首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
An association of adakite, magnesian andesite (MA), and Nb-enriched basalt (NEB) volcanic flows, which erupted within ‘normal’ intra-oceanic arc tholeiitic to calc-alkaline basalts, has recently been documented in ∼2.7 Ga Wawa greenstone belts. Large, positive initial ?Nd values (+1.95 to +2.45) of the adakites signify that their basaltic precursors, with a short crustal residence, were derived from a long-term depleted mantle source. It is likely that the adakites represent the melts of subducted late Archean oceanic crust. Initial ?Nd values in the MA (+0.14 to +1.68), Nb-enriched basalts and andesites (NEBA) (+1.11 to +2.05), and ‘normal’ intra-oceanic arc tholeiitic to calc-alkaline basalts and andesites (+1.44 to +2.44) overlap with, but extend to lower values than, the adakites. Large, tightly clustered ?Nd values of the adakites, together with Th/Ce and Ce/Yb systematics of the arc basalts that rule out sediment melting, place the enriched source in the sub-arc mantle. Accordingly, isotopic data for the MA, NEBA, and ‘normal’ arc basalts can be explained by melting of an isotopically heterogeneous sub-arc mantle that had been variably enriched by recycling of continental material into the shallow mantle in late Archean subduction zones up to 200 Ma prior to the 2.7 Ga arc. If the late Archean Wawa adakites, MA, and basalts were generated by similar geodynamic processes as their counterparts in Cenozoic arcs, involving subduction of young and/or hot ocean lithosphere, then it is likely that late Archean oceanic crust, and arc crust, were also created and destroyed by modern plate tectonic-like geodynamic processes. This study suggests that crustal recycling through subduction zone processes played an important role for the generation of heterogeneity in the Archean upper mantle. In addition, the results of this study indicate that the Nd-isotope compositions of Archean arc- and plume-derived volcanic rocks are not very distinct, whereas Phanerozoic plumes and intra-oceanic arcs tend to have different Nd-isotopic compositions.  相似文献   

2.
Recent, fresh, volcanic rocks of the intra-oceanic Mariana and Volcano Arcs were analyzed for O and Sr isotopic compositions in order to determine the source of these magmas. Fresh, non-arc, volcanic rocks from the regions surrounding the Mariana-Volcano Arcs and some DSDP sediments were also analyzed for comparison. The oxygen isotopic ratios of the arc lavas (5.5–6.8‰) exhibited a small inter-island variation that cannot be entirely explained by fractional crystallization. The Sr isotopic composition of the arc lavas is remarkably uniform (0.70332–0.70394 for the Marianas). Three models are considered in order to explain the observed isotopic characteristics: (1) bulk mixing and melting of MORB-type mantle with (a) subducted sediments, and (b) subducted oceanic crust (excluding sediments); (2) melting of a mixture of sediment-derived fluids and MORB-type mantle; and (3) melting of a mixture of sediment-derived fluids and oceanic island or “hot-spot” type mantle. The last model fits the data best. The conclusion that very small, and variable, amounts of sediment-derived fluid ( 1%) are required to explain the observed inter-island O isotopic variation, is consistent with that of other workers who used different isotopic and trace element methods. The generation of magmas in the Mariana-Volcano Arcs involves very little sediment and the source region of Mariana lavas is isotopically indistinguishable from that of hot-spot basalts.  相似文献   

3.
Miocene to Quaternary large basaltic plateaus occur in the back-arc domain of the Andean chain in Patagonia. They are thought to result from the ascent of subslab asthenospheric magmas through slab windows generated from subducted segments of the South Chile Ridge (SCR). We have investigated three volcanic centres from the Lago General Carrera–Buenos Aires area (46–47°S) located above the inferred position of the slab window corresponding to a segment subducted 6 Ma ago. (1) The Quaternary Río Murta transitional basalts display major, trace elements, and Sr and Nd isotopic features similar to those of oceanic basalts from the SCR and from the Chile Triple Junction near Taitao Peninsula (e.g., (87Sr/86Sr)o = 0.70396–0.70346 and εNd = + 5.5  + 3.0). We consider them as derived from the melting of a Chile Ridge asthenospheric mantle source containing a weak subduction component. (2) The Plio-Quaternary (< 3.3 Ma) post-plateau basanites from Meseta del Lago Buenos Aires (MLBA), Argentina, likely derive from small degrees of melting of OIB-type mantle sources involving the subslab asthenosphere and the enriched subcontinental lithospheric mantle. (3) The main plateau basaltic volcanism in this region is represented by the 12.4–3.3-Ma-old MLBA basalts and the 8.2–4.4-Ma-old basalts from Meseta Chile Chico (MCC), Chile. Two groups can be distinguished among these main plateau basalts. The first group includes alkali basalts and trachybasalts displaying typical OIB signatures and thought to derive from predominantly asthenospheric mantle sources similar to those of the post-plateau MLBA basalts, but through slightly larger degrees of melting. The second one, although still dominantly alkalic, displays incompatible element signatures intermediate between those of OIB and arc magmas (e.g., La/Nb > 1 and TiO2 < 2 wt.%). These intermediate basalts differ from their strictly alkalic equivalents by having lower High Field Strength Element (HFSE) and higher εNd (up to + 5.4). These features are consistent with their derivation from an enriched mantle source contaminated by ca. 10% rutile-bearing restite of altered oceanic crust. The petrogenesis of the studied Mio-Pliocene basalts from MLBA and MCC is consistent with contributions of the subslab asthenosphere, the South American subcontinental lithospheric mantle and the subducted Pacific oceanic crust to their sources. However, their chronology of emplacement is not consistent with an ascent through an asthenospheric window opened as a consequence of the subduction of segment SCR-1, which entered the trench at 6 Ma. Indeed, magmatic activity was already important between 12 and 8 Ma in MLBA and MCC as well as in southernmost plateaus, i.e., 6 Ma before the subduction of the SCR-1 segment. We propose a geodynamic model in which OIB and intermediate magmas derived from deep subslab asthenospheric mantle did uprise through a tear-in-the-slab, which formed when the southernmost segments of the SCR collided with the Chile Trench around 15 Ma. During their ascent, they interacted with the Patagonian supraslab mantle and, locally, with slivers of subducted Pacific oceanic crust that contributed to the geochemical signature of the intermediate basalts.  相似文献   

4.
New K/Ar dating and geochemical analyses have been carried out on the WNW–ESE elongated oceanic island of S. Jorge to reconstruct the volcanic evolution of a linear ridge developed close to the Azores triple junction. We show that S. Jorge sub-aerial construction encompasses the last 1.3 Myr, a time interval far much longer than previously reported. The early development of the ridge involved a sub-aerial building phase exposed in the southeast end of the island and now constrained between 1.32 ± 0.02 and 1.21 ± 0.02 Ma. Basic lavas from this older stage are alkaline and enriched in incompatible elements, reflecting partial melting of an enriched mantle source. At least three differentiation cycles from alkaline basalts to mugearites are documented within this stage. The successive episodes of magma rising, storage and evolution suggest an intermittent re-opening of the magma feeding system, possibly due to recurrent tensional or trans-tensional tectonic events. Present data show a gap in sub-aerial volcanism before a second main ongoing building phase starting at about 750 ka. Sub-aerial construction of the S. Jorge ridge migrated progressively towards the west, but involved several overlapping volcanic episodes constrained along the main WNW–ESE structural axis of the island. Mafic magmas erupted during the second phase have been also generated by partial melting of an enriched mantle source. Trace element data suggest, however, variable and lower degrees of partial melting of a shallower mantle domain, which is interpreted as an increasing control of lithospheric deformation on the genesis and extraction of primitive melts during the last 750 kyr. The multi-stage development of the S. Jorge volcanic ridge over the last 1.3 Myr has most likely been greatly influenced by regional tectonics, controlled by deformation along the diffuse boundary between the Nubian and the Eurasian plates, and the increasing effect of sea-floor spreading at the Mid-Atlantic Ridge.  相似文献   

5.
The “Colli Albani” composite volcano is made up of strongly silica-undersaturated leucite-bearing rocks. Magmas were erupted during three main periods, but a complex plumbing system dominated by regional tectonics channelled magmas into different reservoirs. The most alkali-rich magmas, restricted to the caldera-forming period (pre-caldera), are extremely enriched in incompatible trace elements and display more radiogenic Sr (87Sr/86Sr?=?0.71057–0.71067), with slightly less radiogenic Pb with respect to those of the post-caldera period. Post-caldera volcanic activity was concentrated in three different volcanic environments: external to the caldera, along the caldera edge and within the caldera. The post-caldera magmas produced melilite- to leucitite-bearing, plagioclase-free leucitites. In contrast to the pre-caldera lavas, they are characterised by lower incompatible trace element abundances and less radiogenic Sr (87Sr/86Sr?=?0.71006–0.71039). Magmas evolved through crystal fractionation plus minor crustal assimilation in a large magma chamber during the pre-caldera period. The multiple caldera collapses dissected and partially obliterated the early magma chamber. During the post-caldera stage, magmas were channelled through several pathways and multiple shallow-level magma reservoirs were established. A lithospheric mantle wedge previously depleted in the basaltic component and subsequently enriched by metasomatic slab-derived component is suggested as the mantle source of Colli Albani parental magmas. Two different parental magmas are recognised for the pre- and post-caldera stages. The differences may be related to the interplay between smaller degrees of melting for the pre-caldera magmas and more carbonate-rich recycled subducted lithologies in the post-caldera magmas.  相似文献   

6.
This paper is concerned with the islands of Montserrat Nevis, St. Kitts, St. Eustatius and Saba, which lie on the inner volcanic are at the northern of the Lesser Antilles. Andesites greatly predominate over basalts and dacites in this part of the arc. Generally the lavas from the northern Lesser Antilles contain low abundances of Ni, Cr and residual trace elements but lavas from Saba are enriched in these elements compared with the other islands in the group. The most important petrogenetic process in this part of the Lesser Antilles is probably partial melting of subducted oceanie tholeiite and this process accounts satisfactorily for the chemistry (especially the low Ni, Cr) and large volumes of the erupted andesites. Some andesites have, however, been produced by fractional crystallisation of basaltic magma and magma mixing probably accounts for some of the peculiar chemical and petrographic properties of the Saba andesites. The rocks from the Northern Lesser Antilles are different from those in the central part of the arc (more acid rocks, higher residual trace elements) and the southern islands have much higher proportions of basalt, some of it undersaturated and alkaline. It is thought that partial melting of mantle peridotite may be the predominant petrogenetic process at the southern end of the Lesser Antilles whereas partial melting of subducted oceanic crust is more important in the north.  相似文献   

7.
Detailed field mapping in the Güvem area in the Galatia province of NW Central Anatolia, Turkey, combined with K–Ar dating, has established the existence of two discrete Miocene volcanic phases, separated by a major unconformity. The magmas were erupted in a post-collisional tectonic setting and it is possible that the younger phase could be geodynamically linked to the onset of transtensional tectonics along the North Anatolian Fault zone. The Early Miocene phase (18–20 Ma; Burdigalian) is the most voluminous, comprising of over 1500 m of potassium-rich intermediate-acid magmas. In contrast, the Late Miocene volcanic phase (ca. 10 Ma; Tortonian) comprises a single 70-m-thick flow unit of alkali basalt. The major and trace element and Sr–Nd isotope compositions of the volcanics suggest that the Late Miocene basalts and the parental mafic magmas to the Early Miocene series were derived from different mantle sources. Despite showing some similarities to high-K calc-alkaline magma series from active continental margins, the Early Miocene volcanics are clearly alkaline with higher abundances of high field strength elements (Zr, Nb, Ti, Y). Crustal contamination appears to have enhanced the effects of crystal fractionation in the petrogensis of this series and some of the most silica-rich magmas may be crustal melts. The mantle source of the most primitive mafic magmas is considered to have been an asthenospheric mantle wedge modified by crustally-derived fluids rising from a Late Cretaceous–Early Tertiary Tethyan subduction zone dipping northwards beneath the Galatia province. The Late Miocene basalts, whilst still alkaline, have a Sr–Nd isotope composition indicating partial melting of a more depleted mantle source component, which most likely represents the average composition of the asthenosphere beneath the region.  相似文献   

8.
《Journal of Geodynamics》2007,43(1):87-100
The petrology and geochemistry of Icelandic basalts have been studied for more than a century. The results reveal that the Holocene basalts belong to three magma series: two sub-alkaline series (tholeiitic and transitional alkaline) and an alkali one. The alkali and the transitional basalts, which occupy the off-rift volcanic zones, are enriched in incompatible trace elements compared to the tholeiites, and have more radiogenic Sr, Pb and He isotope compositions. Compared to the tholeiites, they are most likely formed by partial melting of a lithologically heterogeneous mantle with higher proportions of melts derived from recycled oceanic crust in the form of garnet pyroxenites compared to the tholeiites. The tholeiitic basalts characterise the mid-Atlantic rift zone that transects the island, and their most enriched compositions and highest primordial (least radiogenic) He isotope signature are observed close to the centre of the presumed mantle plume. High-MgO basalts are found scattered along the rift zone and probably represent partial melting of refractory mantle already depleted of initial water-rich melts. Higher mantle temperature in the centre of the Iceland mantle plume explains the combination of higher magma productivity and diluted signatures of garnet pyroxenites in basalts from Central Iceland. A crustal component, derived from altered basalts, is evident in evolved tholeiites and indeed in most basalts; however, distinguishing between contamination by the present hydrothermally altered crust, and melting of recycled oceanic crust, remains non-trivial. Constraints from radiogenic isotope ratios suggest the presence of three principal mantle components beneath Iceland: a depleted upper mantle source, enriched mantle plume, and recycled oceanic crust.The study of glass inclusions in primitive phenocrysts is still in its infancy but already shows results unattainable by other methods. Such studies reveal the existence of mantle melts with highly variable compositions, such as calcium-rich melts and a low-18O mantle component, probably recycled oceanic crust. Future high-resolution seismic studies may help to identify and reveal the relative proportions of different lithologies in the mantle.  相似文献   

9.
Mahshar  Raza  MohdShamim  Khan  MohdSafdare  Azam 《Island Arc》2007,16(4):536-552
Abstract   The northern part of the Aravalli mountain belt of northwestern Indian shield is broadly composed of three Proterozoic volcano-sedimentary domains, i.e. the Bayana, the Alwar and the Khetri basins, comprising collectively the north Delhi fold belt. Major, trace and rare earth element concentrations of mafic volcanic rocks of the three basins exhibit considerable diversity. Bayana and Alwar volcanics are typical tholeiites showing close similarity with low Ti–continental flood basalts (CFB) with the difference that the former shows enriched and the latter flat incompatible trace element and rare earth element (REE) patterns. However, the Khetri volcanics exhibit a transitional composition between tholeiite and calc-alkaline basalts. It appears that the melts of Bayana and Alwar tholeiites were generated by partial melting of a common source within the spinel stability field possibly in the presence of mantle plume. During ascent to the surface the Bayana tholeiites suffered crustal contamination but the Alwar tholeiites erupted unaffected. Geochemically, the Khetri volcanics are arc-like basalts which were generated in a segment of mantle overlying a Proterozoic subduction zone. It is suggested that at about 1800 Ma the continental lithosphere in northeastern Rajasthan stretched, attenuated and fractured in response to a rising plume. The produced rifts have undergone variable degrees of crustal extension. The extension and attenuation of the crust facilitated shallowing of the asthenosphere which suffered variable degree of melting to produce tholeiitic melts – different batches of which underwent different degrees of lithospheric contamination depending upon the thickness of the crust in different rifted basins. The occurrence of subduction-related basaltic rocks of Khetri Belt suggests that a basin on the western margin of the craton developed into a mature oceanic basin.  相似文献   

10.
The Cenozoic volcanic rocks of eastern China are subalkalic to alkalic basalts erupted in an early Tertiary back-arc rift environment and from scattered late Tertiary and Quaternary volcanic centers in a continental area crossed by active faults, driven by subduction of the Pacific plate and the collision of India and Eurasia. Immobile trace elements and major elements conform very well to each other in classification of the 59 rocks for which complete data are reported and they correctly identify the tectonic setting. LIL-element enrichments of the basalts lie between those of P-MORB and ocean island alkalic basalts, and show a secular increase.87Sr/86Sr ratios of basalts vary from 0.7029 to 0.7048. Alkalic basalts are systematically less radiogenic than geographically coextensive and contemporaneous tholeiitic basalts. Increase of radiogenic Sr with increasing crustal thickness and crustal age and with silica enrichment of the magmas suggests crustal contamination but this is inadequate to explain the LIL-element enrichment patterns and variable LIL-element enrichments. The preferred hypothesis is that the alkalic magmas come from a deeper source, with long-term LIL-element depletion and low Rb/Sr ratio but relatively recent LIL-element enrichment. Conversely the tholeiitic magmas are melts of subcontinental mantle lithosphere that is more LIL-element depleted than the alkalic source, at the time of magma genesis, but has had an elevated Rb/Sr ratio for much of its post-consolidation history.  相似文献   

11.
A model is proposed for the origin of hot spots that depends on the existence of major-element heterogeneities in the mantle. Generation of basaltic crust at spreading centers produces a layer of residual peridotite ~20–25 km thick directly beneath the crust which is depleted in Fe/Mg, TiO2, CaO, Al2O3, Na2O and K2O, and which has a slightly lower density than undepleted peridotite beneath it. Upon recycling of this depleted peridotite back into the deep mantle at subduction zones, it becomes gravitationally unstable, and tends to rise as diapirs through undepleted peridotite. For a density contrast of 0.05 g cm?3, a diapir 60 km in diameter would rise at roughly 8 cm y?1, and could transport enough heat to the base of the lithosphere to cause melting and volcanism at the surface. Hot spots are thus viewed as a passive consequence of mantle convection and fractionation at spreading centers rather than a plate-driving force.It is suggested that depleted diapirs exist with varying amounts of depletion, diameters, upward velocities and source volumes. Such variations could explain the occurrence of hot spots with widely varying lifetimes and rates of lava production. For highly depleted diapirs with very low Fe/Mg, the diapir would act as a heat source and the asthenosphere and lower lithosphere drifting across the diapir would serve as the source region of magmas erupted at the surface. For mildly depleted diapirs with Fe/Mg only slightly less than in normal undepleted mantle, the diapir could provide not only the source of heat but also most or all of the source material for the erupted magmas. The model is consistent with isotopic data that require two separate and ancient source regions for mid-ocean ridge and oceanic island basalts. The source for mid-ocean ridge basalts is considered to be material upwelling at spreading centers from the deep mantle. This material forms the oceanic lithosphere. Oceanic island basalts are considered to be derived from varying mixtures of sublithospheric and lower lithospheric material and the rising diapir itself.  相似文献   

12.
Basalts from young seamounts situated within 6.8 m.y. of the East Pacific Rise, between 9° and 14°N latitude, display significant variations in 143Nd/144Nd (0.51295–0.51321), 87Sr/86Sr (0.7025–0.7031), and(La/Sm)N (0.415–3.270). Nd and Sr isotope ratios are anti-correlated and form a trend roughly parallel to the “mantle array” on a143Nd/144Nd vs.87Sr/86Sr variation diagram. Nd and Sr isotope ratios display negative and positive correlations, respectively, with(La/Sm)N. The geochemical variations observed at the seamounts are nearly as great or greater than those observed over several hundred kilometers of the Reykjanes Ridge, or at the islands of Iceland or Hawaii.

Samples from one particular seamount, Seamount 6, display nearly the entire observed range of chemical variations, offering an ideal opportunity to constrain the nature of heterogeneities in the source mantle. Systematics indicative of magma mixing are recognized when major elements, trace elements, trace element ratios, and isotope ratios are compared with each other in all possible permutations. The source materials required to produce the end-member magmas are: (1) a typical MORB-source-depleted peridotite; and (2) a relatively enriched material which may represent ancient mantle segregations of basaltic melt, incompletely mixed remnants of subducted ocean crust, or metasomatized peridotite such as that found at St. Paul's Rocks or Zabargad Island. Due to the proximity of the seamounts to the East Pacific Rise (EPR), the source materials are thought to comprise an intimate mixture in the mantle immediately underlying the seamounts and the adjacent EPR. Lavas erupted at the ridge axis display a small range of isotopic and incompatible trace element compositions because the large degrees of melting and presence of magma chambers tend to average the chemical characteristics of large volumes of mantle.

If the postulated mantle materials, with large magnitude, small-scale heterogeneities, are ubiquitous in the upper mantle, chemical variations in basalts ranging from MOR tholeiites to island alkali basalts may reflect sampling differences rather than changes in bulk mantle chemistry.  相似文献   


13.
The major and trace element geochemistry of lavas erupted from four volcanic front (VF) stratovolcanoes in southeastern Guatemala show differences in the relative importance of flux and decompression melting in a continental arc setting. The VF stratovolcanoes exhibit a wide compositional range from basalt to dacite, although modern Pacaya erupts basaltic lavas. The VF basalts have relatively low MgO contents and plot outside the field of primary arc magmas defined by melting experiments on hydrous peridotite. After subtracting the effects of the fractionation, assimilation, and alteration of some VF lavas, separate partial melting and mixing trends were identified for Agua–Pacaya and Tecuamburro–Moyuta.The distinct chemical signatures of the hemipelagic and carbonate sediments subducted off Guatemala provide constraints on material transfer processes that occurred between the slab and mantle wedge. Model fluids and melts from the subducted slab were calculated using recently published mineral–aqueous fluid partition coefficients. Wide separation of the model fluid and melt compositions on a U/La versus Ba/Th diagram creates diagnostic mixing curves with an enriched mid-ocean ridge basalt source. Fluid from mature ocean crust has high U/La, fluid from carbonate sediment has high Ba/Th, and fluid and melt from hemipelagic sediments have both high U/La and Ba/Th. In a simple single-stage model, a mantle metasomatized by fluid originating largely from the oceanic crust with only minor sediment fluid contributions best explains the overall large ion lithophile element composition of the VF lavas. (Th/Rb)N ratios of ∼1 in the VF lavas from southeastern Guatemala require a component of sediment melting. Therefore, a more realistic two-stage model to describe the Guatemalan arc data involves an initial hemipelagic sediment melt input to the wedge followed by minor fluid additions from the oceanic crust or sediments. Correlation between measures of slab input and extent of melting in the older VF lavas from Tecuamburro and Moyuta favors flux-dominated melting near the base of the mantle wedge. In sharp contrast, the lack of a relationship between slab additions and melting in younger lavas from Agua and Pacaya volcanoes implies a significant role for decompression melting closer to the top of the wedge. In this melting scenario, the rate of crustal extension determines the extent of melting.  相似文献   

14.
A geochemical and isotopic study of lavas from Pichincha, Antisana and Sumaco volcanoes in the Northern Volcanic Zone (NVZ) in Ecuador shows their magma genesis to be strongly influenced by slab melts. Pichincha lavas (in fore arc position) display all the characteristics of adakites (or slab melts) and were found in association with magnesian andesites. In the main arc, adakite-like lavas from Antisana volcano could be produced by the destabilization of pargasite in a garnet-rich mantle. In the back arc, high-niobium basalts found at Sumaco volcano could be produced in a phlogopite-rich mantle. The strikingly homogeneous isotopic signatures of all the lavas suggest that continental crust assimilation is limited and confirm that magmas from the three volcanic centers are closely related. The following magma genesis model is proposed in the NVZ in Ecuador: in fore arc position beneath Pichincha volcano, oceanic crust is able to melt and produces adakites. En route to the surface, part of these magmas metasomatize the mantle wedge inducing the crystallization of pargasite, phlogopite and garnet. In counterpart, they are enriched in magnesium and are placed at the surface as magnesian andesites. Dragged down by convection, the modified mantle undergoes a first partial melting event by the destabilization of pargasite and produces the adakite-like lavas from Antisana volcano. Lastly, dragged down deeper beneath the Sumaco volcano, the mantle melts a second time by the destabilization of phlogopite and produces high-niobium basalts. The obvious variation in spatial distribution (and geochemical characteristics) of the volcanism in the NVZ between Colombia and Ecuador clearly indicates that the subduction of the Carnegie Ridge beneath the Ecuadorian margin strongly influences the subduction-related volcanism. It is proposed that the flattening of the subducted slab induced by the recent subduction (<5 Ma?) of the Carnegie Ridge has permitted the progressive warming of the oceanic crust and its partial melting since ca. 1.5 Ma. Since then, the production of adakites in fore arc position has deeply transformed the magma genesis in the overall arc changing from ‘typical’ calc-alkaline magmatism induced by hydrous fluid metasomatism, to the space- and time-associated lithology adakite/high-Mg andesite/adakite-like andesite/high-Nb basalts characteristic of slab melt metasomatism.  相似文献   

15.
Masaya-Granada area is located in the middle part of the Central American volcanic zone. A basaltic shield volcano with a caldera, an acidic pyroclastic flow plateau with a caldera, cinder cones, maars, a lava dome and a composite andesitic volcano were formed by recent volcanic activities. Magmas of basic and intermediate ejecta are supposed to be formed by partial melting of the upper mantle material. Most of basalts and andesites was derived from common parental magma after crystallization differentiation history, but some basalts, which have extremely high MgO content and low K2O content might be derived from primary magma of different type. There is no evidence to deny the possibility of differentiation product of acidic rock from basic magma, but compositional gap on variation diagram suggest the possibility of partial melting origin. Strike-slip fault systems might have been formed in association with plate movement, and fluidal basaltic magma was erupted also along these fault zones.  相似文献   

16.
Harrat Al-Birk volcanics are products of the Red Sea rift in southwest Saudi Arabia that started in the Tertiary and reached its climax at ~ 5 Ma.This volcanic field is almost monotonous and is dominated by basalts that include mafic-ultramafic mantle xenoliths(gabbro,websterite,and garnet-clinopyroxenite).The present work presents the first detailed petrographic and geochemical notes about the basalts.They comprise vesicular basalt,porphyritic basalt,and flow-textured basalt,in addition to red and black scoria.Geochemically,the volcanic rock varieties of the Harrat Al-Birk are low- to medium-Ti,sodic-alkaline olivine basalts with an enriched oceanic island signature but extruded in a within-plate environment.There is evidence of formation by partial melting with a sort of crystal fractionation dominated by clinopyroxene and Fe-Ti oxides.The latter have abundant titanomagnetite and lesser ilmenite.There is a remarkable enrichment of light rare earth elements and depletion in Ba,Th and K,Ta,and Ti.The geochemical data in this work suggest Harrat Al-Birk basalts represent products of watersaturated melt that was silica undersaturated.This melt was brought to the surface through partial melting of asthenospheric upper mantle that produced enriched oceanic island basalts.Such partial melting is the result of subducted continental mantle lithosphere with considerable mantle metasomatism of subducted oceanic lithosphere that might contain hydrous phases in its peridotites.The fractional crystallization process was controlled by significant separation of clinopyroxene followed by amphiboles and Fe-Ti oxides,particularly ilmenite.Accordingly,the Harrat Al-Birk alkali basalts underwent crystal fractionation that is completely absent in the exotic mantle xenoliths(e.g.Nemeth et al.in The Pleistocene Jabal Akwa A1 Yamaniah maar/tuff ring-scoria cone complex as an analogy for future phreatomagmatic to magmatic explosive eruption scenarios in the Jizan Region,SW Saudi Arabia 2014).  相似文献   

17.
The Puyo scoria cones and the Mera lava flows, two newly recognized volcanic formations dated between Late Pliocene to Middle Pleistocene, extend the limits of the Ecuadorian rear-arc volcanic province some 100 km to the south. The Puyo scoria cones have erupted K-rich absarokites containing olivine, diopside and phlogopite, whereas the Mera lava flows display a basic andesite composition, with olivine and minor augite phenocrysts. In addition to high contents in LILE, LREE and HFSE, the Puyo absarokites exhibit many characteristics of primitive melts, namely high Cr (590–310 ppm) and Ni (330–154 ppm) contents, high Mg# (64–70) and they contain forsteritic olivine (Fo82–89). The composition of the most primary Puyo absarokite was used in petrogenetic models, in order to constrain the genesis of these high-K magmas. Major and trace elements models, as well as isotopic data, indicate that the source of Puyo magmas is a hydrated phlogopite- and garnet-bearing lherzolite. Phlogopite crystallization in the mantle wedge is triggered by the metasomatism by 3–5% of a SiO2-, H2O-rich liquid generated by slab melting. Partial melting of the subducted oceanic crust beneath Ecuador is allowed by the subduction of the young and warm Carnegie Ridge, which modifies the thermal regime of the Benioff zone. A low degree (1–4%) of partial melting of the metasomatized mantle wedge, leaving a variable garnet (4–7%) ± phlogopite (0–4%) lherzolitic residual assemblage, leads to the compositions of the entire Puyo absarokite series and is consistent with previous petrogenetic models developed for the Ecuadorian volcanic arc. Indeed, the homogeneity of isotopic data across the arc suggests a similar source for the whole Ecuadorian magmas.  相似文献   

18.
智利三联点(CTJ)位于纳兹卡板块、南极洲板块与南美板块的交界处,由南极洲—纳兹卡板块之间的智利洋脊俯冲到智利海沟而形成.巴塔哥尼亚板片窗的发展是智利洋脊长期扩张俯冲的结果之一.随着纳兹卡板块的不断东向俯冲,纳兹卡板块范围逐渐变小,CTJ同时向北移动.本文采用数值模拟方法,建立了关于洋脊海沟碰撞的简单二维模型,来研究智利三联点南部扩张洋脊俯冲区域岩石层的热结构.模拟结果表明,洋脊的位置、板块相对汇聚速度及上覆大陆板块的存在均对俯冲区域海洋板块的温度结构有着很大影响,并且大陆板块下方海洋板块温度变化最大的位置距洋脊的水平距离与洋脊到板片窗范围的水平距离两者之间具有较好的一致性.同时,当存在两两板块间的相对汇聚时,洋脊右侧大陆板块下表面的温度升高,俯冲带内海洋板块温度接近于地幔温度.纳兹卡板块以7.8 cm·a~(-1)的速度急速俯冲于南美板块之下的过程中,同时伴随着智利洋脊的持续扩张俯冲,在智利三联点南部,南美板块之下纳兹卡板块的温度因而可以更快地达到地幔软流层的约1300℃温度,并最终消亡于地幔之中.  相似文献   

19.
Analytical results of the relative and absolute abundance of LIL-incompatible trace elements (K, Rb, Cs, Sr, and Ba) and isotopic compositions ( , , and ) are summarized for fresh samples from active and dormant volcanoes of the Volcano and Mariana island arcs. The presence of thickened oceanic crust (T 15–20 km) beneath the arc indicates that while hybridization processes resulting in the modification of primitive magmas by anatectic mixing at shallow crustal levels cannot be neglected, the extent and effects of these processes on this arc's magmas are minimized. All components of the subducted plate disappear at the trench. This observation is used to reconstruct the composition of the crust in the Wadati-Benioff zone by estimating proportions of various lithologies in the crust of the subducted plate coupled with analyses from DSDP sites. Over 90% of the mass of the subducted crust consists of basaltic Layers II and III. Sediments and seamounts, containing the bulk of the incompatible elements, make up the rest. Bulk Western Pacific seafloor has , δ 18O +7.2, K/Rb 510, K/Ba 46, and K/Cs 13,500. Consideration of trace-element data and combined systematics limits the participation of sediments in magmagenesis to less than 1%, in accord with the earlier results of Pb-isotopic studies. Combined data indicate little, if any, involvement of altered basaltic seafloor in magmagenesis. Perhaps more important than mean isotopic and LIL-element ratios is the restricted range for lavas from along over 1000 km of this arc. Mixtures of mantle with either the subducted crust or derivative fluids should result in strong heterogeneities in the sources of individual volcanoes along the arc. Such heterogeneities would be due to: (1) gross variations of crustal materials supplied to the subduction zone; and (2) lesser efficiency of mixing processes accompanying induced convection between arc segments (parallel to the arc) as compared to that perpendicular to the arc. The absence of these heterogeneities indicates that either some process exists for the efficient mixing of mantle and subducted material parallel to the arc or that subducted materials play a negligible role in the generation of Mariana-Volcano arc melts.Consideration of plausible sources in the mantle indicates that (1) an unmodified MORB-like mantle cannot have generated the observed trace-element and isotopic composition of this arc's magmas, while (2) a mantle similar to that which has produced alkali-olivine basalts (AOB) of north Pacific “hot spot” chains is indistinguishable in many respects spects from the source of these arc lavas.  相似文献   

20.
The Serra Geral (Paraná) continental flood-basalt province of southern Brazil has two main basalt types: low-TiO2 ( 1 wt.%) basalts occupy the southern portion, and high-TiO2 (> 3 wt.%) basalts are largely in the northern part. Low-Ti basalts are less evolved (Mg# 60) and more radiogenic (e.g., 87Sr/86Sr 0.708) than high-Ti basalts (Mg# 35; 87Sr/86Sr 0.705). This is consistent with a model that invokes variable melting of a single mantle source to produce picritic magmas that have relatively lower and higher incompatible element contents. Varying percentages of melting can be related to varying proximity to the early Tristan da Cunha hotspot. The Mg-rich magmas fractionated 60–75% olivine, clinopyroxene, and plagioclase to yield low- or high-Ti flood basalts, assimilating more or less crust in the process. The extent of fractionation and assimilation depended on crustal “warmth” (also tied to location relative to hotspot): (1) above zones of 25% melting, warm crust relatively easily contaminated crystallizing picritic magma that originated by a high degree of melting (i.e., magma with lower incompatible element contents); additionally, high degrees of melting sustained replenishment of magma with low-Ti magma characteristics; (2) above 10% melting zones, cooler crust comparatively restricted assimilation during crystallization (of magma with higher incompatible element contents) and permitted magma evolution to high-Ti derivatives; lesser degrees of melting also limited replenishment magma and thereby allowed greater evolution of existing magma. This model refers all diagnostic geochemical and isotopic features of Serra Geral basalts to percentages of partial melting of an essentially homogeneous mantle material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号