首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Much attention has been given to the surface controls on the generation and transmission of runoff in semi‐arid areas. However, the surface controls form only one part of the system; hence, it is important to consider the effect that the characteristics of the storm event have on the generation of runoff and the transmission of flow across the slope. The impact of storm characteristics has been investigated using the Connectivity of Runoff Model (CRUM). This is a distributed, dynamic hydrology model that considers the hydrological processes relevant to semi‐arid environments at the temporal scale of a single storm event. The key storm characteristics that have been investigated are the storm duration, rainfall intensity, rainfall variability and temporal structure. This has been achieved through the use of a series of defined storm hydrographs and stochastic rainfall. Results show that the temporal fragmentation of high‐intensity rainfall is important for determining the travel distances of overland flow and, hence, the amount of runoff that leaves the slope as discharge. If the high‐intensity rainfall is fragmented, then the runoff infiltrates a short distance downslope. Longer periods of high‐intensity rainfall allow the runoff to travel further and, hence, become discharge. Therefore, storms with similar amounts of high‐intensity rainfall can produce very different amounts of discharge depending on the storm characteristics. The response of the hydrological system to changes in the rainfall characteristics can be explained using a four‐stage model of the runoff generation process. These stages are: (1) all water infiltrating, (2) the surface depression store filling or emptying without runoff occurring, (3) the generation and transmission of runoff and (4) the transmission of runoff without new runoff being generated. The storm event will move the system between the four stages and the nature of the rainfall required to move between the stages is determined by the surface characteristics. This research shows the importance of the variable‐intensity rainfall when modelling semi‐arid runoff generation. The amount of discharge may be greater or less than the amount that would have been produced if constant rainfall intensity is used in the model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
This paper analyses the spatial and temporal variability of the hydrological response in a small Mediterranean catchment (Cal Rodó). The first part of the analysis focuses on the rainfall–runoff relationship at seasonal and monthly scale, using an 8‐year data set. Then, using storm‐flow volume and coefficient, the temporal variability of the rainfall–runoff relationship and its relationship with several hydrological variables are analysed at the event scale from hydrographs observed over a 3‐year period. Finally, the spatial non‐linearity of the hydrological response is examined by comparing the Cal Rodó hydrological response with the Can Vila sub‐catchment response at the event scale. Results show that, on a seasonal and monthly scale, there is no simple relationship between rainfall and runoff depths, and that evapotranspiration is a factor that introduced some non‐linearity in the rainfall–runoff relationship. The analysis of monthly values also reveals the existence of a threshold in the relationship between rainfall and runoff depths, denoting a more contrasted hydrological response than the one usually observed in humid catchments. At the event scale, the storm‐flow coefficient has a clear seasonal pattern with an alternance between a wet period, when the catchment is hydrologically responsive, and a dry summer period, when the catchment is much less reactive to any rainfall. The relationship between the storm‐flow coefficient and rainfall depth, rainfall maximum intensity and base‐flow shows that observed correlations are the same as those observed for humid conditions, even if correlation coefficients are notably lower. Comparison with the Can Vila sub‐catchment highlights the spatial heterogeneity of the rainfall‐runoff relationship at the small catchment scale. Although interpretation in terms of runoff processes remains delicate, heterogeneities between the two catchments seem to be related to changes in the ratio between infiltration excess and saturation processes in runoff formation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In the semi‐arid Mediterranean environment, the rainfall–runoff relationships are complex because of the markedly irregular patterns in rainfall, the seasonal mismatch between evaporation and rainfall, and the spatial heterogeneity in landscape properties. Watersheds often display considerable non‐linear threshold behavior, which still make runoff generation an open research question. Our objectives in this context were: to identify the primary processes of runoff generation in a small natural catchment; to test whether a physically based model, which takes into consideration only the primary processes, is able to predict spatially distributed water‐table and stream discharge dynamics; and to use the hydrological model to increase our understanding of runoff generation mechanisms. The observed seasonal dynamics of soil moisture, water‐table depth, and stream discharge indicated that Hortonian overland‐flow was negligible and the main mechanism of runoff generation was saturated subsurface‐flow. This gives rise to base‐flow, controls the formation of the saturated areas, and contributes to storm‐flow together with saturation overland‐flow. The distributed model, with a 1D scheme for the kinematic surface‐flow, a 2D sub‐horizontal scheme for the saturated subsurface‐flow, and ignoring the unsaturated flow, performed efficiently in years when runoff volume was high and medium, although there was a smoothing effect on the observed water‐table. In dry years, small errors greatly reduced the efficiency of the model. The hydrological model has allowed to relate the runoff generation mechanisms with the land‐use. The forested hillslopes, where the calibrated soil conductivity was high, were never saturated, except at the foot of the slopes, where exfiltration of saturated subsurface‐flow contributed to storm‐flow. Saturation overland‐flow was only found near the streams, except when there were storm‐flow peaks, when it also occurred on hillslopes used for pasture, where soil conductivity was low. The bedrock–soil percolation, simulated by a threshold mechanism, further increased the non‐linearity of the rainfall–runoff processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Geochemically based hydrograph separation techniques were used in a preliminary assessment to infer how runoff processes change with landscape characteristics and spatial scale (1–233 km2) within a mesoscale catchment in upland Scotland. A two‐component end‐member mixing analysis (EMMA) used Gran alkalinity as an assumed conservative tracer. Analysis indicated that, at all scales investigated, acidic overland flow and shallow subsurface storm flows from the peaty soils covering the catchment headwaters dominated storm runoff generation. The estimated groundwater contribution to annual runoff varied from 30% in the smallest (ca 1 km2) peat‐dominated headwater catchment with limited groundwater storage, to >60% in larger catchments (>30 km2) with greater coverage of more freely draining soils and more extensive aquifers in alluvium and other drift. This simple approach offers a useful, integrated conceptualization of the hydrological functioning in a mesoscale catchment, which can be tested and further refined by focused modelling and process‐based research. However, even as it stands, the simple conceptualization of system behaviour will have significant utility as a tool for communicating hydrological issues in a range of planning and management decisions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Qihua Ran  Feng Wang  Jihui Gao 《水文研究》2020,34(23):4526-4540
Rainfall characteristics are key factors influencing infiltration and runoff generation in catchment hydrology, particularly for arid and semiarid catchments. Although the effect of storm movement on rainfall-runoff processes has been evaluated and emphasized since the 1960s, the effect on the infiltration process has barely been considered. In this study, a physically based distributed hydrological model (InHM) was applied to a typical semi-arid catchment (Shejiagou, 4.26 km2) located in the Loess Plateau, China, to investigate the effect of storm movement on infiltration, runoff and soil erosion at the catchment scale. Simulations of 84 scenarios of storm movement were conducted, including storms moving across the catchment in both the upstream and downstream directions along the main channel, while in each direction considering four storm moving speeds, three rainfall depths and two storm ranges. The simulation results showed that, on both the hillslopes facing downstream (facing south) and in the main channel, the duration of the overland flow process under the upstream-moving storms was longer than that under the downstream-moving storms. Thus, the duration and volume of infiltration under upstream-moving storms were larger in these areas. For the Shejiagou catchment, as there are more hillslopes facing downstream, more infiltration occurred under the upstream-moving storms than the downstream-moving storms. Therefore, downstream-moving storms generated up to 69% larger total runoff and up to 351% more soil loss in the catchment than upstream-moving storms. The difference in infiltration between the storms moving upstream and downstream decreased as the storm moving speed increased. The relative difference in total runoff and sediment yield between the storms moving upstream and downstream decreased with increasing rainfall depth and storm speed. The results of this study revealed that the infiltration differences under moving storms largely influenced the total runoff and sediment yield at the catchment scale, which is of importance in runoff prediction and flood management. The infiltration differences may be a potential factor leading to different groundwater, vegetation cover and ecology conditions for the different sides of the hillslopes.  相似文献   

6.
A method is presented to evaluate the storm runoff contributions from different land‐use class areas within a river basin using the geographical information system‐based hydrological model WetSpa. The modelling is based on division of the catchment into a grid mesh. Each cell has a unique response function independent of the functioning of other cells. Summation of the flow responses from the cells with the same land‐use type results in the storm runoff contribution from these areas. The model was applied on the Steinsel catchment in the Alzette river basin, Grand Duchy of Luxembourg, with 52 months of meteo‐hydrological measurements. The simulation results show that the direct runoff from urban areas is dominant for a flood event compared with runoff from other land‐use areas in this catchment, and this tends to increase for small floods and for the dry‐season floods, whereas the interflow from forested, pasture and agricultural field areas contributes to recession flow. It is demonstrated that the relative contribution from urban areas decreases with flow coefficient, that cropland relative contribution is nearly constant, and that the relative contribution from grassland and woodland increases with flow coefficient with regard to their percentage of land‐use class areas within the study catchment. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Complex networks of both natural and engineered flow paths control the hydrology of streams in major cities through spatio-temporal variations in connection and disconnection of diverse water sources. We used spatially extensive and temporally intensive sampling of water stable isotopes to disentangle the hydrological sources of the heavily urbanized Panke catchment (~220 km2) in the north of Berlin, Germany. The isotopic data enabled us to partition stream water sources across the catchment using a Bayesian mixing analysis. The upper part of the catchment streamflow is dominated by groundwater (~75%) from gravel aquifers. In dry summer periods, streamflow becomes intermittent in the upper catchment, possibly as a result of local groundwater abstractions. Storm drainage dominates the responses to precipitation events. Although such events can dramatically change the isotopic composition of the upper stream network, storm drainage only accounts for 10%–15% of annual streamflow. Moving downstream, subtle changes in sources and isotope signatures occur as catchment characteristics vary and the stream is affected by different tributaries. However, effluents from a wastewater treatment plant (WWTP), serving 700,000 people, dominate stream flow in the lower catchment (~90% of annual runoff) where urbanization effects are more dramatic. The associated increase in sealed surfaces downstream also reduces the relative contribution of groundwater to streamflow. The volume and isotopic composition of storm runoff is again dominated by urban drainage, though in the lower catchment, still only about 10% of annual runoff comes from storm drains. The study shows the potential of stable water isotopes as inexpensive tracers in urban catchments that can provide a more integrated understanding of the complex hydrology of major cities. This offers an important evidence base for guiding the plans to develop and re-develop urban catchments to protect, restore, and enhance their ecological and amenity value.  相似文献   

8.
In semi‐arid environments, the characteristics of the land surface determine how rainfall is transformed into surface runoff and influences how this runoff moves from the hillslopes into river channels. Whether or not water reaches the river channel is determined by the hydrological connectivity. This paper uses a numerical experiment‐based approach to systematically assess the effects of slope length, gradient, flow path convergence, infiltration rates and vegetation patterns on the generation and connectivity of runoff. The experiments were performed with the Connectivity of Runoff Model, 2D version distributed, physically based, hydrological model. The experiments presented are set within a semi‐arid environment, characteristic of south‐eastern Spain, which is subject to low frequency high rainfall intensity storm events. As a result, the dominant hydrological processes are infiltration excess runoff generation and surface flow dynamics. The results from the modelling experiments demonstrate that three surface factors are important in determining the form of the discharge hydrograph: the slope length, the slope gradient and the infiltration characteristics at the hillslope‐channel connection. These factors are all related to the time required for generated runoff to reach an efficient flow channel, because once in this channel, the transmission losses significantly decrease. Because these factors are distributed across the landscape, they have a fundamental role in controlling the landscape hydrological response to storm events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Taiwan suffers from heavy storm rainfall during the typhoon season. This usually causes large river runoff, overland flow, erosion, landslides, debris flows, loss of power, etc. In order to evaluate storm impacts on the downstream basin, a real‐time hydrological modelling is used to estimate potential hazard areas. This can be used as a decision‐support system for the Emergency Response Center, National Fire Agency Ministry, to make ‘real‐time’ responses and minimize possible damage to human life and property. This study used 34 observed events from 14 telemetered rain‐gauges in the Tamshui River basin, Taiwan, to study the spatial–temporal characteristics of typhoon rainfall. In the study, regionalized theory and cross‐semi‐variograms were used to identify the spatial‐temporal structure of typhoon rainfall. The power form and parameters of the cross‐semi‐variogram were derived through analysis of the observed data. In the end, cross‐validation was used to evaluate the performance of the interpolated rainfall on the river basin. The results show the derived rainfall interpolator represents the observed events well, which indicates the rainfall interpolator can be used as a spatial‐temporal rainfall input for real‐time hydrological modelling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
11.
We examined the contributions of bedrock groundwater to the upscaling of storm‐runoff generation processes in weathered granitic headwater catchments by conducting detailed hydrochemical observations in five catchments that ranged from zero to second order. End‐member mixing analysis (EMMA) was performed to identify the geographical sources of stream water. Throughfall, hillslope groundwater, shallow bedrock groundwater, and deep bedrock groundwater were identified as end members. The contribution of each end member to storm runoff differed among the catchments because of the differing quantities of riparian groundwater, which was recharged by the bedrock groundwater prior to rainfall events. Among the five catchments, the contribution of throughfall was highest during both baseflow and storm flow in a zero‐order catchment with little contribution from the bedrock groundwater to the riparian reservoir. In zero‐order catchments with some contribution from bedrock groundwater, stream water was dominated by shallow bedrock groundwater during baseflow, but it was significantly influenced by hillslope groundwater during storms. In the first‐order catchment, stream water was dominated by shallow bedrock groundwater during storms as well as baseflow periods. In the second‐order catchment, deeper bedrock groundwater than that found in the zero‐order and first‐order catchments contributed to stream water in all periods, except during large storm events. These results suggest that bedrock groundwater influences the upscaling of storm‐runoff generation processes by affecting the linkages of geomorphic units such as hillslopes, riparian zones, and stream channels. Our results highlight the need for a three‐dimensional approach that considers bedrock groundwater flow when studying the upscaling of storm‐runoff generation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A better understanding of stormwater generation and solute sources is needed to improve the protection of aquatic ecosystems, infrastructure, and human health from large runoff events. Much of our understanding of water and solutes produced during stormflow comes from studies of individual, small headwater catchments. This study compared many different types of catchments during a single large event to help isolate landscape controls on streamwater and solute generation, including human‐impacted land cover. We used a distributed network of specific electrical conductivity sensors to trace storm response during the post‐tropical cyclone Sandy event of October 2012 at 29 catchments across the state of New Hampshire. A citizen science sensor network, Lotic Volunteer for Temperature, Electrical Conductivity, and Stage, provided a unique opportunity to investigate high‐temporal resolution stream behavior at a broad spatial scale. Three storm response metrics were analyzed in this study: (a) fraction of new water contributing to the hydrograph; (b) presence of first flush (mobilization of solutes during the beginning of the rain event); and (c) magnitude of first flush. We compared new water and first flush to 64 predictor attributes related to land cover, soil, topography, and precipitation. The new water fraction was positively correlated with low and medium intensity development in the catchment and riparian buffers and with the precipitation from a rain event 9 days prior to Sandy. The presence of first flush was most closely related (positively) to soil organic matter. Magnitude of first flush was not strongly related to any of the catchment variables. Our results highlight the potentially important role of human landscape modification in runoff generation at multiple spatial scales and the lack of a clear role in solute flushing. Further development of regional‐scale in situ sensor networks will provide better understanding of stormflow and solute generation across a wide range of landscape conditions.  相似文献   

13.
Data collected in 4 years of field observations were used in conjunction with continuous simulation models to study, at the small‐basin scale, the water balance of a closed catchment‐lake system in a semi‐arid Mediterranean environment. The open water evaporation was computed with the Penman equation, using the data set collected in the middle of the lake. The surface runoff was partly measured at the main tributary and partly simulated using a distributed, catchment, hydrological model, calibrated with the observed discharge. The simplified structure of the developed modelling mainly concerns soil moisture dynamics and bedrock hydraulics, whereas the flow components are physically based. The calibration produced high efficiency coefficients and showed that surface runoff is greatly affected by soil water percolation into fractured bedrock. The bedrock reduces the storm‐flow peaks and the interflow and has important multi‐year effects on the annual runoff coefficients. The net subsurface outflow from the lake was calculated as the residual of the lake water balance. It was almost constant in the dry seasons and increased in the wet seasons, because of the moistening of the unsaturated soil. During the years of observation, rainfall 30% higher than average caused abundant runoff and a continuous rise in the lake water levels. The analysis allows to predict that, in years with lower than the average rainfall, runoff will be drastically reduced and will not be able to compensate for negative balance between precipitation and lake evaporation. Such highly unsteady situations, with great fluctuations in lake levels, are typical of closed catchment‐lake systems in the semi‐arid Mediterranean environment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Summer flows in experimental catchments with different forest covers, Chile   总被引:7,自引:0,他引:7  
Runoff and peak flows in four experimental catchments with different land uses are analyzed for summer periods. The catchments have a rainy temperate climate with annual precipitations between 2000 and 2500 mm, 70% of which is concentrated in the winter period between May and August. The final harvest of the forest plantation in one of these catchments generated increases in summer runoff. Also, differences between the maximum instantaneous discharge and the flow at the beginning of the storm then almost duplicated those registered in rainfall events of similar magnitude when the catchment was fully forested. Runoff analysis in this catchment is difficult because the two post-harvesting summer periods are much wetter than the two pre-harvesting ones but a double mass analysis shows the effect of harvesting clearly. In a paired catchment study, low cover in one of the two neighbour catchments explains higher direct runoff and base flows although lower maximum instantaneous specific discharge occurred in the less vegetated but larger catchment. Low vegetation cover explains increases in summer flows, although the size, topography, rainfall conditions, road density, extent of affected area and runoff generation processes play an important role in the hydrological effects of different land uses.  相似文献   

15.
D.F. Scott 《Journal of Hydrology》1993,150(2-4):409-432
Streamflow and its storm-flow elements in four catchments were analyzed by the paired catchment method for a response to fire. Prior to burning two of the catchments were vegetated with over-mature fynbos (the indigenous scrub vegetation of the southwestern Cape, South Africa), one was afforested with Pinus radiata and the fourth with Eucalyptus fastigata. One of the fynbos catchments was burned in a prescribed fire in the late dry season. The other catchments burned in wildfires.

Neither of the fynbos catchments showed a change in storm-flow. Annual total flow increases of around 16% were in agreement with model predictions, being related to the reductions in transpiration and interception. The manner of streamflow generation appeared to have remained unaltered despite the presence of some water repellency in the soils and consequent overland flow on some steep midslope sites.

The two timber plantation catchments experienced large and significant increases in storm-flows and soil losses, while total flow increased by 12% in the pine catchment and decreased marginally in the eucalypt catchment. The pattern of the storm-flow increases was similar in both cases. After fire, storm hydrographs were higher and steeper though their duration was little changed. The respective first year increases in the pine and eucalypt catchments were 290% and 1110% for peak discharge, 201% and 92% for quick-flow volume, and 242% and 319% for storm response ratio. These fire effects are considered to be due to changes in storm-flow generation consistent with an increased delivery of overland flow (surface runoff) to the stream channel. This was caused, in part, by reduced infiltration resulting from water repellency in the soils of the burned catchments. Overall the hydrological effects of fire are related to numerous interactive factors, including the degree of soil heating, the vegetation type and soil properties.  相似文献   


16.
Predicting runoff hot spots and hot‐moments within a headwater crop‐catchment is of the utmost importance to reduce adverse effects on aquatic ecosystems by adapting land use management to control runoff. Reliable predictions of runoff patterns during a crop growing season remain challenging. This is mainly due to the large spatial and temporal variations of topsoil hydraulic properties controlled by complex interactions between weather, growing vegetation, and cropping operations. This interaction can significantly modify runoff patterns and few process‐based models can integrate this evolution of topsoil properties during a crop growing season at the catchment scale. Therefore, the purpose of this study was to better constrain the event‐based hydrological model Limburg Soil Erosion Model by incorporating temporal constraints for input topsoil properties during a crop growing season (LISEM). The results of the temporal constraint strategy (TCS) were compared with a classical event per event calibration strategy (EES) using multi‐scale runoff information (from plot to catchment). The EES and TCS approaches were applied in a loess catchment of 47 ha located 30 km northeast of Strasbourg (Alsace, France). A slight decrease of the Nash–Sutcliffe efficiency criterion on runoff discharge for TCS compared to EES was counterbalanced by a clear improvement of the spatial runoff patterns within the catchment. This study showed that limited agronomical and climatic information added during the calibration step improved the spatial runoff predictions of an event‐based model. Reliable prediction of runoff source, connectivity, and dynamics can then be derived and discussed with stakeholders to identify runoff hot spots and hot‐moments for subsequent land use and crop management modifications.  相似文献   

17.
Increasing pressure on the tropical environment requires a more thorough understanding of hydrological processes as part of reconciling the conflicting demands of economic development vis-à-vis sustainable land management. Using TOPMODEL, a physically based semi-distributed topohydrological model, we test its validity in modelling the stream flow dynamics (hydrograph) in a 1 ha tropical rainforest catchment in French Guiana. Another objective is through field validation of TOPMODEL to ascertain possible runoff generation mechanisms. The field validation of the temporal and spatial hydrodynamics across a rainfall–runoff event reveals that TOPMODEL may be suited for applications to this particular tropical rainforest environment; in fact, this is possibly the first successful application of such a model within the humid tropics. The main reasons why the model was successful are the presumed low hydraulic conductivities of the subsoil, coupled with the absence of an additional deep groundwater body, the contribution from which has caused difficulties in application of topographically, ‘physically’ based runoff models elsewhere in the humid tropics. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
Stormflow generation in two headwater catchments in eastern Amazonia,Brazil   总被引:1,自引:0,他引:1  
Throughout the tropics, and the Amazon region in particular, only a few experimental studies have identified the main hydrological pathways and response to storm events. This study identifies the hydrological response patterns and quantifies the main runoff generating processes for two headwater catchments in eastern Amazonia, an area of low relief. Over an 18 month study period, 245 and 55 rainfall–runoff events at the respective headwater catchments were analysed. The rainfall‐runoff regression lines for both catchments revealed a remarkably strong linear correlation between event rain total and runoff volume. The area contributing to stormflow was proven to be constant in extent at approximately 0·6% of the catchment and to coincide with the exact extent of the riparian wetland zone. The soils of the surrounding hillslopes were found to be highly permeable oxisols. Indications of secondary permeability due to the deep root system of the secondary vegetation were also found. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
We investigated the role of different hillslope units with different topographic characteristics on runoff generation processes based on field observations at two types of hillslopes (0·1 ha): a valley‐head (a convergent hillslope) and a side slope (a planar hillslope), as well as at three small catchments having two types of slopes with different drainage areas ranging from 1·9 to 49·7 ha in the Tanakami Mountains, central Japan. We found that the contribution of the hillslope unit type to small catchment runoff varied with the magnitude of rainfall. When the total amount of rainfall for a single storm event was < 35 mm, runoff in the small catchment was predominantly generated from the side slope. As the amount of rainfall increased (>35 mm), the valley‐head also began to contribute to the catchment runoff, adding to runoff from the side slope. Although the direct runoff from the valley‐head was greater than that from the side slope, the contribution from the side slope was quantitatively greater than that from the valley‐head due to the proportionally larger area occupied by the side slope in the small catchment. The storm runoff responses of the small catchments reflected the change in the runoff components of each hillslope unit as the amount of rainfall increased and rainfall patterns changed. However, similar runoff responses were found for the small catchments with different areas. The similarity of the runoff responses is attributable to overlay effects of different hillslope units and the similar composition ratios of the valley‐head and side slope in the catchments. This study suggests that the relative roles of the valley‐head and side slope are important in runoff generation and solute transport as the catchment size increases from a hillslope/headwater to a small catchment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Vegetation characteristics have not been sufficiently utilized in catchment runoff models. An analysis of storm hydrograph data from nested subareas of the Highland Water catchment, New Forest, U.K., indicates that depth of runoff and peak discharge from areas under heathland cover is substantially greater than from areas under woodland cover at several spatial scales. The significance of heath vegetation composition in the identification of runoff contributing areas is illustrated by an analysis of vegetation composition, water table depth, baseflow discharge and storm runoff from areas predominantly covered by heathland. Methods are proposed to employ the hydrological characteristics of heathland to refine and develop the Flood Studies Approach to discharge estimation in ungauged heathland catchments. Such an approach is greatly facilitated by the use of remotely-sensed data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号