首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summer weather conditions along the west coast of Africa near 34 ° S, 18 ° E are investigated using doppler acoustic sounder profiles. Case studies were selected from a two-year record to form composite analyses over the diurnal cycle. The SE trade wind exhibited a low level jet at the level of the temperature inversion due to a sharp reversal in the thermal wind vector aloft. Mean wind speeds reached 14 m s–1 just before midnight as the surface and upper inversions strengthened. Seabreezes were categorised by the supporting gradient wind and found to have mean depths of 400 m, speeds of over 6 m s–1 at the 200 m level, and advance/retreat times of 09 hr and 16–20 hr. During seabreezes and weak on-shore gradient flow conditions, the thermal internal boundary layer (TIBL) was monitored with sounder transects in the first 12 km of the coastal zone. The growth height was observed to be 1:20 in the first 5 km and 1:50 farther inland. The sounder climatology, together with surface network and aerial survey results, illustrate the four-dimensional characteristics of trade winds and seabreezes near Cape Town.  相似文献   

2.
The planetary boundary layer (PBL) over the Indian Antarctic station, Maitri (70.7° S; 11.7° E; 120 m asl) has been studied using a monostatic acoustic sounder. Acoustic sounder records reveal that the Antarctic PBL remains stably stratified throughout the year except for some periods in the peak summer months. The summertime PBL exhibits a diurnal variation with ground-based inversions developing at night and the convective plumes occurring during the peak sunlight hours. The cyclonic inflow of warm oceanic air towards the continent's interior from the coast helps in the development of the elevated layers and the Kelvin-Helmholtz waves observed on the sodar records.  相似文献   

3.
The vertical velocity field and the convective plumes in the atmospheric boundary layer have been observed during morning hours with the acoustic Doppler sounder of the C.R.P.E. A method for plume determination using acoustic soundings in the well-mixed layer is presented. Using Telford's 1970 and Manton's 1975 models, a comparison is made between the predictions of the models and the plume properties as observed by the Doppler sodar. The mean plume velocity is found to be parabolic. It is shown, restricting Monin and Obukhov similarity to conditions inside plumes and using only vertical velocity within plumes, that the observed convective plumes carry nearly sixty percent of the sensible heat flux at the top of the surface layer.  相似文献   

4.
In this paper, we present some results on an experiment to test the accuracy and utility of a horizontally-aimed acoustic sounder. A high-frequency, high-resolution mini-sounder was mounted on the mast of the Boulder Atmospheric Observatory aimed in the cross-wind direction. Measurements of C T 2, wind velocity and temperature and velocity variances were obtained under both stable and unstable conditions. These measurements were found to be in agreement with the equivalent values obtained, where appropriate, by the tower-fixed instrumentation and a vertically-pointed sounder, confirming the accuracy of the horizontal sounder. In addition, some information into the horizontal structure of plumes and gravity waves was obtained along with evidence of lack of excess attenuation at least for lengths within the unambiguous range of mini-sounders.  相似文献   

5.
The first-order (linear) response of the planetary boundary layer is calculated for flow over periodic terrain, for variations in both surface roughness and terrain elevation. Calculations are made for horizontal wavenumbers varying from 10–4m–1 to 3 × 10–3m–1. A simple second-order closure model of the turbulence is used, and Coriolis and buoyancy forces are neglected. As expected, flow over a periodic terrain produces corresponding periodic structure in all meteorological fields above the surface. The periodic structure consists of two components. The first is very nearly evanescent with height, showing little vertical structure. It corresponds to the motion that would be observed were the atmosphere inviscid. The second component, introduced by turbulent viscosity, exhibits considerable vertical structure, with vertical wavelengths the order of 100 m, and thus could be responsible for the layering often seen on acoustic sounder observations of the atmospheric boundary layer.Wave Propagation Laboratory.Environmental Science Group.  相似文献   

6.
Simultaneous observations were made by an acoustic sounder and on a meteorological tower during the month of May 1978 at the Atomic Power Station Tarapur. The probing range of the acoustic sounder was 700 m. The meteorological tower could sense wind and temperature at various levels up to a height of 120 m.The site being close to the sea shore, the thermal environment of the lower atmosphere is controlled mostly by land and sea breeze circulations. Thermal convective structures were seen during the daytime and also at night. The frequency of plume formation and the height of the plumes were, however, low during the night. The convective boundary layer in the daytime ranged from 400–500 m while at night it was mostly under 200 m. The observation of thermals at night is explained by the presence of a naturally stable marine layer above 30 m at this site. In the morning hours, winds suddenly change their direction allowing advection of a land breeze which is responsible for the formation of surface-based shear echoes to a height of 200 m during the transition period and for the subsequent development of an elevated layer due to mixing of two different air masses. A marine layer was also seen over Tarapur for a few days during the early evening and night hours. Its height was mostly around 400 m. It may indicate the presence of a subsidence inversion at Tarapur. The need for collection of supporting meteorological data to a height of 500 m by tethered balloon or some other suitable in-situ technique is stressed.  相似文献   

7.
Analysis of three-dimensional wind profiles recorded by an acoustic sounder near Cape Town has indicated that extreme subsidence (-35 cm s-1) is a mean feature throughout the atmospheric boundary layer (50–1000m) during summertime southerly winds. Over the SW Cape coast, the atmospheric subsidence translates into a N-S gradient of the mean summer water deficit (-20 to -32 cm month-1). The rapid drying out of the air mass along a northward trajectory is linked to a number of factors including synoptic-scale divergence of the surface wind and the effects of the local orography which produce a hydraulic jump of the southerly wind. The along-coast reduction in sea surface temperature provides a major constraint on the height of the moist marine layer. As the depth of the marine air mass shrinks, its potential for inland penetration becomes limited. In addition, dry air is entrained towards the surface as evidenced by aerial survey data. A model is formulated which indicates the importance of the surface heat fluxes in reducing the depth of the Agulhas air mass as it passes northward over the SW tip of Africa during summer.  相似文献   

8.
Lifting of dust particles by dust devils and convective plumes may significantly contribute to the global mineral dust budget. During the Saharan Mineral Dust Experiment (SAMUM) in May–June 2006 vertical profiling of dusty plumes was performed for the first time. Polarization lidar observations taken at Ouarzazate (30.9°N, 6.9°W, 1133 m height above sea level) are analyzed. Two cases with typical and vigorous formation of convective plumes and statistical results of 5 d are discussed. The majority of observed convective plumes have diameters on order of 100–400 m. Most of the plumes (typically 50–95%) show top heights <1 km or 0.3DLH with the Saharan dust layer height DLH of typically 3–4 km. Height-to-diameter ratio is mostly 2–10. Maximum plume top height ranges from 1.1 to 2.9 km on the 5 d. 5–26 isolated plumes and clusters of plumes per hour were detected. A low dust optical depth (<0.3) favours plume evolution. Observed surface, 1 and 2–m air temperatures indicate that a difference of 17–20 K between surface and 2-m air temperature and of 0.9–1 K between the 1 and 2-m temperatures are required before convective plumes develop. Favourable horizontal wind speeds are 2–7 m s−1.  相似文献   

9.
Characteristics of the winter boundary layer over the (elevation 1600 m) in the vicinity of Johannesburg, 26 ° S, 29 ° E, are described in relation to air pollution potential by means of doppler sounder observations and background climatological data. Regional mean winds for the 800 h Pa level show that the winter boundary layer is dominated by a cell of high pressure over the Limpopo River Valley to the northeast of Johannesburg. To the south of Johannesburg, westerly circumpolar flow is prevalent and encroaches onto the plateau during the passage of frontal perturbations. Doppler sounder wind and turbulence profiles, averaged for the months of August 1984 and June 1985, are presented to establish a boundary-layer climatology. Diurnally averaged doppler sounder profiles for both months revealed a very consistent convective/day — stable/night cycle in the very dry winter conditions. A sharp radiation inversion formed just after sunset up to the 150–200 m level and grew in depth to reach 300 m on average near sunrise. The inversion caused a reduction in frictional drag and the formation of nocturnal low level jet during westerly encroachment. A case study is evaluated to determine the detailed structure of the low level jet near Johannesburg. The thermal wind plays a role in the nocturnal acceleration; mechanisms for its development and maintenance are explored. Additional work is presented on the synoptic cycle and its influence on air pollution dispersion over the African Plateau.  相似文献   

10.
Although it is well known that sea-ice regions are important components of the Earth's climate system, the exchanges of energy between ocean, ice and atmosphere are not well understood. The majority of past observational and modelling studies of atmosphere-surface interactions over sea-ice regions were primarily concerned with airflow over a single, isolated area of open water. The more realistic situations of multiple polynyas within a sea-ice field and different areal concentrations of sea ice were studied here. Spatial structure of the atmospheric boundary layer in response to this surface was simulated using a high-resolution numerical model. A sea-ice concentration of 80%, typical of the Southern Ocean sea-ice zone, was maintained within a 100-km wide domain. The effects of three polynya characteristics were assessed: their horizontal extent; local concentration of sea ice (LCI); and their arrangement with ice floes. Over polynyas of all sizes distinct plumes of upward heat flux, their width and height closely linked to polynya width, resulted in mixed layers 600 to 1000 m deep over and downwind of the polynyas, their depth increasing with polynya width. Mean surface heat flux (MSHF) increased with size in polynyas less than 30 km wide. The air-to-ice MSHF over the first 10 km of sea-ice downwind of each polynya and the domain-average surface heat flux increased linearly with polynya width. Turbulent kinetic energy plumes occurred over all polynyas, their heights and widths increasing with polynya widths. Downward flux of high momentum air in the plumes caused increased wind speeds over polynyas in the layer from about 300–1000 m above the surface, the depth varying directly with polynya width. MSHFs decreased as LCIs increased. The arrangement of polynyas had relatively little effect on the overall depth of the modified layer but did influence the magnitude and spatial structure of vertical heat transfer. In the two-polynya case the MSHF over the polynyas was larger when they were closer together. Although the MSHF over the sea ice between the polynyas decreased in magnitude as their separation increased, the percentage of the polynya-to-air heat recaptured by this ice floe increased fivefold.  相似文献   

11.
The marine atmospheric boundary layer (MABL) plays a vital role in the transport of momentum and heat from the surface of the ocean into the atmosphere. A detailed study on the MABL characteristics was carried out using high-resolution surface-wind data as measured by the QuikSCAT (Quick scatterometer) satellite. Spatial variations in the surface wind, frictional velocity, roughness parameter and drag coefficient for the different seasons were studied. The surface wind was strong during the southwest monsoon season due to the modulation induced by the Low Level Jetstream. The drag coefficient was larger during this season, due to the strong winds and was lower during the winter months. The spatial variations in the frictional velocity over the seas was small during the post-monsoon season (-0.2 m s^-1). The maximum spatial variation in the frictional velocity was found over the south Arabian Sea (0.3 to 0.5 m s^-1) during the southwest monsoon period, followed by the pre-monsoon over the Bay of Bengal (0.1 to 0.25 m s^-1). The mean wind-stress curl during the winter was positive over the equatorial region, with a maximum value of 1.5×10^-7 N m^-3, but on either side of the equatorial belt, a negative wind-stress curl dominated. The area average of the frictional velocity and drag coefficient over the Arabian Sea and Bay of Bengal were also studied. The values of frictional velocity shows a variability that is similar to the intraseasonal oscillation (ISO) and this was confirmed via wavelet analysis. In the case of the drag coefficient, the prominent oscillations were ISO and quasi-biweekly mode (QBM). The interrelationship between the drag coefficient and the frictional velocity with wind speed in both the Arabian Sea and the Bay of Bengal was also studied.  相似文献   

12.
For the first time a simulation of blowing snow events was validated in detail using one-month long observations (January 2010) made in Adélie Land, Antarctica. A regional climate model featuring a coupled atmosphere/blowing snow/snowpack model is forced laterally by meteorological re-analyses. The vertical grid spacing was 2 m from 2 to 20 m above the surface and the horizontal grid spacing was 5?km. The simulation was validated by comparing the occurrence of blowing snow events and other meteorological parameters at two automatic weather stations. The Nash test allowed us to compute efficiencies of the simulation. The regional climate model simulated the observed wind speed with a positive efficiency (0.69). Wind speeds higher than 12 m s ?1 were underestimated. Positive efficiency of the simulated wind speed was a prerequisite for validating the blowing snow model. Temperatures were simulated with a slightly negative efficiency (?0.16) due to overestimation of the amplitude of the diurnal cycle during one week, probably because the cloud cover was underestimated at that location during the period concerned. Snowfall events were correctly simulated by our model, as confirmed by field reports. Because observations suggested that our instrument (an acoustic sounder) tends to overestimate the blowing snow flux, data were not sufficiently accurate to allow the complete validation of snow drift values. However, the simulation of blowing snow occurrence was in good agreement with the observations made during the first 20 days of January 2010, despite the fact that the blowing snow flux may be underestimated by the regional climate model during pure blowing snow events. We found that blowing snow occurs in Adélie Land only when the 30-min wind speed value at 2 m a.g.l. is >10 m s ?1. The validation for the last 10 days of January 2010 was less satisfactory because of complications introduced by surface melting and refreezing.  相似文献   

13.
Between November 15 and 30, 1985, an international mesoscale transport experiment was performed on the Swiss Plain. Seven meteorological groups from Denmark, Germany, Italy and Switzerland measured diffusion properties of near neutral planetary boundary layers during six completely overcast days: four Bise (north-east wind) situations, one transitional situation and one west-wind situation. Diffusion was measured using SF6 as tracer, which was released at the meteotower of the Gösgen nuclear power plant at 6 m above ground level. One hundred automatic samplers plus a mobile gas chromatograph were used to measure the concentration fields at distances up to 90 km downwind. Meteorological parameters were observed using radar-tracked constant-level balloons, tethered balloon soundings, sonic anemometers, an acoustic sounder and several meteorological ground stations, including a 110 m mast. All data were collected on a magnetic tape with free access to interested persons.The aim of the experiments was to obtain knowledge about the general nature of the turbulence, advection and atmospheric dispersion during neutral weak-wind situations over complex terrain. The collected data set will be useful for testing mesoscale transport and diffusion models. The results clearly show the channelling effect of the Jura mountains and the hilly prealpine region. An interesting result is that the SF6 plumes showed intensive horizontal spread but only limited diffusion in the vertical direction.  相似文献   

14.
The winter-time arctic atmospheric boundary layer was investigated with micrometeorological and SF6 tracer measurements collected in Prudhoe Bay, Alaska. The flat, snow-covered tundra surface at this site generates a very small (0.03 cm) surface roughness. The relatively warm maritime air mass originating over the nearby, partially frozen Beaufort Sea is cooled at the tundra surface resulting in strong (4 to 30 °C · (100 m)-1) temperature inversions with light winds and a persistent weak (1 to 2 °C · (100 m)-1) surface inversion with wind speeds up to 17 m s-1. The absence of any diurnal atmospheric stability pattern during the study was due to the very limited solar insolation. Vertical profiles were measured with a multi-level mast from 1 to 17 m and with a Doppler acoustic sounder from 60 to 450 m. With high wind speeds, stable layers below 17 m and above 300 m were typically separated by a layer of neutral stability. Turbulence statistics and spectra calculated at a height of 33 m are similar to measurements reported for non-arctic, open terrain sites and indicate that the production of turbulence is primarily due to wind shear. The distribution of wind direction recorded at 1 Hz was frequently non-Gaussian for 1-hr periods but was always Gaussian for 5-min periods. We also observed non-Gaussian hourly averaged crosswind concentration profiles and assume that they can be modeled by calculating sequential short-term concentrations, using the 5-min standard deviation of horizontal wind direction fluctuations () to estimate a horizontal dispersion coefficient ( y ), and constructing hourly concentrations by averaging the short-term results. Non-Gaussian hourly crosswind distributions are not unique to the arctic and can be observed at most field sites. A weak correlation between horizontal ( v ) and vertical ( w ) turbulence observed for both 1-hr and 5-min periods indicates that a single stability classification method is not sufficient to determine both vertical and horizontal dispersion at this site. An estimate of the vertical dispersion coefficient, z , could be based on or a stability classification parameter which includes vertical thermal and wind shear effects (e.g., Monin-Obukhov length, L).  相似文献   

15.
Cloud motion data were compared to ship observations over the Indian Ocean during the summer monsoon, 1 May to 31 July 1979, with the objective of using the cloud data for estimating surface wind and ultimately the wind stress on the ocean. The cloud-ship comparison indicated that the cloud motions could be used to estimate surface winds within reasonable accuracy bounds, 2.6 m s-1 r.m.s. speeds and 22° to 44° r.m.s. directions (22° r.m.s. for winds < 10 m s-1). A body of statistics is presented which can be used to construct an empirical boundary layer with the eventual goal of producing a stress analysis for the summer MONEX from cloud motion data.  相似文献   

16.
Use of an airborne quartz crystal microbalance cascade impactor instrument together with a correlation spectrometer has allowed the flux of particles and their size distribution to be determined at Mount Erebus. The plume contributes 21±3 metric tomnes/day of aerosol particles to the Antarctic upper troposphere. The aerosol particles consist of larger (5–25 m) particles of elemental sulfur and silica, a middle sized group of iron oxides and smaller particles (less than 1 m) of complex liquids. Unlike many volcanic plumes, the Erebus plume has only a small amount of sulfate particles. The concentrations of particles in the Erebus plumes was 70–370 m/m3. Limited sampling of the Antarctic atmosphere at 8 km altitude but hundreds of km away from Erebus obtained a few large particles of sulfur and silicates, suggesting a similarity with the Erebus plume. The fallout of these particles occurs slowly over a broad area of the Antarctic continent.  相似文献   

17.
Acoustic sounder data obtained for a period of three years have been analysed to estimate the monthly mean percentage time of occurrences of sea breezes, thermal plumes, and nocturnal radiative inversion layers. The intrusion of marine air has been found to suppress daytime convection and also to inhibit the development of nocturnal inversions.  相似文献   

18.
Experimental observations on the temperature and wind fields above flat grassy terrain have been obtained with an instrumented 92-m tower during intervals of strong insolation about midday. The turbulence characteristics of the air confirm that free convection prevailed at heights between 16 and 48 m, with some tendency for departure at higher levels. The spectra of temperature and vertical velocity contain gaps at wave numbers in the range 0.01–0.025 m–1. These are attributed to natural thermal plumes that act as sources of extra energy input to the Kolmogorov-Obukhov-Corrsin scheme of turbulence in or at the low-wave number limit of the inertial subrange. Modified forms of the K-O-C spectral laws for thermally unstable air are derived which agree with the observed spectra over the whole range of wave numbers examined, and which contain the spectral gap at wave numbers corresponding to the thermal plume diameters.  相似文献   

19.
Interaction between wind and temperature fields in the planetary boundary layerfor a spatially heterogeneous surface heat flux has been investigated using large-eddysimulation. It is shown that a substantial difference exists in the wind and temperaturefields, depending on whether the directions of the background wind and the surfaceheat flux variation are parallel or perpendicular.When they are parallel to each other, two-dimensional plumes induced by theheterogeneous surface heat flux are easily destroyed by the background wind,and the velocity field is strongly modified by convective eddies compared tothe case when they are perpendicular to each other. This leads to a substantialdifference in the profiles of turbulent kinetic energy and its flux.It also results in a difference between the two cases in the bulk properties of theplanetary boundary layer, such as the entrainment at the top of the planetary boundarylayer and the drag at the bottom, which have important implications for boundary-layermodelling. The difference between the two cases exists even when the background windspeed is as large as 15.0 m s-1. Meanwhile, the contrast between two cases is weakened by the Coriolis force.  相似文献   

20.
Operation of a monostatic acoustic sounder on the campus of The University of Calgary for the period March to September, 1976, has provided data on the atmospheric boundary layer over Calgary. The formation and dissipation of the nocturnal temperature inversion layer leaves a clear signature in the sounder records. A trend is discerned in which the nocturnal layer tends to form at sunset, whereas convective instability is established some 2–3 hours after sunrise. Comparison of sounder records with an extensive set of radiosonde temperature profiles has shown that the height of the inversion layer can be determined reliably when a single, dark, ground-based return is visible on the sounder charts. On many occasions, however, the sounder detects multiple structures in the atmosphere. In these cases, it is difficult to establish a systematic correspondence of the turbulent structure as observed in the sounder records with the temperature profile as observed by the radiosonde.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号