晚期,成矿流体轻稀土元素逐渐富集、氧化性增强。水-岩体系氢、氧同位素组成模拟计算表明,京希-伊尔曼德金矿成矿流体主要为与区内火山岩再平衡的岩浆水,其中金浓度为1×10-6~2×10-6,形成该矿需要约1×108~0.5×108t岩浆热液,蚀变围岩和矿石中黄铁矿富集轻稀土元素。角砾化作用及其伴随的氧逸度升高是导致金沉淀的主要机制。  相似文献   

6.
REE mobility during hydrothermal ore-forming processes has been extensively investigated in recent years and the potential of REE to provide information about ore forming processes has commonly been recognized.The Dongping gold deposit,which is located in northwestern Hebei Province,China,occurring in the inner contact zone of the Shuiquangou syenite complex,is spatially,and probably genetically,related to the syenite,the deposit was formed under the moderate to high temperature(220℃ to 320℃),weakly acidic to weakly alkaline,rather high fo2(lgfo2=-30~-34)environment.The REE study of the host rocks,altered wall rocks,ores and gangue minerals from the deposit suggests that the REEs have been mobilized and differentiated during K-feldspathization and silicification.The extremely altered syenite enveloping auriferous quartz vein shows positive Ce anomaly and larger LREE/HREE ratio than that of the unaltered syenite.The REE concentrations and patterns of the ores are determined by the ore types and mineral assemblages,LREE/HREE ratios in the gangue quartz and hydrothermal Kfeldspars are relatively low.The most significant observation is that the gangue quartz shows significant positive Eu anomaly,whereas the hydrothermal K-feldspars show less significant or no positive Eu anomaly at all relative to the primary feldspar in the unaltered syenite. It is evident that the REEs are mobile during K-feldspathization and silicification in the ore forming process.Weak to moderate K-feldspathization caused REE mobility without apparent differentiation with the exception of extreme K-feldspathization and silicification which resulted in significant depletion of HREE and Eu and relative enrichment of Ce.The REE,Y,U,Th and Au contents of the syenite decrease as the degrees of K-feldspathization and silicification of the rocks increase towards the auriferous quartz veins.As the ores were deposited under a rather oxidized environment,Ce^4 predominated over Ce^3 .The precipitation of the former in the form of CeO2 or absorpted onto the secondary mineral assemblage resulted in the inconsistent removal of the REE and the relative Ce enrichment in the strongly altered rocks.in contrast,Eu was present mainly in a low valence state (Eu^2 ).The geochemical differences from the other REE^3 and much less sites in the secondary minerals to accommodate the Eu released form the original minerals resulted in the enrichment of Eu in the fluids.The mobility and differentiation of REE and the coherent mobilities of Y,U,Th and Au also support the argument that the syenite is one of the source rocks for gold mineralization.The REE contents and patterns of the altered rocks enveloping the auriferous quartz vein could be used as a guide for locating ore veins in mineral exploration.  相似文献   

7.
Gold-bearing quartz lodes from the Egat gold mine, South Eastern Desert of Egypt, are associated with pervasively silicified, highly sheared ophiolitic metagabbro and island-arc metavolcanic rocks. The mineralized quartz veins and related alteration haloes are controlled by NNW-trending shear/fault zones. Microscopic and electron probe microanalyses (EPMA) data of the ore and gangue minerals reveal that fine-grained auriferous sulfarsenides represent early high-temperature (355–382 °C) phases, with formation conditions as (fS2?=??10, and fO2 around ?31). A late, low-temperature (302–333 °C) assemblage includes coarse pyrite, arsenopyrite, and free-milling gold grains (88–91 wt.% Au), with formation conditions as (fS2?=??8 and fO2 around ?30). Gold was impounded within early sulfarsenides, while free-milling gold blebs occur along microfractures in quartz veins and as inclusions in late sulfides. Infiltration of hydrothermal fluids under brittle–ductile shear conditions led to mobilization of refractory Au from early sulfarsenide phases and reprecipitated free gold, simultaneous with silicification of the host rocks. The positive correlation between Au and As favors and verifies the use of As as the best pathfinder for gold targets, along the NNW-trending shear zones.  相似文献   

8.
新疆东准噶尔卡拉麦里地区以金水泉、双泉、南明水、苏吉泉东等为代表的金矿床,构成了一套与晚古生代碰撞造山有关的金成矿系统。矿床夹持于区域性的卡拉麦里深大断裂和清水—苏吉泉大断裂之间,矿化受次级脆-韧性断层控制,以中等至陡倾斜的含金石英脉和破碎蚀变岩的形式产于晚古生代浅变质火山沉积岩中。流体包裹体、H-O-S-Pb同位素和热液锆石U-Pb年代学研究表明,成矿流体具中高温(集中于240~330 ℃)、低盐度(<6% NaCleq)、富CO2的变质流体特征,成矿物质来自赋矿的火山沉积岩系,流体不混溶(相分离)和水-岩反应(围岩硫化作用)是导致金沉淀的主要机制,成矿深度变化于7~15 km之间,成矿时代约为314 Ma。晚石炭世至早二叠世,研究区的构造体制由挤压向走滑或走滑伸展转换,构造应力的释放导致深部变质脱水形成的低盐度CO2-H2O-NaCl±CH4含金流体,沿走向NW至近EW向的走滑剪切断裂向地壳浅部流动,并在脆-韧性过渡带或脆性变形带的次级断裂中形成含金石英脉及蚀变岩型金矿石。  相似文献   

9.
陕西略阳煎茶岭金矿矿集区中的张家山金矿主要由破碎蚀变岩型、角砾岩型和含金石英黄铁矿脉型矿石组成。含金石英-黄铁矿脉型矿石产于断层下盘的石英菱镁岩中。黄铁矿发育富As黄铁矿边,环边受As含量的变化呈现一定的韵律变化,自然金赋存在富As黄铁矿中。在断裂发育形成断层角砾岩的过程中,流体充填破碎石英菱镁岩的裂隙中形成热液矿物,包括硫化物、硒化物以及自然金。石英菱镁岩发生破碎形成的网状裂隙被含金石英-方解石-黄铁矿脉充填。破碎蚀变岩型矿石中,自然金主要分布在含金石英-黄铁矿脉的石英之中或靠近热液脉的菱镁矿或石英间隙。随着大量方解石脉沿裂隙贯入,进一步促进石英菱镁岩的破碎及岩石角砾的分离,形成由石英菱镁岩碎屑、石英和褐铁矿组成的复成分角砾岩,自然金和硒化物呈浸染状分布在角砾岩中。笔者在角砾岩型矿石中发现了灰硒汞矿、直硒镍矿、硒铅矿等硒化物,这些硒化物往往与自然金密切共生。结合矿物组合以及相关化学反应关系,通过热力学计算,构建了该矿床在不同温度条件下的热力学相平衡关系图,限定了硒化物与其他相关矿物稳定存在的物理化学条件。硒化物一般与自然金和石英共生,高的f(Se2)值和f(Se2)/f(S2)比值是控制硒化物形成的关键因素。  相似文献   

10.
The Tirek gold deposit hosted in the Archean shield is one of the richest sources of mined gold for Algeria. The deposit is controlled by the East Ouzzal shear zone (EOSZ), a transcurrent N–S lithospheric fault. The EOSZ is a late Pan-African dextral-ductile shear zone separating two contrasting Precambrian domains: the Archean In Ouzzal block to the west (Orthogenesis with subordinate metasediments reworked and granulitized during the ca. 2 Ga Eburnean event) and a middle Proterozoic block to the east involved in the ca. 600 Ma Pan-African event. The auriferous quartz veins are mainly oriented in two directions, N–S veins hosted in mylonitic rocks and NE–SW veins hosted in gabbroic or gneissic bands. The NE–SW veins contain the richest ore. Gold ore is found in a system of veins and lenticular quartz veinlets arranged in anastomosing networks. The hydrothermal alteration associated with these veins is characteristically a carbonate-sericite-albite-pyrite assemblage. Gold is the main metal of economic importance; it is disseminated in the quartz as grains or fibers along microcracks and as microscopic grains in the host rocks. Microthermometric results and Raman laser data from fluid inclusions demonstrate that the ore-forming fluids contained H2O-CO2±CH4 and were low salinity. Homogenization temperatures are commonly 250–310 °C. In the Tirek deposit, the role of the shear zone that hosts the mineralization was to drain the hydrothermal fluid. Interactions between the fluid and the mafic host rocks and CO2 also contributed to the formation of the hydrothermal gold deposit at Tirek.  相似文献   

11.
Six epizonal gold deposits in the 30-km-long Yangshan gold belt, Gansu Province are estimated to contain more than 300 t of gold at an average grade of 4.76 g/t and thus define one of China's largest gold resources. Detailed paragenetic studies have recognized five stages of sulfide mineral precipitation in the deposits of the belt. Syngenetic/diagenetic pyrite (Py0) has a framboidal or colloform texture and is disseminated in the metasedimentary host rocks. Early hydrothermal pyrite (Py1) in quartz veins is disseminated in metasedimentary rocks and dikes and also occurs as semi-massive pyrite aggregates or bedding-parallel pyrite bands in phyllite. The main ore stage pyrite (Py2) commonly overgrows Py1 and is typically associated with main ore stage arsenopyrite (Apy2). Late ore stage pyrite (Py3), arsenopyrite (Apy3), and stibnite occur in quartz ± calcite veins or are disseminated in country rocks. Post-ore stage pyrite (Py4) occurs in quartz ± calcite veins that cut all earlier formed mineralization. Electron probe microanalyses and laser ablation-inductively coupled plasma mass spectrometry analyses reveal that different generations of sulfides have characteristic of major and trace element patterns, which can be used as a proxy for the distinct hydrothermal events. Syngenetic/diagenetic pyrite has high concentrations of As, Au, Bi, Co, Cu, Mn, Ni, Pb, Sb, and Zn. The Py0 also retains a sedimentary Co/Ni ratio, which is distinct from hydrothermal ore-related pyrite. Early hydrothermal Py1 has high contents of Ag, As, Au, Bi, Cu, Fe, Sb, and V, and it reflects elevated levels of these elements in the earliest mineralizing metamorphic fluids. The main ore stage Py2 has a very high content of As (median value of 2.96 wt%) and Au (median value of 47.5 ppm) and slightly elevated Cu, but relatively low values for other trace elements. Arsenic in the main ore stage Py2 occurs in solid solution. Late ore stage Py3, formed coevally with stibnite, contains relatively high As (median value of 1.44 wt%), Au, Fe, Mn, Mo, Sb, and Zn and low Bi, Co, Ni, and Pb. The main ore stage Apy2, compared to late ore stage arsenopyrite, is relatively enriched in As, whereas the later Apy3 has high concentrations of S, Fe, and Sb, which is consistent with element patterns in associated main and late ore stage pyrite generations. Compared with pyrite from other stages, the post-ore stage Py4 has relatively low concentrations of Fe and S, whereas As remains elevated (2.05~3.20 wt%), which could be interpreted by the substitution of As? for S in the pyrite structure. These results suggest that syngenetic/diagenetic pyrite is the main metal source for the Yangshan gold deposits where such pyrite was metamorphosed at depth below presently exposed levels. The ore-forming elements were concentrated into the hydrothermal fluids during metamorphic devolatilization, and subsequently, during extensive fluid–rock interaction at shallower levels, these elements were precipitated via widespread sulfidation during the main ore stage.  相似文献   

12.
The newly discovered Jiyuan Cu–Ag–(Pb–Zn–Au) deposit is located in the southern section of the eastern Tianshan orogenic belt, Xinjiang, northwestern China. It is the first documented deposit in the large Aqikekuduke Ag–Cu–Au belt in the eastern Tianshan orogen. Detailed field observations, parageneses, and fluid inclusion studies suggest an epithermal ore genesis for the main Cu–Ag mineralization, accompanied by a complicated hydrothermal alteration history most likely associated with the multi-stage tectonic evolution of the eastern Tianshan. The Jiyuan Cu–Ag ore bodies are located along the EW-striking, south-dipping Aqikekuduke fault and are hosted by Precambrian marble and intercalated siliceous rocks. Early-stage skarn alteration occurred along the contact zone between the marble layers and Early Carboniferous diorite–granodiorite and monzogranite intrusions; the skarns are characterized by diopside–tremolite–andradite–pyrite–(magnetite) assemblages. Local REE-enriched synchysite–rutile–arsenopyrite–(clinochlorite–microcline–albite) assemblages are related to K–Na alteration associated with the monzogranite intrusions and formed under conditions of high temperature (310°C) and high salinity (19.9 wt.% NaCl). Subsequent hydrothermal alteration produced a series of quartz and calcite veins that precipitated from medium- to low-temperature saline fluids. These include early ‘smoky’ quartz veins (190°C; 3.0 wt.% NaCl) that are commonly barren, coarse-grained Cu–Ag mineralized quartz veins (210°C; 2.4 wt.% NaCl), and late-stage unmineralized calcite veins (140°C; 1.1 wt.% NaCl). Tremolite and Ca-rich scapolite veins formed at an interval between early and mineralized quartz veins, indicating a high-temperature, high-salinity (>500°C; 9.5 wt.% NaCl) Ca alteration stage. Fluid mixing may have played an important role during Cu–Ag mineralization and an external low-temperature Ca-rich fluid is inferred to have evolved in the ore-forming system. The Jiyuan auriferous quartz veins possess fluid characteristics distinct from those of the Cu–Ag mineralized quartz veins. CO2-rich fluid inclusions, fluid boiling, and mixing all demonstrate that these auriferous quartz veins acted as hosts for the orogenic-type gold mineralization, a common feature in the Tianshan orogenic belt.  相似文献   

13.
采用电子探针显微分析(EMPA)和粉末X射线衍射(XRD)分析了采自乌拉山金矿床含金钾长石石英脉、石英脉以及其他类型岩石中的10 0多个钾长石样品的化学成分和结果状态,并采用R和Q模式聚类分析、Spearman等级相关分析方法对实验数据进行了统计分析。结果表明,含金矿脉、岩浆热液脉和蚀变花岗岩中的钾长石为中等到最大微斜长石,其特征为K2 O含量高,但相对而言,Na2 O、CaO和BaO的含量低。其他岩石类型中的钾长石的化学成分和结果状态变化很大,可以从透长石、正长石到微斜长石,其特征为K2 O的含量相对较低,但Na2 O、CaO和BaO的含量相对较高。含金样品中的钾长石通常更富K2 O ,表明金的成矿作用与富钾的热液流体和碱质交代作用有关。乌拉山金矿床的成矿作用分为两个阶段,主要的含金钾长石石英脉中的钾长石富K2 O ,形成温度为30 7~379℃,平均为35 3℃;第二阶段含金石英脉中的钾长石含K2 O较低,形成温度为2 6 0~318℃,平均为2 81℃。这些结果表明成矿流体与岩浆热液作用有关,流体朝温度降低、K2 O含量降低的方向演化,K2 O含量高的热液流体和2 6 0~380℃的形成温度有利于金的成矿作用。  相似文献   

14.
Gold-bearing quartz veins of the Taihua Group consisting of Archean metavolcanic rocks are a main gold deposit type in the Xiao Qinling area,one of the three biggest gold production areas in China.The quartz veins experienced strong alteration characterized by a typical mesothermal hydrothermal altered mineral assemblage.The grade of gold is affected by the contents of sulphides,e.g.galena,pyrite and chalcopyrite.Results of minor elements analysis for the of gold-bearing quartz veins indicate higher contents of Au and high contents of Ag,Pb,Cu,Cd,W,and Mo.Abundant fluid inclusions were found in the gold-bearing quartz veins.Three types of fluid inclusions were identified:(1) aqueous inclusions;(2) CO 2-bearing inclusions;and(3) daughter crystal-bearing fluid inclusions.Homogenization temperatures ranged from 110 to 670℃ with low and high peaks appearing at 160 180℃ and 280 300℃,respectively.The salinity of aqueous inclusions varies between 1.8 wt% and 38.2 wt% NaCl.The homogenization temperature and salinity show a positive correlation.The H and O isotopes of fluid inclusions in the gold-bearing quartz veins indicate that magmatic solution and metamorphic hydrothermal solution,together with meteoric water,were involved in the formation of gold-bearing fluid.Mesozoic magma activities related to granite intrusions should be the main source of CO 2 fluid with higher temperature and salinity.  相似文献   

15.
鄂西古生代硅质岩的地球化学特征及沉积环境   总被引:25,自引:0,他引:25       下载免费PDF全文
鄂西地区的上奥陶统五峰组、下志留统龙马溪组下部、下二叠统孤峰组和上二叠统大隆组中发育有薄层硅质岩。二叠系栖霞组、茅口组和吴家坪组灰岩中发育有结核状或似层状燧石。Fe Al Mn三角图 ,Cu、Ni、Co、Cr、Zr的关系 ,U Th判别图 ,Ba、As、Sb元素和REE配分模式等地球化学指标表明 :五峰组和龙马溪组层状硅质岩属于正常海水中生物化学和化学沉积 ;孤峰组和大隆组层状硅质岩、茅口组灰岩中燧石结核不属于典型的热水沉积相 ,但受热水作用的影响 ,而孤峰组硅质岩受热水作用明显。鄂西五峰组和龙马溪组硅质岩的沉积环境是四周被古陆或台地环绕的半封闭深水相滞流盆地。鄂西孤峰组和大隆组硅质岩的沉积环境是由裂陷作用形成的碳酸盐台地内部的盆地(或台沟 )滞流还原环境。CaO/(Fe +CaO)值和 (MgO/Al2 O3 )× 10 0值表明 :五峰组、龙马溪组和大隆组硅质岩沉积环境海水略有淡化。栖霞组、茅口组和吴家坪组含结核状或似层状燧石的生物灰岩 ,形成于陆棚上快速海侵和上升洋流形成的还原环境。  相似文献   

16.
17.
The >3·0 Ga chert sequence of the Gorge Creek Group is exposed at Ord Ranges about 50 km east of Port Hedland in the Pilbara Block. The chert sequence examined in this study is 15 m thick and consists of oxide-rich laminated chert, grey chert (silicified clastic rock), carbonaceous black chert and carbonate-rich laminated chert. Although the cherts have undergone postdepositional silica enrichment, such as cementation and metasomatic silicification, primary precipitation of silica at the site of deposition is indicated by abundant microstructures (mosaic and spherulitic structures). Other primary to early diagenetic components were carbonates, sulphates (gypsum and anhydrite) and organic matter. Although these mineral associations, on the whole, correspond to those of modern marine evaporites, they are different from modern equivalents with respect to abundant precipitation of amorphous silica and presumed primary precipitation of iron-carbonate (siderite). This feature is a possible manifestation of peculiar physicochemical conditions in the water mass from which the chemical sediments were precipitated; compared with modern ocean waters, the concentrations of Fe and Si were significantly higher and the pH value might have been lower. These conditions could be obtained by contributions of Fe- and Si-enriched hydrothermal solutions and continental run-off to the site of deposition. Grey cherts contain detrital quartz and altered Fe–Ti oxides and were formed in a period of input of terrigenous detrital materials. They are characterized by higher concentrations of TiO2, Al2O3, Cr, Ni, Zn, Rb and Zr compared with the other types of chert and by very low (< 4) Al2O3/TiO2 values. These features are attributed to the supply of terrigenous detrital materials that contain abundant Fe–Ti oxides (ilmenite and titanomagnetite) and fine TiO2 particles. Such detrital materials might have been formed by extensive chemical alteration of source rocks and residual enrichment of Ti relative to Al.  相似文献   

18.
Abstract: The hydrothermal alteration patterns associating with the gold prospect hosted by metavolcanics in the Dungash area, Eastern Desert of Egypt, were investigated in order to assign their relationship to mineralization. The metavolcanics of andesitic composition are generated by regional metamorphism of greenschist facies superimposed by hydrothermal activity. Epidote and chlorite are metamorphic minerals, whereas sericite, carbonates, and chlorite are hydrothermal alteration minerals. The auriferous quartz vein is of NEE‐SWW trend and cuts mainly the andesitic metavolcanics, but sometimes extends to the neighbouring metapyroclastics and metasediments. Quartz‐sericite, sericite, carbonate‐sericite, and chlorite‐sericite constitute four distinctive alteration zones which extend outwards from the mineralized quartz vein. The quartz‐sericite and sericite zones are characterized by high contents of SiO2, K2O, Rb, and As, the carbonate‐sericite zone is by high contents of CaO, Au, Cu, Cr, Ni, and Y, and the chlorite‐sericite zone is by high contents of MgO, Na2O, Zn, Ba, and Co. Gold and sulphide minerals are relatively more abundant in the carbonate‐sericite zone followed by the sericite one. The geochemistry of the alteration system was investigated using volume‐composition and mass balance calculations. The volume factors obtained for the different alteration zones, mentioned above (being 1.64, 1.19, 1.17, and 1.07, respectively), indicate that replacement had taken place with a volume gain. The mass balance calculations revealed addition of SiO2, K2O, As, Cu, Rb, Ba, Ni, and Y to the system as a whole and subtraction of Fe2O3 from the system. Initial high aK+ and aH+ for the invading fluids is suggested. As the fluids migrated into wallrocks, they became more concentrated in Mg, Ca, and Na with increasing activities of CO2 and S. The calculated loss‐gain data are in agreement with the microscopic observations. Breakdown of ferromagnesian minerals and feldspars in the quartz‐sericite, sericite, and chlorite‐sericite zones accompanied by loss in Mg, Fe, Ca, and Na under acidic conditions and low CO2/H2O ratio may obstruct the formation of carbonates and sulphides, and the precipitation of gold in these zones. The role of metamorphic fluids in the area is expected to be restricted to the liberation of Au and some associated elements from their hosts.  相似文献   

19.
The Sipingshan gold deposit, located in the eastern part of the Nadanhada Terrane, is hosted within cherts and silicified breccias of the Upper Cretaceous Sipingshan Formation and rhyolites of the Upper Cretaceous Datashanlinchang Formation. The orebodies are composed of gold- and pyrite-bearing cherts, silicified breccias, and quartz veins accompanied by various types of wall rock alteration, including silicification, pyritization, sericitization, chloritization, pyrophyllitization, and carbonatization. LA-ICP-MS U–Pb zircon ages determined for the ore-bearing rhyolites range between 122 ± 1.4 and 135.2 ± 1.9 million years slightly older than the metallogenic age of the Sipingshan gold deposit. The rhyolite has aluminium saturation index values ranging from 0.015 to 1.25 and shows the following features: enrichment in LILE (e.g. Rb, Pb, K, and Th); depletion of Ba, Sm, and Ti; and negative Eu anomalies. These geochemical characteristics indicate that (1) the rhyolite contains features typical of S-type granites; (2) the felsic magma likely originated through partial melting of the continental crust; and (3) plagioclase crystals were present in the partial melt residues in the magma source region, or else magma evolution involved plagioclase fractionation. The host cherts have high Al/(Al + Fe + Mn) ratios (0.23–0.81, averaging 0.60) and low Al2O3 and TiO2 contents. Their North American shale-normalized REE patterns are characterized by flat REE, slightly positive Eu anomalies, no Ce anomalies, and (La/Yb)SN ratios of 1.27–1.38, indicating that these cherts formed in a continental margin environment. In addition, the analysed cherts have low ΣREE (1.56–3.64 ppm) and Zr (9.1–13.5 ppm) contents, suggesting a hydrothermal origin. Fluid inclusions in quartz veins show elliptical to irregular shapes that range from 5 to 12 μm in size and have homogenization temperatures of 118.7–223.4°C, densities of 0.84–0.94 g/cm3, and pressures of 21.2–51.4 MPa, indicating that the hot-spring-type Sipingshan gold deposit is epithermal in origin.  相似文献   

20.
The Yuerya gold deposit in eastern Hebei Province, China, is located on the eastern margin of the North China Craton and is hosted by Mesozoic Yanshanian granitoid rocks and adjacent Mesoproterozoic Gaoyuzhuang Formation carbonates. The auriferous quartz veins in this deposit are dominated by pyrite, with subordinate sphalerite, chalcopyrite, and galena in a quartz-dominated gangue that also contains calcite, dolomite, barite, apatite, and fluorite. Gold is present as native gold and electrum, which are generally present as micron-size infillings in microfissures within pyrite and less commonly as tiny inclusions within pyrite, quartz, and tellurobismuthite. The pyrite in this deposit has high Co/Ni ratios and contains elevated concentrations of both of these elements, suggesting that the Yuerya gold deposit has a magmato-hydrothermal origin and that the ore-forming fluids that formed the deposit leached trace elements such as Co, Ni, As, and Au during passage through Archean metamorphic rocks, Mesoproterozoic carbonates, and the Yanshanian Yuerya granitoid. Pyrite in the study area has S/Se ratios and S isotopic compositions that suggest that the sulfur (and by inference the gold) within the deposit was sourced from magmato-hydrothermal fluids that were probably originally derived from Archean metamorphic rocks and Yanshanian granitoids. Tellurobismuthite in the study area is closely intergrown with gold and was the single telluride phase identified during this study. The fineness of gold associated with tellurobismuthite is greater than the fineness of gold associated with pyrite, although the fine particle size of the gold surrounded by tellurobismuthite means that the recovery of this gold is difficult, in turn meaning that the tellurobismuthite has little significance to the economics of the Yuerya gold deposit. Only trace amounts of sulfides are associated with the tellurobismuthite within the Yuerya gold deposit, suggesting that this mineral was deposited under conditions of low fS2 and/or high fTe2. In addition, the presence of tellurides within the Yuerya gold deposit reflects a genetic relationship between the deposit and magmatism. Quartz from mineralized veins in the study area has δ18O values of 11.2‰–12.9‰ and the fluids that formed these veins have δD values of − 78.3‰ to − 72.1‰. The δ34S values of pyrite within the deposit are rather restricted (2.3‰–3.5‰). These data, combined with the trace element geochemistry of sulfides within the deposit, suggest that the formation of the Yuerya gold deposit was closely related to both Archean metamorphic rocks and the Yanshanian Yuerya granitoid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号