首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Monin–Obukhov similarity functions for the structure parameters of temperature and humidity are needed to derive surface heat and water vapour fluxes from scintillometer measurements and it is often assumed that the two functions are identical in the atmospheric surface layer. Nevertheless, this assumption has not yet been verified experimentally. This study investigates the dissimilarity between the turbulent transport of sensible heat and water vapour, with a specific focus on the difference between the Monin–Obukhov similarity functions for the structure parameters. Using two datasets collected over homogeneous surfaces where the surface sources of sensible heat and water vapour are well correlated, we observe that under stable and very unstable conditions, the two functions are similar. This similarity however breaks down under weakly unstable conditions; in that regime, the absolute values of the correlations between temperature and humidity are also observed to be low, most likely due to large-scale eddies that transport unsteadiness, advection or entrainment effects from the outer layer. We analyze and demonstrate how this reduction in the correlation leads to dissimilarity between the turbulent transport of these two scalars and the corresponding Monin–Obukhov similarity functions for their structure parameters. A model to derive sensible and latent heat fluxes from structure parameters without measuring the friction velocity is tested and found to work very well under moderately to strongly unstable conditions (−z/L > 0.5). Finally, we discuss the modelling of the cross-structure parameter over wet surfaces, which is crucial for correcting water vapour effects on optical scintillometer measurements and also for obtaining surface sensible and latent heat fluxes from the two-wavelength scintillometry.  相似文献   

2.
Liu  Shu  Liu  Xiaoxuan  Yu  Le  Wang  Yong  Zhang  Guang J.  Gong  Peng  Huang  Wenyu  Wang  Bin  Yang  Mengmiao  Cheng  Yuqi 《Climate Dynamics》2021,56(11):4109-4127

The European Space Agency Climate Change Initiative Land Cover data (ESA CCI-LC, from 1992 to 2015) is introduced to the National Center for Atmospheric Research Community Earth System Model version 1.2.1 (NCAR CESM1.2.1). In comparison with the original land surface data in the Community Land Model version 4 (ORG), the new data features notable land use and land cover change (LULCC) with increased forests over northeastern Asia and Alaska by decreasing shrublands and grasslands. Overestimated bare land cover over the Tibetan Plateau (TP) and the Rocky Mountains in the ORG are corrected with the replacements by grasslands and shrublands respectively in the new data. The model simulation results show that with the introduction of the ESA CCI-LC, the simulated surface albedo, surface net radiation flux, sensible and latent heat fluxes are relatively improved over the regions where significant LULCC exists, such as northeastern Asia, Alaska, the TP, and Australia. Surface air temperature, precipitation, and atmospheric circulation are improved in boreal winter but degraded in summer. The winter warming over northeastern Asia results from increased longwave downwelling flux and adiabatic heating while the notable winter cooling over Alaska is attributed to strong cold advection followed by reduced longwave downwelling flux. LULCC alters precipitation by influencing water vapor content. In winter, LULCC affects atmospheric circulation via modulating baroclinicity while in summer, it influences land-sea thermal contrast, thus affecting the intensity of East Asian summer monsoon. LULCC also alters the simulated dust burden.

  相似文献   

3.
We present eddy-correlation measurements of heat and water vapour fluxes made during the Antarctic winter. The surface layer was stably stratified throughout the period of observation and sensible heat fluxes were always directed downwards. However, both upward and downward water vapour fluxes were observed. Their magnitude was generally small and the latent heat flux was not a significant fraction of the surface energy budget. The variation of heat and water vapour fluxes with stability is well described by Monin-Obukhov similarity theory but the scalar roughness lengths for heat and water vapour appear to be much larger than the momentum roughness length. Possible explanations of this effect are discussed.  相似文献   

4.
本文利用约束变分客观分析法构建的物理协调大气变分客观分析模型,通过融合地面、探空、卫星等多源观测资料和ERA-Interim再分析资料,建立了青藏高原那曲试验区5年(2013~2017年)长时间序列的热力、动力相协调的大气分析数据集,并以此分析那曲试验区大气的基本环境特征与云—降水演变和大气动力、热力的垂直结构。分析表明:(1)试验区350 hPa以上风速的季节变化非常明显,风速在冬季11月至次年2月达到最大(>50 m s?1),盛夏7~8月风速的垂直变化最弱,温度的垂直变化最强,大气高湿区在夏秋雨季位于350~550 hPa,在冬春干季升至300~400 hPa。(2)试验区6~7月上旬降水最多;春、秋、冬三季,300~400 hPa高度层作为大气上升运动和下沉运动的交界处,是云量的集中区;夏季,增多的水汽和增强的大气上升运动导致高云和总云量明显增多,中、低云减少。(3)夏季的地表潜热通量与大气总的潜热释放最强,大气净辐射冷却最弱,高原地区较强的地面感热导致试验区500 hPa以下的近地面全年存在暖平流,500 hPa以上则由于强烈的西风和辐射冷却存在冷平流。此外,试验区整层大气全年以干平流为主,但在夏季出现了较弱的湿平流。(4)视热源Q1具有明显的垂直分层特征:全年500 hPa以下大气表现为冷源,300~500 hPa和100~150 hPa表现为热源,150~300 hPa则在冬春干季表现为冷源,在夏秋雨季表现为热源,不同高度层的冷、热源的形成原因不同,其中夏季由于增强的上升运动、感热垂直输送和水汽凝结潜热以及高云的形成,因此几乎整层大气表现为热源。  相似文献   

5.
利用苏州地区2011年12月20日—2012年8月13日的湍流观测资料对不同季节、高温、台风强天气过程下的湍流特征进行分析。结果表明:城市地区不同季节动量通量、感热通量、潜热通量日变化明显,各通量的夏季平均值、最大值均高于冬春季,夏季感热通量日最大值为160.2 W·m-2,感热在城市地表能量平衡中的作用大于潜热,各季节潜热通量平均值仅为感热通量的40%~45%。降水量和植被覆盖度影响地表能量平衡,尤其影响地表热量在感热和潜热之间的分配。在高温天气过程中,感热通量增加明显,其峰值约是夏季平均的1.93倍。由于水汽较少,潜热通量明显减少,约为夏季日平均值的60%。速度三分量谱中u谱与w谱在低频区存在两个峰值,说明在城市复杂下垫面里,湍流激发机制中存在低频过程的影响。在台风天气过程中,动量通量大且变化快,感热输送弱,潜热输送波动大。速度谱w基本不符合"-5/3"次律,惯性子区最小且向高频移动,这和台风内部的复杂上升下沉气流有关。  相似文献   

6.
Abstract

Sea surface temperature (SST) variability in the shelf‐slope region of the northwest Atlantic is described and then explained in terms of latent and sensible heat exchange with the atmosphere. The basic data are primarily engine‐intake temperature measurements made by merchant ships over the period 1946–80. The data have been grouped by month and area and an empirical orthogonal function analysis has been performed to determine the dominant modes of variation. The first two modes account for 44% of the total variance. The first mode corresponds to in‐phase changes of SST from the Grand Banks to Mid‐Atlantic Bight; the second mode corresponds to opposite changes of SST on the Grand Banks and Mid‐Atlantic Bight. The time‐dependent amplitudes of these large‐scale modes have pronounced low‐frequency components; the associated changes in SST are typically 3°C. It is also shown that winter anomalies last longer than summer anomalies; their typical decay scales are 6 and 3 months, respectively.

The onshore component of geostrophic wind is significantly correlated with the amplitude of the first mode in winter. We note the strong land‐sea contrast of temperature and humidity in this region during winter and explain the wind‐SST correlation in terms of latent and sensible heat exchanges. The second mode (i.e. the difference in SST between the Grand Banks and Mid‐Atlantic Bight) also appears to be related to changes in atmospheric circulation during the winter. A stochastic model for mixed layer temperature is finally used to model the SST autocorrelation functions. Following Ruiz de Elvira and Lemke (1982), it includes a seasonally‐varying feedback coefficient. The model successfully reproduces the extended persistence of winter anomalies with physically realistic parameter values but it cannot account for the summer reinforcement of winter anomalies on the Scotian Shelf. We speculate that this is due to the occasional entrainment of water, cooled the previous winter, into the shallow summer mixed layer.  相似文献   

7.
Sea-surface temperature interannual anomalies (SSTAs) in the thermocline ridge of the southwestern tropical Indian Ocean (TRIO) have several well-documented climate impacts. In this paper, we explore the physical processes responsible for SSTA evolution in the TRIO region using a combination of observational estimates and model-derived surface layer heat budget analyses. Vertical oceanic processes contribute most to SSTA variance from December to June, while lateral advection dominates from July to November. Atmospheric fluxes generally damp SSTA generation in the TRIO region. As a result of the phase opposition between the seasonal cycle of vertical processes and lateral advection, there is no obvious peak in SSTA amplitude in boreal winter, as previously noted for heat content anomalies. Positive Indian Ocean Dipole (IOD) events and the remote influence of El Niño induce comparable warming over the TRIO region, though IOD signals peak earlier (November–December) than those associated with El Niño (around March–May). Mechanisms controlling the SSTA growth in the TRIO region induced by these two climate modes differ strongly. While SSTA growth for the IOD mostly results from southward advection of warmer water, increased surface shortwave flux dominates the El Niño SSTA growth. In both cases, vertical oceanic processes do not contribute strongly to the initial SSTA growth, but rather maintain the SSTA by opposing the effect of atmospheric negative feedbacks during the decaying phase.  相似文献   

8.
《大气与海洋》2013,51(3):187-201
Abstract

This paper investigates the formation and maintenance of the North Water Polynya, Baffin Bay in winter using a multi‐category sea‐ice model coupled with the Princeton ocean model. Monthly climatological atmospheric data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis provides the forcing. An objectively‐analysed climatology provides the initial ocean temperature and salinity. Wind stress drives the ice in a cyclonic gyre around northern Baffin Bay. Localized regions of thin ice form where wind drives ice away from coastlines or fast ice. The regions of thin ice are characterized by enhanced ice growth, exceeding 1.2 m mo?1. In the regions of thin ice, surface ocean heat flux is also enhanced and is between 30–60 W m?2. Surface heat flux is, in part, attributable to convective mixing and entrainment driven by ice growth. The surface heat flux reflects advection of the warm West Greenland Current. Heat and salt balances show that horizontal advective exchange counterbalances surface fluxes of heat and salt.  相似文献   

9.
Abstract

The atmospheric model of Danard et al. (1983) is used to investigate the changes in heat, mass and momentum fluxes at the air‐sea interface in Hudson Bay when the seasonal sea surface temperature is varied. Comparisons of model predictions with data from a meteorological buoy located 400 km offshore showed that the model predicted the variations in wind speed and air temperature fairly well but underestimated their magnitudes. In addition it provided offshore heat and mass fluxes for which no direct observations were available.

The most important parameter determining air‐sea fluxes is the temperature difference between air and water. This determines the stability and the degree of vertical convection of the air. In the spring the colder water stabilizes the air, which depresses vertical convection. This reduces wind stress and evaporation while increasing the heat flux into the water. During the fall, the opposite occurs. The sea surface temperature is thus buffered against man‐made changes. When the temperature is decreased, for example, as the result of hydroelectric development in surrounding watersheds, the heat flux into the water increases while the wind stress decreases. Both effects increase the sea surface temperature, opposing the initial decrease. A one‐degree depression of sea surface temperature in summer is slowly offset by increased heating and no noticeable change in temperature remains at the end of the fall.  相似文献   

10.
Increased heat fluxes near a forest edge   总被引:1,自引:0,他引:1  
Summary ?Observations of sensible and latent heat flux above forest downwind of a forest edge show these fluxes to be larger than the available energy over the forest. The enhancement averages to 56 W m−2, or 16% of the net radiation, at fetches less than 400 m, equivalent to fetch to height ratios less than 15. The enhancement of turbulent energy fluxes is explained by advection and increases with the difference in temperature and humidity of the air over the upwind area as compared to the forest. The relatively high temperature and humidity of the upwind air are not caused by high surface heat fluxes, but are explained by the relatively low aerodynamic roughness of the upwind surface. Although the heat fluxes over forest are enhanced, the momentum fluxes are almost adjusted to the underlying forest. The different behaviour of heat and momentum fluxes is explained by absorption of momentum by pressure gradients near the forest edge. It is concluded that fetch requirements to obtain accurate surface fluxes from atmospheric observations need to be more stringent for scalar fluxes as compared to momentum fluxes. Received November 23, 2001; accepted May 13, 2002  相似文献   

11.
From satellite observations and the reanalysis data, the late spring formation of warm water with temperature higher than 30 °C to the southwest of the Philippine Islands (8–18°N, 115–120°E) is investigated. Our analysis suggests that the blockage of the winter monsoon by the Philippine Islands results in this “Luzon warm water” (LWW) to the southwest of the Luzon Island and the “Vietnam cold tongue” (VCT) to the southeast of the Vietnam coast during winter and early spring in the South China Sea (SCS). The VCT is formed by the southward cold advection by the western boundary current and surface heat loss in the SCS. During the winter monsoon, the LWW first forms due to weak winds southwest of the Philippine Islands and the countering effect of warm Ekman advection against cold geostrophic advection. In spring its temperature exceeds 30 °C (LWW30), helped by strong solar radiation and the winter monsoon wake effect lee of the Philippine Islands. With the winter monsoon weakening, LWW30 extends southwestward in late spring but disappears quickly after the summer monsoon onset. Reduced latent heat flux in the winter monsoon wake is the dominant factor for the spring fast warming southwest of the Philippine Islands.Both VCT and LWW persist from winter to early spring as the Philippine Islands block the winter monsoon. Their interannual variations are correlated with the variation of the LWW30 since the blockage of the winter monsoon by the Philippine Islands modifies surface latent heat flux and ocean advection from winter to early spring. These results strongly suggest that the LWW30 is a result of land–sea–winter monsoon interaction.  相似文献   

12.
Abstract

Fluxes of temperature, water vapour, O3, SO2 and CO2 were estimated from the measurement of their variances, taken over a wetland region in northern Ontario (Canada) during the summer of 1990 and over a deciduous forest when it was fully leafed during the summer of 1988 and when it was leafless during the winter of 1990. A set of flux‐variance relations was employed, including empirical forms of universal functions that could be adjusted with some constants. Results from the present study show that these constants needed to be adjusted with site‐specific data in order to achieve a closer agreement between estimated and observed fluxes. Best estimates were obtained for the fluxes of temperature and water vapour and it was found that the flux estimates of O3, SO2 and CO2 correlated better with water vapour than with temperature. For these trace gases the flux‐variance method yielded estimates of dry deposition velocities that were either comparable with or larger than those obtained from a resistance analogue model. Both methods yielded values that overestimated the observed dry deposition velocities. The employment of the flux‐variance method in an operational network would require the use of fast‐response sensors and a practical method for reducing the noise level of the measured variances.  相似文献   

13.
Abstract

We present an analysis of current‐meter, sea‐level and hydrographic data collected in the Strait of Belle Isle and the northeastern Gulf of St Lawrence. From an array of moorings in the Strait from July to October 1980, we calculate a net transport into the Gulf of 0.13 × 106 m3 s?1 and show that the mean and eddy fluxes of heat through the Strait represented a net loss of heat to the northeastern Gulf. The estimated rate of loss of heat is less than the long‐term mean computed by Bugden (1981) but becomes comparable if adjusted for interannual changes of transport and water temperature. Moreover, the 1980 data permit the permanent tide‐gauge stations in the Strait at West Ste Modeste and Savage Cove to be levelled relative to one another, thus allowing surface currents to be calculated from sea‐level alone. Hence the long‐term wintertime transport into the Gulf can be calculated after fractional effects on the vertical structure of the flow are considered. During an average winter it appears that advection through the Strait can account for about 35% of the Gulf Intermediate Layer. A multiple regression involving average Intermediate Layer temperatures over 9 years suggests that winter air temperature in the Gulf, representative of atmospheric cooling, and sea‐level difference across the Strait, representative of advection, are equally important variables and together account for 50% of the Layer's temperature variability. Analysis of current‐meter, sea‐level and hydrographic data collected in 1975 supports earlier hypotheses that the strongest inflow of water with ? < 0° C and salinity between 32 and 3 3 should occur in winter. It appears that during the 1975 field program the inflow was about 0.6 × 106 m3 s?1, which is about twice the long‐term average for January to May.  相似文献   

14.
Abstract

Using satellite pictures of Baffin Bay and Davis Strait, ice‐floes were tracked in order to give weekly surface velocities for 1978–1979. The approximate location of the edge of the ice sheet was also determined.

In winter the direction of travel was mainly southward in Davis Strait then, as the summer approached, the edge of the ice sheet retreated northward and floe motion became less clearly defined — even going north on occasion in Baffin Bay.

Near shore speeds along Baffin Island exceeded 50 cm s‐1 in Davis Strait during November and February. Typical values in the winter/spring period were 10–15 cm s‐1 between Davis Strait and Hudson Strait. Wind records at nearby shore stations showed directions to be mainly from the northwest, roughly parallel to the Baffin Island coastline.

The study confirms the usefulness of satellite pictures as a data source for modelling surface ice movement and for selecting navigation routes in these northern waters.  相似文献   

15.
Abstract

A 30‐year record (1951–1980) of surface heat fluxes at Ocean Weather Station P in the northeastern Pacific Ocean (50°N, 145°W) was examined for differences in the interdecadal variation between fail and winter. During the latter part of the 1950s and the early 1960s, the winter surface heat flux from the ocean to the atmosphere diminished significantly whereas the fall heat flux increased slightly This difference in the modulation of the winter heat flux from the fall heat flux during this period appears to be caused by the presence of an atmospheric circulation anomaly resembling that of the Pacific/North America (PNA) low‐frequency variability mode during the winter season.  相似文献   

16.
This study analyzes mid-21st century projections of daily surface air minimum (Tmin) and maximum (Tmax) temperatures, by season and elevation, over the southern range of the Colorado Rocky Mountains. The projections are from four regional climate models (RCMs) that are part of the North American Regional Climate Change Assessment Program (NARCCAP). All four RCMs project 2°C or higher increases in Tmin and Tmax for all seasons. However, there are much greater (>3°C) increases in Tmax during summer at higher elevations and in Tmin during winter at lower elevations. Tmax increases during summer are associated with drying conditions. The models simulate large reductions in latent heat fluxes and increases in sensible heat fluxes that are, in part, caused by decreases in precipitation and soil moisture. Tmin increases during winter are found to be associated with decreases in surface snow cover, and increases in soil moisture and atmospheric water vapor. The increased moistening of the soil and atmosphere facilitates a greater diurnal retention of the daytime solar energy in the land surface and amplifies the longwave heating of the land surface at night. We hypothesize that the presence of significant surface moisture fluxes can modify the effects of snow-albedo feedback and results in greater wintertime warming at night than during the day.  相似文献   

17.
Wang  Zhenzhen  Wu  Renguang 《Climate Dynamics》2021,56(11):3995-4012

A region of low sea surface temperature (SST) extends southward in the central part of southern South China Sea during boreal winter, which is called the South China Sea cold tongue (SCS CT). The present study investigates the factors of interannual variation of SST in the SCS CT region and explores the individual and combined impacts of El Niño-Southern Oscillation (ENSO) and East Asian winter monsoon (EAWM) on the SCS CT intensity. During years with ENSO alone or with co-existing ENSO and anomalous EAWM, shortwave radiation and ocean horizontal advection play major roles in the interannual variation of the SCS CT intensity. Ocean advection contributes largely to the SST change in the region southeast of Vietnam. In strong CT years with anomalous EAWM alone, surface wind-related latent heat flux has a major role and shortwave radiation is secondary to the EAWM-induced change of the SCS CT intensity, whereas the role of ocean horizontal advection is relatively small. The above differences in the roles of ocean advection and latent heat flux are associated with the distribution of low level wind anomalies. In anomalous CT years with ENSO, low level anomalous cyclone/anticyclone-related wind speed change leads to latent heat flux anomalies with effects opposite to shortwave radiation. In strong CT years with anomalous EAWM alone, surface wind-related latent heat flux anomalies are large as anomalous winds are aligned with climatological winds.

  相似文献   

18.
Abstract

The effects of marine fronts on the local atmospheric surface layer and air‐sea interaction were studied. Several mesoscale fronts were crossed by a research vessel in the Greenland Sea. Air temperature, humidity and stability conditions, and the fluxes of momentum, as well as sensible and latent heat, were investigated. For relatively calm conditions, close air‐sea coupling was observed in the temperature whereas for stronger winds, the air temperature of the surface layer was not markedly modified by the front below. Changes in the moisture content in the frontal area were observed and, in one case, evaporation was observed on the warm water side and condensation on the cold water side of the front. Frontal differences in heating from the sea were assumed to affect the surface‐layer wind field.  相似文献   

19.
利用藏东南峡谷地区排龙站、丹卡站、卡布站、墨脱站四个站点2018年11月至2019年10月的涡动协方差仪观测资料,分析藏东南峡谷地区不同位置入口、中段和末端地表通量变化的特征及其与局地降水的关系.研究表明:地表通量月平均日变化特征为夜间潜热通量大于感热通量,日间呈单峰变化特征.排龙站和丹卡站感热11月至次年4月较强,5...  相似文献   

20.
青藏高原作为世界第三极,其热力强迫作用不仅对亚洲季风系统的发展和维持十分重要,也会对大气环流场产生深远影响。利用欧洲中期天气预报中心(ECMWF)的ERA-Interim中1979-2016年3-10月青藏高原及其周边地区的地表热通量月平均再分析资料,通过分析得出以下结论:3-5月青藏高原主体由感热占据,感热强度快速上升且呈西高东低的分布态势,潜热强度较小但随时间而增强。季风爆发后的6-8月,青藏高原感热强度减弱,潜热强度迅速增强且呈东高西低的分布特征。季风消退后的9-10月,感热与潜热强度相当,但感热呈现出西高东低的分布特征。过去38年,青藏高原地表感热总体呈现微弱下降趋势,潜热呈较弱上升趋势。青藏高原西部地区感热呈微弱下降趋势,潜热呈上升趋势。东部感热呈较为明显的下降趋势且近年来变化趋势增强,东部潜热通量则呈现较为明显的上升趋势,分析结论与近期全球变暖条件下青藏高原气候变暖变湿这一变化状况一致,通过对青藏高原地表热通量的变化分析为下一步运用第三次青藏高原大气科学试验所获资料分析青藏高原上空大气热源的变化以及地表加热场如何影响大气环流奠定基础。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号