首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Management of salt-affected soils is a challenging task in the input intensive rice-wheat cropping zone of the Indo-Gangetic plains (IGP). Timely detection of salt-affected areas and assessment of the degree of severity are vital in order to narrow down the potential gap in yield. Conventional laboratory techniques of saturation extract electrical conductivity (ECe) and sodium adsorption ration (SAR) for soil salinity assessment are time-consuming and labour intensive; the VNIR (visible-near infrared) reflectance spectroscopy technique provides ample information on salinity and its attributes in an efficient and cost-effective way. This study aims to develop robust soil reflectance spectral models for rapid assessment of soil salinity in the salt affected areas of the IGP region of Haryana using VNIR reflectance spectroscopy. The results indicated that the spectral region between 1390 and 2400 nm was highly sensitive to measure changes in salinity. The developed hyperspectral models explained more than 80 % variability in ECe, and other salinity related attributes (saturated extract Na+, Ca2+ + Mg2+, Cl? and SAR) in the validation datasets. With the increasing availability of data from hyperspectral sensors in near future, the study will be very useful in real time monitoring of soils in the spatio-temporal context; enabling the farmers of IGP area to deal with salt degradation more effectively and efficiently.  相似文献   

2.
Sentinel-2A与Landsat 8O LI逐像元辐射归一化方法研究   总被引:1,自引:0,他引:1  
考虑不同传感器光谱响应函数差异及不同地物类型反射率光谱的差异,提出了一种逐像元辐射归一化方法,并以2017年7月17日内蒙古达里诺尔湖地区准同步过境的Sentinel-2A及Landsat 8数据为例,对两类数据可见-近红外波段(VNIR)地表反射率结果进行归一化。首先采用Sen2cor方法及NASA官方提供大气校正算法,分别对Sentinel-2A及Landsat 8 OLI影像进行大气校正并重采样到同一空间分辨率;然后基于光谱库计算匹配因子并构建图像与光谱库之间的匹配转换模型,实现像元尺度上从Sentinel-2影像到Landsat 8影像地表反射率相似波段之间的转换。结果表明,经逐像元归一化的影像相比原始影像及经HLS光谱归一化的影像,与Landsat 8 VNIR波段的相关性明显提高,辐射一致性增强。该转换模型为多源中高分辨率遥感图像高精度辐射归一化提供了新思路。  相似文献   

3.
This paper examines the hyperspectral signatures (in the Visible Near Infrared (VNIR)-Shortwave Infrared (SWIR) regions) of soil samples with varying colour and minerals. 36 samples of sands (from river and beach) with differing clay contents were examined using a hyperspectral radiometer operating in the 350–2,500 nm range, and the spectral curves were obtained. Analysis of the spectra indicates that there is an overall increase in the reflectance in the VNIR-SWIR region with an increase in the content of kaolinite clay in the sand samples. As regards the red and black clays and sand mixtures, the overall reflectance increases with decreasing clay content. Several spectral parameters such as depth of absorption at 1,400 nm and 1,900 nm regions, radius of curvature of the absorption troughs, slope at a particular wavelength region and the peak reflectance values were derived. There exists a correlation between certain of these spectral parameters (depth, slope, position, peak reflectance, area under the curve and radius of the curve) and the compositional and textural parameters of the soils. Based on these well-defined relations, it is inferred that hyperspectral radiometry in the VNIR and SWIR regions can be used to identify the type of clay and estimate the clay content in a given soil and thus define its geotechnical category.  相似文献   

4.
Albedo is a key forcing parameter controlling the planetary radiative energy budget and its partitioning between the surface and the atmosphere. Characterizing and developing high resolution albedo for an urban environment in arid regions is important because of the high urbanization rate in these regions and because of the high land-cover heterogeneity within urban settings. Using a Monte Carlo simulation of a multi-variable regression, we (a) correlate directional solar reflectance (albedo) ground measurements from Phoenix, AZ, with four narrowband reflectance data from QuickBird, and (b) developed a new set of coefficients for converting QuickBird narrowband reflectances to albedo. The albedo models were then applied to a second image over Las Vegas, NV, to assess their feasibility and accuracy. Two wavebands, visible-near infrared (VNIR) and total shortwave albedo, were evaluated for two reflectance models: surface and top-of-atmosphere. Results show that it is possible to accurately estimate directional albedo from high resolution imagery, specifically QuickBird, with the most accurate result from an atmospherically corrected VNIR model. The methodology presented in this paper could thus be applied in other urban areas to obtain a first order estimation of albedo. The new set of coefficients can be applied as first order albedo estimate by researchers, urban planners, developers and city managers interested in the influence of high-resolution albedo on a myriad of urban ecosystem processes.  相似文献   

5.
The objective of this study was to investigate the entire spectra (from visible to the thermal infrared; 0.390–14.0 μm) to retrieve leaf water content in a consistent manner. Narrow-band spectral indices (calculated from all possible two band combinations) and a partial least square regression (PLSR) were used to assess the strength of each spectral region. The coefficient of determination (R2) and root mean square error (RMSE) were used to report the prediction accuracy of spectral indices and PLSR models. In the visible-near infrared and shortwave infrared (VNIR–SWIR), the most accurate spectral index yielded R2 of 0.89 and RMSE of 7.60%, whereas in the mid infrared (MIR) the highest R2 was 0.93 and RMSE of 5.97%. Leaf water content was poorly predicted using two-band indices developed from the thermal infrared (R2 = 0.33). The most accurate PLSR model resulted from MIR reflectance spectra (R2 = 0.96, RMSE = 4.74% and RMSE cross validation RMSECV = 6.17%) followed by VNIR–SWIR reflectance spectra (R2 = 0.91, RMSE = 6.90% and RMSECV = 7.32%). Using thermal infrared (TIR) spectra, the PLSR model yielded a moderate retrieval accuracy (R2 = 0.67, RMSE = 13.27% and RMSECV = 16.39%). This study demonstrated that the mid infrared (MIR) and shortwave infrared (SWIR) domains were the most sensitive spectral region for the retrieval of leaf water content.  相似文献   

6.
Bauxite deposits of Jharkhand in India are resulted from the lateritization process and therefore are often associated with the laterites. In the present study, ASTER (Advanced Space borne Thermal Emission and Reflection Radiometer) image is processed to delineate bauxite rich pockets within the laterites. In this regard, spectral signatures of lateritic bauxite samples are analyzed in the laboratory with reference to the spectral features of gibbsite (main mineral constituent of bauxite) and goethite (main mineral constituent of laterite) in VNIR–SWIR (visible-near infrared and short wave infrared) electromagnetic domain. The analysis of spectral signatures of lateritic bauxite samples helps in understanding the differences in the spectral features of bauxites and laterites. Based on these differences; ASTER data based relative band depth and simple ratio images are derived for spatial mapping of the bauxites developed within the lateritic province. In order to integrate the complementary information of different index image, an index based principal component (IPC) image is derived to incorporate the correlative information of these indices to delineate bauxite rich pockets. The occurrences of bauxite rich pockets derived from density sliced IPC image are further delimited by the topographic controls as it has been observed that the major bauxite occurrences of the area are controlled by slope and altitude. In addition to above, IPC image is draped over the digital elevation model (DEM) to illustrate how bauxite rich pockets are distributed with reference to the topographic variability of the terrain. Bauxite rich pockets delineated in the IPC image are also validated based on the known mine occurrences and existing geological map of the bauxite. It is also conceptually validated based on the spectral similarity of the bauxite pixels delineated in the IPC image with the ASTER convolved laboratory spectra of bauxite samples.  相似文献   

7.
Soil contamination by heavy metals has been an increasingly severe threat to nature environment and human health. Efficiently investigation of contamination status is essential to soil protection and remediation. Visible and near-infrared reflectance spectroscopy (VNIRS) has been regarded as an alternative for monitoring soil contamination by heavy metals. Generally, the entire VNIR spectral bands are employed to estimate heavy metal concentration, which lacks interpretability and requires much calculation. In this study, 74 soil samples were collected from Hunan Province, China and their reflectance spectra were used to estimate zinc (Zn) concentration in soil. Organic matter and clay minerals have strong adsorption for Zn in soil. Spectral bands associated with organic matter and clay minerals were used for estimation with genetic algorithm based partial least square regression (GA-PLSR). The entire VNIR spectral bands, the bands associated with organic matter and the bands associated with clay minerals were incorporated as comparisons. Root mean square error of prediction, residual prediction deviation, and coefficient of determination (R2) for the model developed using combined bands of organic matter and clay minerals were 329.65 mg kg−1, 1.96 and 0.73, which is better than 341.88 mg kg−1, 1.89 and 0.71 for the entire VNIR spectral bands, 492.65 mg kg−1, 1.31 and 0.40 for the organic matter, and 430.26 mg kg−1, 1.50 and 0.54 for the clay minerals. Additionally, in consideration of atmospheric water vapor absorption in field spectra measurement, combined bands of organic matter and absorption around 2200 nm were used for estimation and achieved high prediction accuracy with R2 reached 0.640. The results indicate huge potential of soil reflectance spectroscopy in estimating Zn concentrations in soil.  相似文献   

8.
Laboratory reflectance spectra of 18 rock samples from the Precambrian basement of north east of Hajjah were measured and analyzed using the instrument of FieldSpec3 with spectral range 0.250–2.500 μm. The aim of this study is to use the spectral reflectance of rocks for mapping the mineral resources in the north east of Hajjah. The altered system in the study area comprises of silicification, sericitification, oxidation, clay minerals and carbonatization. Silicified alteration is not distinguishable in the regions of Visible-Near Infrared (VNIR) and Short wave Infrared (SWIR) of the electromagnetic spectrum, because of lack of diagnostic spectral absorption features in silica in this wavelength. Although the arsenopyrite and pyrite are wide spread in the whole study area their features do not appear in any range of spectra because they exhibit trans-opaque behavior and often lack distinction in VNIR and SWIR. The entire spectral reflectance curves of samples show alteration. Based on the examination of laboratory spectra all samples in the study area show promise in the field of mineral resources.  相似文献   

9.
The multi-source data fusion methods are rarely involved in VNIR and thermal infrared remote sensing at present. Therefore, the potential advantages of the two kinds of data have not yet been adequately tapped, which results in low calculation precision of parameters related with land surface temperature. A new fusion method is put forward where the characteristics of the high spatial resolution of VNIR (visible and near infrared) data and the high temporal resolution of thermal infrared data are fully explored in this paper. Non-linear fusion is implemented to obtain the land surface temperature in high spatial resolution and the high temporal resolution between the land surface parameters estimated from VNIR data and the thermal infrared data by means of GA-SOFM (genetic algorithms & self-organizing feature maps)-ANN (artificial neural network). Finally, the method is verified by ASTER satellite data. The result shows that the method is simple and convenient and can rapidly capture land surface temperature distribution of higher resolution with high precision.  相似文献   

10.
The transport of the sediment, carried in suspension by water, is central to hydrology and the ecological functioning of river floodplains and deltas. River discharge estimation is useful for demonstrating this information. In this study, we extracted MODIS reflectance values from a pixel near the river mouth after carrying out the simple atmospheric correction method, then applied single regression analysis to reflectance values and the in situ discharge of Naka River in Tokushima prefecture and Monobe River in Kochi prefecture, Japan. MODIS images and in situ data were taken from January through December, 2004. As a result, both in Naka River and Monobe River, robustly positive relationships between the discharges observed in situ and remotely sensed MODIS reflectance data in the region of river mouth were found throughout the year. In addition, we estimated monthly and annual average discharge from the MODIS reflectance with the regression formula. As a result, in situ average discharge was well estimated.  相似文献   

11.
The multi-source data fusion methods are rarely involved in VNIR and thermal infrared remote sensing at present.Therefore,the potential advantages of the two kinds of data have not yet been adequately tapped,which results in low calculation precision of parameters related with land surface temperature.A new fusion method is put forward where the characteristics of the high spatial resolution of VNIR(visible and near infrared) data and the high temporal resolution of thermal infrared data are fully explored ...  相似文献   

12.
Spectral reflectance measurements in the visible and near infrared wavelengths of alluvial, black cotton and lateritic soils under different conditions show that reflectance has negative association withsoil moisture and organic matter in all the three soils. In lateritic soils reflectance increases with decrease of particle size. Variations in reflectance due to changes in concentrations of parameters were generally restricted to certain concentration levels. The generally superior discriminant capability of band 4 (0.8 to 1.1 urn) is indicative of its utility in soil and soil characteristics mapping.  相似文献   

13.
空间调制干涉成像 (傅里叶变换 )光谱仪 (SMIFTS)是一种有重要的研究和应用价值的空间遥感器。该文介绍了研制的Sagnac型干涉成像 (傅里叶变换 )光谱仪原理样机及用该样机进行的外场干涉成像光谱实验。实验获取了可见光、近红外谱段干涉成像图像。对其中各像元的干涉图进行数据处理和计算 ,提取出了光谱特征明显突出的外场干涉成像光谱图像和与被测目标光谱特征相符的像元光谱  相似文献   

14.
15.
We have attempted comparative analysis of the utility of linear spectral unmixing (LSU) method and band ratios for delineating bauxite from laterite within the lateritic bauxite provinces of Chotonagpur Plateau, Jharkhand of India. This was attempted based on processing of visible–near infrared (VNIR) and shortwave infrared (SWIR) spectral bands of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. In LSU method, spectral features of main constituent minerals of lateritic bauxite are used to decompose the pixel spectra to estimate the relative abundance of bauxite and laterite in each pixel to spatially delineate bauxite within laterite. We have also compared the bauxite map derived using LSU method with bauxite maps of two band ratios in terms of spatial disposition of bauxite. We also have attempted to relate the abundance values of pixels of LSU-based bauxite map with band ratio values of bauxite pixels of two selected bauxite indices.  相似文献   

16.
以新疆渭干河-库车河地区为研究区域,在野外调查采样的基础上,对土样进行实验室光谱测量并重采样与Aster波段相匹配,利用偏最小二乘回归建模方法建立了土壤盐渍化定量反演模型,其精度满足大区域的土壤盐渍化监测要求,表明该建模方法具有较好的普适性和稳定性。用10景Aster图像数据实现了该区域的土壤盐渍化定量反演与制图,反演的盐分分布与实地调查较为一致,为大面积区域性土壤盐渍化的遥感定量调查与监测提供了较为有效的技术方法。  相似文献   

17.
The coastal regions of northern Bay of Bengal (BoB) are one of the most turbid areas owing to the large freshwater discharge from the three major river systems. This study is conducted to investigate the seasonal and interannual variability of total suspended matter (TSM) in the northern BoB. TSM concentration derived from medium resolution imaging spectrometer for the period 2002–2011 is used for this study. TSM concentration is observed to be the highest during summer monsoon season along the north-eastern region, off the Ganges–Brahmaputra river mouth. The variability of the TSM concentration depicts the role of river runoff associated with the summer monsoon in influencing the same. It is observed that the sediment concentration tapers away towards the offshore regions with the maximum extent observed up to 21.5°N latitude. Interannual variability is also observed with highest TSM concentrations occurring in the years 2003, 2008 and 2011 and least during 2004. Time series analysis performed at three major river discharge regions illustrated the distinct and highly variable nature of TSM dynamics prevailing in the northern BoB.  相似文献   

18.
A field experiment was conducted to study the effect of vegetation cover on soil spectra and relationship of spectral indices with vegetation cover. Multi-date spectral measurements were carried out on twelve wheat fields. Five sets of measurements were taken during the growth period of wheat crop. Field reflectance data were collected in the range 350 to 1800 nm using ASD spectroradiometer. Analysis of data was done to select narrow spectral bands for estimation of ground cover. The ratio of reflectance from vegetation covered soil and reflectance from bare soil indicated that spectral reflectance at 670 and 710 nm are the most sensitive bands. Two bands in visible (670 and 560 nm), three bands in near infrared (710, 870 and 1100 nm) and three bands in middle infrared (1480, 1700 and 1800 nm) were found highly correlated with fractional cover. Vegetation indices developed using narrow band spectral data have been found to be better than those developed using broad- band data for estimation of ground cover.  相似文献   

19.
This paper is an attempt to introduce the role of earth observation technology and a type of digital earth processing in mineral resources exploration and assessment. The sub-pixel distribution and quantity of alteration minerals were mapped using linear spectral unmixing (LSU) and mixture tuned matched filtering (MTMF) algorithms in the Sarduiyeh area, SE Kerman, Iran, using the visible-near infrared (VNIR) and short wave infrared (SWIR) bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument and the results were compared to evaluate the efficiency of methods. Three groups of alteration minerals were identified: (1) pyrophylite-alunite (2) sericite-kaolinite, and (3) chlorite-calcite-epidote. Results showed that high abundances within pixels were successfully corresponded to the alteration zones. In addition, a number of unreported altered areas were identified. Field observations and X-ray diffraction (XRD) analysis of field samples confirmed the dominant mineral phases identified remotely. Results of LSU and MTMF were generally similar with overall accuracy of 82.9 and 90.24%, respectively. It is concluded that LSU and MTMF are suitable for sub-pixel mapping of alteration minerals and when the purpose is identification of particular targets, rather than all the elements in the scene, the MTMF algorithm could be proposed.  相似文献   

20.
提出了一种基于Landsat TM的地表温度二次像元分解方法,将地表温度的空间分辨率从120 m提高到30 m。首先,利用地表类型的线性统计模型(E-DisTrad)获取初次分解子像元的地表温度,计算得到初次分解子像元的辐亮度;然后,利用面向对象的图像分割方法获取二次分解子像元的权重,实现对地表温度的二次分解;最后,采用升尺度再分解的验证方法进行精度分析,并选取了北京市TM影像进行实例分析。实验结果表明,二次像元分解模型不仅能有效地提高地表温度的空间分辨率,反映出不同地表类型地表温度的空间差异性,而且保证了像元分解前后能量值的一致性,非常适合于复杂地表覆盖地区的热红外波段遥感影像数据的降尺度处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号