首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 930 毫秒
1.
An unconventional, continuous petroleum system consists of an accumulation of hydrocarbons that is found in low-matrix-permeability rocks and contain large amounts of hydrocarbons. Tight-sand gas in the Jurassic and shale gas within the fifth member of Xujiahe Formation (T3x5) are currently regarded as the most prolific emerging unconventional gas plays in China. The conventional and systematical evaluation of T3x5 source rocks was carried out for the first time in the western Sichuan basin (WSD). Hydrocarbon generation and expulsion characteristics (including intensity, efficiency, and amount) of T3x5 source rocks were investigated. Results show that T3x5 source rocks are thick (generally >200 m), have high total organic content (TOC, ranging from 2.5 to 4.5 wt%), and dominated by III-type kerogen. These favorable characteristics result in a great hydrocarbon generating potential under the high thermal evolution history (R o > 1.2%) of the area. An improved hydrocarbon generation potential methodology was applied to well data from the area to unravel the hydrocarbon generation and expulsion characteristics of T3x5 source rocks in the WSD. Results indicate that the source rocks reached hydrocarbon expulsion threshold at 1.06% R o and the comprehensive hydrocarbon expulsion efficiency was about 60%. The amount of generation and expulsion from T3x5 source rocks was 3.14 × 1010 and 1.86 × 1010 t, respectively, with a residual amount of 1.28 × 1010 t within the source rocks. Continuous-type tight-sand gas was predicted to develop in the Jurassic in the Chengdu Sag of the WSD because of the good source-reservoir configuration (i.e., the hydrocarbon generation and expulsion center was located in Chengdu Sag), the Jurassic sandstone reservoirs were tight, and the gas expelled from the T3x5 source rocks migrated for very short distances vertically and horizontally. The amount of gas accumulation in the Jurassic reservoirs derived from T3x5 source rocks is up to 9.3 × 108 t. The T3x5 gas shale has good accumulation potential compared with several active US shale-gas plays. Volumetrically, the geological resource of shale gas is up to 1.05 × 1010 t. Small differences between the amounts calculated by volumetric method compared with that by hydrocarbon generation potential methodology may be due to other gas accumulations present within interbedded sands associated with the gas shales.  相似文献   

2.
Song  Yanchen  Wang  Enze  Peng  Yuting  Xing  Haoting  Wu  Kunyu  Zheng  Yongxian  Zhang  Jing  Zhang  Na 《Natural Resources Research》2021,30(6):4355-4377

The Paleogene upper Xiaganchaigou Formation (E32) is the most important source rock and reservoir in the Qaidam Basin. However, there are few studies on the processes of hydrocarbon accumulation in this formation; therefore, its hydrocarbon resource potential has not been estimated reasonably. This paper evaluates the hydrocarbon generation properties in light of an improved hydrocarbon generation and expulsion potential model. According to the geochemical characteristics of source rocks and the petrological features of reservoirs, the potentials of different resource types, including conventional oil, tight oil and shale oil, are quantified by combining the buoyancy-driven hydrocarbon accumulation depth (BHAD) and the lower limit for movable resource abundance. The results show that the source rocks are characterized by a large thickness (more than 1000 m), moderate organic matter content, high marginal maturity and a high conversion rate (50% hydrocarbons have been discharged before Ro?=?1%), which provide sufficient oil sources for reservoir formation. Moreover, the reservoirs in the Qaidam Basin consist mainly of low-porosity and low-permeability tight carbonates (porosity of 4.7% and permeability less than 1 mD). The maximum hydrocarbon generation, expulsion, retention and movable retention intensities at present are 350?×?104 t/km2, 250?×?104 t/km2, 130?×?104 t/km2 and 125?×?104 t/km2, respectively. The thresholds of hydrocarbon generation, expulsion and BHAD were 0.46% Ro, 0.67% Ro and 0.7% Ro, respectively. Moreover, the dynamic evolution process of hydrocarbon accumulation was divided into three evolution stages, namely, (a) initial hydrocarbon accumulation, (b) conventional hydrocarbon reservoir and shale oil accumulation and (c) unconventional tight oil accumulation. The conventional oil, tight oil and movable shale oil resource potentials were 10.44?×?108 t, 51.9?×?108 t and 390?×?108 t, respectively. This study demonstrates the good resource prospects of E32 in the Qaidam Basin. A comprehensive workflow for unconventional petroleum resource potential evaluation is provided, and it has certain reference significance for other petroliferous basins, especially those in the early unconventional hydrocarbon exploration stage.

  相似文献   

3.
The euryhaline ostracod Cyprideis torosa lives in Akyatan Lagoon, Turkey, which is exposed to large spatial and seasonal variations in water salinity, δ18O, and temperature. Hydrogen and oxygen isotope measurements of waters reveal that the large range of salinity (15–80 g L?1) in the lagoon results from a combination of evaporation and mixing between Mediterranean seawater and Seyhan River input. Round sieve-pore relative abundance in C. torosa provides a robust proxy for water salinity (S) from 15 to 80 g L?1, according to the equation: S = 161.41 (±4.52) * log10(% rounded pores) ? 94.04 (±3.44) (R2 = 0.937; p = 10?31). Seasonal sampling and isotope analysis of C. torosa in waters of known δ18O values (?4.7 to +6.9 ‰ V-PDB) and temperatures (15–35 °C) yielded a weak positive correlation (r = 0.71) between 1000 lnα(calcite–water) ‰ V-SMOW) and 103 * T?1. Specimens of C. torosa collected during the mild and warm seasons have oxygen isotope compositions close to those of inorganic calcite precipitated in equilibrium with ambient water. The large oxygen-isotope variability observed during any season of the year most likely results from shell calcification in water bodies of highly variable salinity, alkalinity, Mg/Ca and water saturation relative to calcite. Indeed, distinct water bodies in the Akyatan Lagoon are generated by mixing of fresh and marine waters, which are exposed to different evaporation rates at the seasonal scale.  相似文献   

4.
珠江广州河段微表层与次表层水环境质量比较(英文)   总被引:1,自引:0,他引:1  
The water quality in the surface microlayer(SML) and subsurface water(SSW) in the Guangzhou segment of Pearl River, a eutrophic urban river section in China, were analyzed. The spatial and temporal dynamics of nutrient concentrations, heavy metals and bacteria were examined from two sampling sites in monthly samples throughout 2010. The mean concentrations of total nitrogen, ammonia, nitrate and nitrite were higher than 7.0 mg/L, 3.1 mg/L, 1.1 mg/L and 0.3 mg/L, while total phosphorus and orthophosphate were 0.5 mg/L and 0.1 mg/L, respectively. These results indicated that the water quality was rich in minerals and eutrophic. The mean concentrations of Mn and Fe were higher than 0.013 mg/L; and Ni, Cr and Pb were higher than 0.001 mg/L. The mean concentrations were in the order of Mn Fe Ni Pb Cr. The concentrations of heavy metals in the Guangzhou segment were lower than the limit of the surface water quality standards in China and the World Health Organization(WHO), but higher than the median values in the world's freshwater. The density of bacteria ranged from 3.30×105 to 5.23×106 cells/mL, and the amount of cultivable heterotrophic bacteria ranged from 1.30×10 3 to 1.89×10 6 cfu/mL. Fecal coliform levels were beyond the V class of China water quality standard. The SML was enriched in nutrients, heavy metals and bacteria, with the maximum enrichment factor of 3.84 for nutrients, 8.00 for heavy metals, and 3.04 for bacteria, suggesting that the water quality of the SML of the Guangzhou segment of the Pearl River was more serious than in the SSW.  相似文献   

5.
The use of untreated surface water for domestic purposes has resulted in the infection of some people by guinea worm and other water borne diseases in the Northern Region of Ghana. The aim of this study is to assess the current groundwater quantity and quality conditions in the 7,820 km2 Daka catchment and project the water demand in 2025. Results of groundwater analyses generally show good water quality for domestic use. Borehole analyses indicate that the catchment’s groundwater system can be characterized by a regolith aquifer underlain by a deeper fractured rock aquifer in some areas. The current per capita water demand is estimated at 40 l/day although 60 l/day is the desired amount, indicating that with the current population of 363,350, the projected water demand for the communities is 21,800 m3/day. With a projected population of 555,500 in 2025, an expected 33,300 m3/day of water is required. The estimated optimum potential groundwater available for use in the catchment is 154 × 106 m3/year (4.24 × 105 m3/day). However, the current total groundwater abstraction is only 8,876 m3/day or 2% of the optimum. In comparison, the projected total current and 2025 water demands are only 5 and 8%, respectively, of the optimum potential groundwater available for use in the catchment. In addition, only 1,780 m3/day (0.65 × 106 m3/year) or 0.06% of the average annual flow of 1,016 × 106 m3/year of the Daka River is treated for domestic use. These figures reveal that a significantly very large water resource potential exists for both surface and groundwater development in the Daka catchment. It is suggested that their development should proceed conjunctively.  相似文献   

6.
Biological soil crusts cover large areas of the Gurbantunggut Desert in northwestern China where they make a significant contribution to soil stability and fertility. The aim of this study was to quantify the potential nitrogen-fixing activity (NA) of different types of biological soil crusts in the Gurbantunggut Desert. The results suggest that NA (nmol C2H4 m?2 h?1) for each type of crusts was highly variable. Seasonal variation was also important, with all three types of crusts responding in a similar way to changes in environmental conditions. From March to May, NA was relatively low for all crust types. During this season, NA was 2.26 × 103 for cyanobacterial crust followed by lichen crust (6.54 × 102) and moss crust (6.38 × 102). From June to October, all crust types reached their highest level of NA, especially lichen crust and moss crust (p < 0.01). The NA of cyanobacterial crust (9.81 × 103) was higher than that of lichen crust (9.06 × 103) and moss crust (2.03 × 103). From November to February, when temperatures were consistently low (<0 °C), NA was at its lowest level, especially in cyanobacterial crust (4.18 × 102) and moss crust (5.43 × 102) (p < 0.01). Our results indicate that species composition is critical when estimating N inputs in desert ecosystems. In addition, all three types of crusts generally responded in a similar way to environmental conditions. The presence of N fixation activity in all crusts may contribute to the maintenance of fertility in sparsely vegetated areas and provide surrounding vascular plant with fixed nitrogen.  相似文献   

7.
High-resolution, well-calibrated records of lake sediments are critically important for quantitative climate reconstructions, but they remain a methodological and analytical challenge. While several comprehensive paleotemperature reconstructions have been developed across Europe, only a few quantitative high-resolution studies exist for precipitation. Here we present a calibration and verification study of lithoclastic sediment proxies from proglacial Lake Oeschinen (46°30′N, 7°44′E, 1,580 m a.s.l., north–west Swiss Alps) that are sensitive to rainfall for the period AD 1901–2008. We collected two sediment cores, one in 2007 and another in 2011. The sediments are characterized by two facies: (A) mm-laminated clastic varves and (B) turbidites. The annual character of the laminae couplets was confirmed by radiometric dating (210Pb, 137Cs) and independent flood-layer chronomarkers. Individual varves consist of a dark sand-size spring-summer layer enriched in siliciclastic minerals and a lighter clay-size calcite-rich winter layer. Three subtypes of varves are distinguished: Type I with a 1–1.5 mm fining upward sequence; Type II with a distinct fine-sand base up to 3 mm thick; and Type III containing multiple internal microlaminae caused by individual summer rainstorm deposits. Delta-fan surface samples and sediment trap data fingerprint different sediment source areas and transport processes from the watershed and confirm the instant response of sediment flux to rainfall and erosion. Based on a highly accurate, precise and reproducible chronology, we demonstrate that sediment accumulation (varve thickness) is a quantitative predictor for cumulative boreal alpine spring (May–June) and spring/summer (May–August) rainfall (rMJ = 0.71, rMJJA = 0.60, p < 0.01). Bootstrap-based verification of the calibration model reveals a root mean squared error of prediction (RMSEPMJ = 32.7 mm, RMSEPMJJA = 57.8 mm) which is on the order of 10–13 % of mean MJ and MJJA cumulative precipitation, respectively. These results highlight the potential of the Lake Oeschinen sediments for high-resolution reconstructions of past rainfall conditions in the northern Swiss Alps, central and eastern France and south-west Germany.  相似文献   

8.
Eutrophication, prompted by anthropogenic activities and climate change has led to multiple adverse effects in freshwater systems across the world. As instrumental measurements are typically short, lake sediment proxies of aquatic primary productivity (PP) are often used to extend the observational record of eutrophication back in time. Sedimentary pigments provide specific information on PP and major algal communities, but the records are often limited in the temporal resolution. Hyperspectral imaging (HSI) data, in contrast, provide very high seasonal (sub-varve-scale) resolution, but the pigment speciation is limited. Here, we explore a combined approach on varved sediments from the Ponte Tresa basin, southern Switzerland, taking the advantages of both methods (HSI and high performance liquid chromatography, HPLC) with the goal to reconstruct the recent eutrophication history at seasonal to interannual resolution. We propose a modified scheme for the calibration of HSI data (here: Relative Absorption Band Depth between 590 and 730 nm RABD590–730) and HPLC-inferred pigment concentrations (here: ‘green pigments’ {chlorophyll a and pheophytin a}) and present a calibration model (R2?=?0.82; RMSEP?~?12%). The calibration range covers >?98% of the spectral index values of all individual pixels (68 µm?×?68 µm) in the sediment core. This allows us to identify and quantify extreme pigment concentrations related to individual major algal blooms, to identify multiple algal blooms within one season, and to assess interannual variability of PP. Prior to the 1930s, ‘green pigment’ concentrations and fluxes (~?50 µg g?1;?~?2 µg cm?2a?1, chlorophyll a and pheophytin a) and interannual variability was very low. From the 1930s to 1964, chlorophyll a and pheophytin a increased by a factor of ~?4, and ββ-carotene appeared in substantial amounts (~?0.4 µg cm?2a?1). Interannual variability increased markedly and a first strong algal bloom with ‘green pigment’ concentrations as high as 700 µg g?1 is observed in 1958. Peak eutrophication (~?12 µg cm?2a?1 chlorophyll a and pheophytin a) and very high interannual variability with extreme algal blooms (‘green pigment’ concentrations up to 1400 µg g?1) is observed until ca. 1990, when eutrophication decreases slightly. Maximum PP values after 2009 are likely the result of internal nutrient cycling related to repeated deep mixing of the lake.  相似文献   

9.
Downstream hydrologic effects since the closure of Glenbawn Dam, a large dual-purpose storage for water conservation and flood mitigation, include: (i) a reduction in mean annual runoff of about 21 × 106 m3; (ii) a change in the probability distribution of mean daily flows involving a truncation of flows >;8 × 106 m3 d?1, a much reduced frequency of flows >7 × 105 m3 d?1 and an increased frequency of flows <7 × 105 m3 d?1; and (iii) a reduction in flood magnitude of at least 80 per cent for all probabilities of exceedance. From suspended sediment samples collected before and after dam closure, sediment trap efficiency has been estimated at 99 per cent.An accommodation adjustment of the channel has occurred upstream of the first unregulated tributary because the bed is armoured, the banks are well vegetated, some bedrock and concrete controls are present and all regulated releases are incompetent to transport the bed material. Immediately downstream of the first unregulated tributary, the channel has contracted by up to 45 per cent and degraded by up to 69 per cent during lateral migration. Further downstream no channel changes were recorded although the bed material has progressively coarsened over time.  相似文献   

10.
Sediment variables total organic carbon (TOC), total nitrogen (TN), total sulfur (TS), as well as their accumulation rates and atomic ratios (C/N and C/S), were studied along with stable isotopes (δ13C, δ15N, and δ34S), and specific biomarkers (n-alkanes and pigments) in a 35-cm-long sediment core from Lake Bhimtal, NW India. The average sedimentation rate is 3.6 mm year?1, and the core represents a provisional record of ~100 years of sedimentation history. Bulk elemental records and their ratios indicate that sediment organic matter (OM) is derived primarily from algae. In-lake productivity increased sharply over the last two decades, consistent with paleoproductivity reconstructions from other lakes in the area. An up-core decrease in δ13C values, despite other evidence for an increase in lake productivity, implies that multiple biogeochemical processes (e.g. external input of sewage or uptake of isotopically depleted CO2 as a result of fossil fuel burning) influence the C isotope record in the lake. The δ15N values (?0.2 to ?3.9 ‰) reflect the presence of N-fixing cyanobacteria, and an increase in lake productivity. The δ34S profile shows enrichment of up to 5.6 ‰, and suggests that sulfate reduction occurred in these anoxic sediments. Increases in total n-alkane concentrations and their specific ratios, such as the Carbon Preference Index (CPI) and Terrestrial Aquatic Ratio (TAR), imply in-lake algal production. Likewise, pigments indicate an up-core increase in total concentration and dominance of cyanobacteria over other phytoplankton. Geochemical trends indicate a recent increase in the lake’s trophic state as a result of human-induced changes in the catchment. The study highlights the vulnerability of mountain lakes in the Himalayan region to both natural and anthropogenic processes, and the difficulties associated with reversing trophic state and ecological changes.  相似文献   

11.
We investigated relationships among modern diatom species composition and physical and chemical characteristics of high-elevation lakes of the Sierra Nevada (California), to develop transfer functions that can be used to infer historic lake conditions. Data were collected from 50 lakes in National Parks and Forests of the central and southern Sierra Nevada. Multivariate statistical methods revealed that acid neutralizing capacity (ANC) and nitrate accounted for significant variation in diatom taxa. A training set with 242 modern diatom taxa from a subset of 41 lakes was used to develop transfer functions for ANC and nitrate using weighted averaging techniques. ANC and nitrate calibration ranges were 23.0–137 μEq/L and 0.18–9.5 μM, respectively. Coefficients of determination for the models were: ANC: R2 = 0.76, and R jackknife 2  = 0.44; NO3: R2 = 0.67, and R jackknife 2  = 0.27. The ANC model was applied to the top 50 cm of sediments in Moat Lake to reconstruct ANC from ca. AD 350 to 2005. The reconstruction suggests that ANC declined by about 40 % (101–60 μEq/L) between the 1920s and the 1960s and then recovered to pre-1920s levels during 1980–2000. The magnitude of this ANC excursion was the largest observed during the past 1,600 years. We hypothesize that temporal variations in ANC were influenced by: (1) changes in rates of acid deposition, especially nitric acid and (2) variations in the timing and magnitude of snowmelt runoff.  相似文献   

12.
Freshwater lakes in Antarctica fluctuate from ice-free state (during austral summer) to ice-cover state (during austral winter). Hence the lakes respond instantly to the seasonal climate of the region. The Antarctic seasons respond sharply to the glacial and interglacial climates and these signatures are archived in the lake sediments. A sediment core from Sandy Lake, a periglacial lake located in Schirmacher Oasis of East Antarctica records distinct changes in grain-size, C, N, C/N ratios (atomic), δ13COM and δ15NOM contents during the last 36 ky. The contents of the sedimentary organic matter (OM) proxies (Corg ~ 0.3 ± 0.2%, C/N ratios ~9 ± 5 and δ13COM ~?18 ± 6‰) indicate that the OM in this lake sediment is a product of mixing of terrestrial and lacustrine biomass. Distinctly lower contents of Corg (~0.2%) and sand (~50%), low C/N ratios (~8) and depleted δ13COM (~?20‰) during the Last Glacial Maximum (LGM: 32–17 ky BP based on Vostok Temperatures) suggest greater internal (autochthonous) provenance of organic matter and limited terrestrial (allochthonous) inputs probably due to long and intense winters in the Antarctic. Such intense winters might have resulted the lake surface to be ice-covered for most part of the year when the temperatures remained consistently colder than the Holocene temperatures. The denitrification within the lake evident by enriched δ15NOM (>10‰) during Antarctic LGM might have resulted from oxygen-limitation within the lake environment caused by insulated lake surface. The gradual increases in δ13COM, C/N and sand content starting at ~11 ky BP and attaining high values (~?11‰, ~10 and ~80% respectively) at ~6 ky BP together suggest a subtle change in the balance of sources of organic matter between algal and macrophyte/bryophyte nearly 8–9 ky later to the beginning of the deglaciation. Thus the seasonal opening-up of the Sandy Lake similar to the modern pattern started with the establishment of the optimum temperature conditions (i.e., 0 °C anomaly) in the Antarctic, prior to which the lake environment might have remained mostly insulated or closed.  相似文献   

13.
Monitoring during three meteorologically different spring seasons in 2012, 2013, and 2014 revealed that temperature increase in spring, which influences spring lake mixing duration, markedly affected nutrient availability and diatom deposition in a sediment trap close to the bottom of deep Tiefer See, NE Germany. Deposition of Stephanodiscus taxa and small Cyclotella taxa was much higher after late ice out and a deep, short lake mixing period in spring 2013, compared to that after gradual warming and lengthy lake mixing periods in spring 2012 and 2014, when only brief or marginal ice cover occurred. Availability of dissolved Si and P was 33 and 20 % higher, respectively, in 2013 compared to 2014. The observed relation between high (low) diatom deposition and short (lengthy) mixing duration in spring was applied to varved sediments deposited between AD 1924 and 2008. Low detrital Si content in trapped material and a sediment core enabled use of µXRF-counts of Si as a proxy for diatom silica. The spring mixing duration for 1951–2008 was derived from FLake-model calculations. The spring warming duration related to lake mixing was approximated from air temperatures for 1924–2008 using the dates when daily mean air temperature exceeded 5 °C (start) and 10 °C (end). Diatom silica deposition showed a significant (p < 0.0001) inverse linear relationship with the modeled spring mixing duration (R2 = 0.36) and the spring warming duration (R2 = 0.28). In both cases, the relationship is strengthened when data from the period of low diatom production (1987–2005) is excluded (R2 = 0.59 and R2 = 0.35). Part of this low diatom production is related to external nutrient supply that favored growth of cyanobacteria at the expense of diatoms. This approach shows that diatom Si deposition was strongly influenced by the availability of light and nutrients, related to the duration of lake mixing and warming in spring, during most of the studied period. The remaining unexplained variability, however, indicates that additional factors influence Si deposition. Further tests in other deep, temperate lakes are necessary to verify if this relation is a common feature and consequently, if diatom Si can be used as a proxy for spring mixing duration in such lakes.  相似文献   

14.
This study represents a step towards developing seasonal climate inferences by using high-resolution modern data sets. The importance of seasonal climate changes is highlighted by the instrumental record of a meteorological station close to our study site (lac du Sommet in the Laurentian Mountains, Québec, Canada): Between 1966 and 2001, May temperatures increased significantly by 3.1°C (r = 0.41, n = 35, p < 0.01) but annual mean temperatures only by 0.6°C (r = 0.21, n = 35, p > 0.05). Comparison of this instrumental record with fossil diatom assemblages in a sediment core from lac du Sommet showed that axis one of a principal component analysis (PCA) of the fossil diatoms was best correlated with wind velocity in June (r = 0.62, n = 19, p < 0.005) and that past diatom production was significantly enhanced in periods with colder July temperatures (r =  ?0.77, n = 19, p < 0.0005) and higher wind velocity in June (r = 77, n = 19, p < 0.0005). The strong impact of the spring and summer conditions on overall diatom composition and productivity suggests that seasonal lake responses to climate are more important than annual mean temperatures. However, the seasonal dynamics of diatom communities are not well understood, and seasonality is rarely inferred effectively from lake sediment studies. Our research presents a pilot study to answer a twofold question: Is it possible to identify diatom communities which are typical for warmer or colder seasonal climate using sediment traps, and if it is, can this knowledge be used to infer seasonal climate conditions from fossil diatom assemblages? To address these questions, the seasonal dynamics of diatom communities and water chemistry were studied using sediment traps and water samples at biweekly intervals in four lakes distributed along an altitudinal gradient in the Laurentian Mountains from May through October 2002. Date of ice break-up was significantly related to the diatom assemblages taken in spring and uncorrelated to other significant environmental variables. Summer water temperature, circulation of the water column and pH explained a significant part of the biological variance in summer, and total nitrogen (TN) explained most of the biological variance in autumn. To infer these variables, weighted averaging partial least squares models were applied to the seasonal data sets. Inferred ice break-up dates were significantly correlated with number of days below 0°C in April (r = 0.52, n = 19, p < 0.025), inferred circulation of the water column was significantly related to measured wind velocity in June (r = 0.64, n = 19, p < 0.005), inferred summer water temperature and inferred pH was significantly related to measured July air temperature (r = 0.50, r =  ?53, n = 19, p < 0.025) and inferred TN autumn concentrations had an inverse relationship to August temperatures (r =  ?0.53, n = 19, p < 0.01). This comparison of the historical record with diatom-inferred seasonal climate signals, based on the comparison of fossil diatom assemblages with modern sediment trap data of high temporal resolution, provides a promising new approach for the reconstruction of seasonal climate aspects in paleolimnological studies.  相似文献   

15.
Using Landsat TM data from 1995 and 2000, changes in the landscape erosion pattern of the Yellow River Basin, China were analysed. The aim was to improve our understanding of soil‐erosion change so that sustainable land use could be established. First, a soil‐erosion intensity index model was developed to study soil‐erosion intensity change in the study area. Over the 5 years, the areas of weak erosion, moderate erosion, severe erosion, and very severe erosion all increased. The area of weak erosion increased dramatically by 7.94×105 ha, and areas of slight erosion and acute erosion decreased by 1.93×106 ha and 4.50×104 ha, respectively. The results show that while the intensity of soil erosion has gradually been decreasing as a whole, in some regions the soil erosion is becoming more severe. Based on landscape indices, the pattern of changes in soil erosion over the past 5 years was analysed. The changes in landscape pattern of soil erosion resulted from human activities. Analysis showed that human impact increases fragmentation, having three major effects on landscape pattern, reduction in patch area, variations in patch shape, and changes in spatial pattern. In the study area, population growth, farming, governmental policy and forest degradation are the major factors causing soil erosion change over a 5‐year period.  相似文献   

16.
Subfossil Cladocera were sampled and examined from the surface sediments of 35 thermokarst lakes along a temperature gradient crossing the tree line in the Anabar-river basin in northwestern Yakutia, northeastern Siberia. The lakes were distributed through three environmental zones: typical tundra, southern tundra and forest tundra. All lakes were situated within the continuous permafrost zone. Our investigation showed that the cladoceran communities in the lakes of the Anabar region are diverse and abundant, as reflected by taxonomic richness, and high diversity and evenness indices (H = 1.89 ± 0.51; I = 0.8 ± 0.18). CONISS cluster analysis indicated that the cladoceran communities in the three ecological zones (typical tundra, southern tundra and forest-tundra) differed in their taxonomic composition and structure. Differences in the cladoceran assemblages were related to limnological features and geographical position, vegetation type, climate and water chemistry. The constrained redundancy analysis indicated that TJuly, water depth and both sulphate (SO4 2?) and silica (Si4+) concentrations significantly (p ≤ 0.05) explained variance in the cladoceran assemblage. TJuly featured the highest percentage (17.4 %) of explained variance in the distribution of subfossil Cladocera. One of the most significant changes in the structure of the cladoceran communities in the investigated transect was the replacement of closely related species along the latitudinal and vegetation gradient. The results demonstrate the potential for a regional cladoceran-based temperature model for the Arctic regions of Russia, and for and Yakutia in particular.  相似文献   

17.
Abstract

This research deals with the surface dynamics and key factors – hydrological regime, sediment load, and erodibility of floodplain facies – of frequent channel shifting, intensive meandering, and lateral instability of the Bhagirathi River in the western part of the Ganga-Brahmaputra Delta (GBD). At present, the floodplain of the Bhagirathi is categorized as a medium energy (specific stream power of 10–300 W m?2), non-cohesive floodplain, which exhibits a mixed-load and a meandering channel, an entrenchment ratio >2.2, width–depth ratio >12, sinuosity >1.4, and channel slope <0.02. In the study area, since 1975, four meander cutoffs have been shaped at an average rate of one in every 9–10 years. In the active meander belt and sand-silt dominated floodplains of GBD, frequent shifting of the channel and meander migration escalate severe bank erosion (e.g. 2.5 × 106 m3 of land lost between 1999 and 2004) throughout the year. Remote sensing based spatio-temporal analysis and stratigraphic analysis reveal that the impact of the Farakka barrage, completed in 1975, is not the sole factor of downstream channel oscillation; rather, hydrogeomorphic instability induced by the Ajay–Mayurakshi fluvial system and the erodibility of floodplain sediments control the channel dynamics of the study area.  相似文献   

18.
Annually laminated sediments in Lake Xiaolongwan, northeast China, contain a suite of n-alkanes (C17–C33) with a strong odd over even carbon number predominance. Biomarker n-alkane proxies (average chain length, Paq ratio, grass/tree ratio, carbon preference index and compound-specific δ13C values) were used to reconstruct climate changes that occurred over the last millennium. Compound-specific δ13C values show large differences between the distinctive chain length groups of n-alkanes that originate from algae, aquatic macrophytes and terrestrial plants. Long-chain n-alkanes (C27–C33) are predominantly derived from leaf wax lipids in the forest. Variations in long-chain n-alkane δ13C values may mainly record water-use efficiency, inasmuch as the contribution from C4 plants is negligible in the Lake Xiaolongwan catchment. Short- and middle-chain n-alkanes are mainly from algae and aquatic plants. They are strongly depleted in 13C. This feature may be linked to a methane-derived, negative δ13C pool and lake overturn, which regulates dinoflagellate blooms. Parallel fluctuations are observed in δ13C27–31 values, Paq, and the grass/tree ratio throughout the record. Variations in δ13C27–31 values and Paq are in agreement with historical documents on summer and winter climate conditions. They support earlier suggestions that δ13C values in the long-chain n-alkanes and Paq may be useful indicators of effective precipitation or drought stress in this forested area. The δ13C27–31 index and Paq show distinct decadal variations. Periods with high δ13C27–31 values and a low Paq index correspond with the warm phases of the Pacific Decadal Oscillation (PDO). Values are reversed during PDO cool phases. At the decadal timescale, summer monsoon rainfall in northeast China over the last millennium may have been regulated mainly by the PDO.  相似文献   

19.
We applied the 32Si dating technique to a sediment core from Lake Baikal to obtain the sediment chronology for the last millennium. The core was recovered about 4 km offshore from the north slope of the South Basin in 1,366 m water depth. The sediment material consisted of continuously accumulated diatom-rich geogenic-terrigenous mud, intercalated with a number of dark olive-grey turbidite layers. The sediment layers containing the turbidites were excluded from 32Si sampling to obtain the chronology that is representative of the continuous sedimentation. The initial 32Si activity of 31.3 dpm kg?1 SiO2, measured in sediment trap samples, confirms the trend of 32Si specific activities of biogenic silica found in other Northern Hemisphere lakes. The four sediment core samples from depth 0–48 cm have 32Si specific activities between 23.5 and 0.5 dpm kg?1 SiO2, with corresponding ages between 60 and 860 years and constant sedimentation rate of 0.036 ± 0.004 cm year?1 over the most recent 800 years. 32Si allowed us for the first time to date the uppermost turbidites in the South Basin of Lake Baikal, to 1030, 1310 and 1670 ad. Given these dates, the last long-distance turbidity current triggered by slope instabilities had occurred 330 years before 2000 ad, and the intervals between the 1310 and 1670 ad event and between the 1030 and 1310 ad event were 360 and 280 years, respectively. The 32Si ages allow unprecedented time resolution for reconstruction of the former environmental and climatic conditions during the past millennium.  相似文献   

20.
We initially estimated the cropland area at county level using local historical documents for the Songnen Plain (SNP) in the 1910s and 1930s. We then allocated this cropland area to grid cells with a size of 1 km × 1 km, using a range of cultivation possibilities from high to low; this was based on topography and minimum distances to rivers, settlements, and traffic lines. Cropland areas for the 1950s were obtained from the Land Use Map of Northeast China, and map vectorization was performed with ArcGIS technology. Cropland areas for the 1970s, 1980s, 1990s, 2000s, and 2010s were retrieved from Landsat images. We found that the cropland areas were 4.92 × 104 km2 and 7.60 × 104 km2, accounting for 22.8% and 35.2% of the total area of the SNP in the 1910s and 1930s, respectively, which increased to 13.14 × 104 km2, accounting for 60.9% in the 2010s. The cropland increased at a rate of 1.18 × 104 km2 per decade from the 1910s to 1970s while it was merely 0.285 × 104 km2 per decade from the 1970s to 2010s. From the 1910s to 1930s, new cultivation mainly occurred in the central SNP while, from the 1930s to 1970s, it was mainly over the western and northern parts. This spatially explicit reconstruction could be offered as primary data for studying the effects of changes in human-induced land cover based on climate change over the last century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号